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Abstract: The goal of any cryptographic system is the exchange of information among the intended users. We
can generate a common secret key using neural networks and cryptography. In the case of neural cryptography
1s based on a competition between attractive and repulsive forces. A feedback mechamsm 1s added to neural
cryptography which increased the repulsive forces. The partners A and B have to use a cryptographic key
exchange protocol in order to generate a common secret key over the public channel. This can be achieved by
two Tree Parity Machines (TPMs), which are trained on their mutual output synchronize to an identical time
dependent weight vector. The proposed TPMs, each output vectors are compare then updates from hidden
unit using Hebbian Learning Rule and dynamic unit using Random Wallk Rule with feedback mechanism. We
can enhance the security of the system using different learning rule with different units. A network with
feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.
The advanced attacker presented here, named the Majority Flipping Attacker is the first whose does not decay
with the parameters of the model. The probability of a successful attack is calculated for different model
parameters using numerical simulations.
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INTRODUCTION

The study of neural networks was originally driven by
its potential as a powerful learmng and memory machine
(Rozen-Zvi et al, 2002). To send asecret message over
a public channel one needs a secret key either for
encryption, decryption or both. In 1976, Diffie and
Hellman have shown how to generate a secret key over a
public chammel for exchange of secret message. Recently
it has been shown how to use synchronization of neural
network to generate secrete keys over public channel.
This algorithm called neural cryptography 1s not based
on number theory but it contains a physical mechanism
(Ruttor et al., 2004).

Neural cryptography (Kanterand Kinzel, 2002; Kinzel,
2002} 1s based on the effect that two neural networks are
able to synchronize by mutual learning (Ruttor et al.,
2006). In each step of this online learning procedure they
recelve a common nput pattern and calculate their output.
Then, both neural networks use those outputs present by
their partner to adjust their own weights. This process
leads to fully synchronized weight vectors.

Synchromzation of neural networks is, mn fact, a
complex dynamical process. The weights of the networks
perform random walks, which are driven by a competition

of attractive and repulsive stochastic forces. Two neural
networks can increase the attractive effect of their moves
by cooperating with each other. But, a third network
which 1s only trained by the other two clearly has a
disadvantage, because it cannot skip some repulsive
steps. Therefore, bidirectional synchronization is much
faster than umdirectional learning (Ruttor ef al., 2004).

Two partners A and B want to exchange a secret
message over a public channel. In order to protect the
content against an attacker E, who is listening to the
communication, A encrypts the message, but B needs A’s
secret key for decryption. Without an additional private
channel A and B have to use a cryptographic key
exchange protocol in order to generate a common secret
key over the public channel (Kinzel, 2002). This can be
achieved by synchromzing two TPMs (Tree Panty
Machines), one for A and one for B, respectively. Tn this
study we introduce a mechanism, which is based on the
generation of mputs by feedback.

A measure of the security of the system 1s the
probability Pg that an  attacking network is successful.
We calculate P; obtained from the best known attack for
different model parameters and search for scaling
properties of the synchronization time as well as for the
security measure. It turn out that feedback improves the
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security significantly but it also increases the effort to
find the common key when this effort 1s kept constant,
feedback only yields a small improvement of security
(Ruttor, 2004).

Neural cryptography: The proposed Tree Parity Machine
is used by partners and an aftacker in neural
cryptography consists of K-hidden units  and K-dynamic
units, each of them being a perceptron with an N-
dimensional weight vector w, (Engel and Van Den, 2001)
When a hidden and dynamic unit receives an N-
dimensional mput vector x, it produces the output bit
(Volkmer and Wallner, 2005).

The general structure of the networks is shown in
Fig. 1. All inputs values are binary,

¥ € {-1,+1} and x,, € { -1, +1} (1)

and the weights are discrete number between -I. and +1.,

w, € { L, LI,
w, € {-L,-L+1,

,T-1,L} and
JL-1,L Y.

(2)

The index 1=1,....., K denotes the ith hidden unit of
TPM and m = 1,....., K dynamic unit of the TPM and
1=1,...., N denotes the N components (Ruttor et al., 2006).
We mainly consider two transfer functions as given:

|
J

Where Eq. 3 is the hidden unit and the Eq. 4 is the
dynamic unit.

The K hidden and dynamic units o, and 8, define a
common output bit T of the total network by

Sw,ex, (3)

j=1

G, = sign[

& =tanh (ZN: W, X, (4)

m=1

K
B, = no; forhidden units (3)

5 (6)

i

= for dynamicunits
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K
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The two TPMs (Volkmer and Wallner, 2005) compare
the output bits then update the values between hidden
units and dynamic units as well as 2 parties A and B that
are trying to synchronize their weights
¢, =comp (B, . B,) )

Where
and

(&)

A_ A B
o, =W X, T o
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Fig. 1. A structure of tree parity machine

07 :W;}‘ X; %5, (9

Each of the 2 commumnication parties A and B has their
own network with an identical TPM architecture. Each
party selects a random initial weight vectors w;(A) and
w,(B)att=0.

Both of the networks are trained by thewr mutual
output bits t* and t°. At each training step, the 2
networks receive common mput vectors x; and the
corresponding output bit T of its partner (Godhavari et al.,
2005). We use the following learning rule.

If the output bits are different, T* # t°, nothing is
changed.

If t* = t® = 1 the hidden and dynamic units are trained
which have an output bit identical to the common
output ©*° = 747,

To adjust the weights we consider two different
learming rules.

{(a) Hebbian Learmng rule for hidden units

W:A‘(t +1)= W‘A t)+ X‘IA®(‘:A¢1‘A‘)®(IA‘:E)

WELE D) = WED + X, PO (F0%)O(r ) (10
(b) Random walk learning for dynamic units
wh(t+1) =wi (1) + x, OO ) an

wE(t+1) = wE (D) + 1,00 P )B(1*F)

If any component w; moves out of the interval {-T., L.},
it is replaced by sign (w;) L. This can treated as a random
walk with reflecting boundaries. Using this algorithm the
2 neural networks synchronize to a common secret key.

We analyze the process of synchromization using
simulation of finite systems as well as iterative
calculations corresponding hidden units i are described
by 2L + 1 variables P',,, (t), which are defined as the
probability to find a weight with W*, (t) = a in A’s TPM
and WP, (t) = b in B’s TPM at time t.

P, (D=Dp (Wit =aAwi(t)=b a2
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While these quantities are approximately given by the
frequency of the weight values W*, (t) and W% (t) in
siunulations, we use the for simple attack as given:
" =wt+x @ (cith) @ttt (13)

Wl

To determine the time evolution of P, (t) directly n
the limit N—ee,

In both cases the standard order parameters
(Kinzel et al., 2000), which are commonly used for the
analysis of online leamning can be calculated as functions
of Pl (1)

L L

Q= %WAW}A =2 X aZP;,b (14)
a=-L b=-L
e 1 ymigs L Lo (]5)
Q==WW'=3% > bp,
N a=-L b=-L
RiF = LWiAWB = i ZL: abp,, (16)
N a—L b—-L ’
The level of synchromzation between 2

corresponding hidden units and dynamic units is given
by the normalized overlap

whew? RAF

: (a7
I T ST e

Uncorrelated weight vector at the beginning of the
synchronization process have P, = 0 while value P, = 1 1s
reached for fully synchromized weights (Ruttor et al.,
2006).

SYNCHRONIZATION WITH FEEDBACK

The TPMs A and B which start with different random
weights and common random inputs (Ruttor et al., 2004)
The feedback mechamsm 1s defined as follows:

After each step ‘t’ the input is shifted, x,;(t+1) =
X, (t) forj>1.

If the cutput bits agree, T* (t) = t° (1), the cutput of
each hidden umit is used as a new mput bit, x
{(t+1)=d, (1) are set to common public random values.
After R steps with different outputs, t (t) = t°(t), all
iput vectors are reset to public common random
vectors, X", (t+ 1) =x", (t+1).

The feedback creates correlations between the
weights and the inputs therefore the system becomes
sensitive to the learmng rule. The Hebbian or Random
walk rule, the entropy is much smaller, because the values
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Fig. 2: Average Synchronization time between Hebbian
and Random walk of t,  and its standard
deviation as a function of L, from TPM with K = 3.
Simulation results obtained using N = 10°

of the weights are pushed to the boundary values £1.. In
Fig. 2, we have mumerically calculated the averaged time
as a function of the number L. of components for the
Hebbian rule of hidden units
rule of dynamic units. There is a large deviation from the

and Random walk
scaling law t,,. e L’ as observed for R = 0.
RESULTS

The attacker E tries to leam the weight vector of one
of the two machines (Mislovaty et al., 2004). The values
of N and L are public as well as all the transmission
through the chamnel: mput x; and output t®. The
information E lacks in each learning step are the values
{0, } of A’s hidden units and { §,} of A’s dynamic units
(ie.) which of the 2"'* 2% possible updating scenarios A
performs.

The most successful attack on neural cryptography
is the Majority Flipping Attack, which is an extension of
the Geometric Attack. The Attacker E uses an ensemble of
‘n’ TPMs. At the beginming, the weight vectors of all
attacking networks are chosen randomly, so that the
average mtial overlap between them is zero. If the 2
partners A and B use queries for the neural key exchange,
the probability  strongly depends
parameter H. This can be used to regain security against
the Majority Flipping Attack (Fig. 3).

success on the

1
1+ e MH-1

P, - (18)

E

With 2 parameters P and p is a suitable fitting function
for describing P as a function of H. Figure 4 shows the
dependence on L of the fit parameter p for both attacks.
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Fig. 3: Success probability of the Majority Flipping
Attack as a function of H. Symbols denote the
results obtained in 1000 simulations for K =3,
n=100and N = 1000

Fig. 4: Parameter p as a function of synaptic depth L.
Symbols denote the results of fits using for the
Geometric Attack and Majority Flipping Attack
with M =100

A side from finite size effects for small values of L, this
parameter is proportional to the synaptic depth of the
TPMs:

w=al (19

Obviously, the quantity o << H/L not only determines
the synchronization time but also the success of attack.
Here the probability of Majority Flipping Attack
(Kanter ef af., 2004). Py, decrease exponentially with
increasing synaptic depth in Hebbian Tearning Rule
(Fig. 5).

Pﬂlp(a) o e (20)

The probability of Majority Flipping Attack Py, in
Random Walk Rule
(21)

-EL
anp(m o e

The average of Majority Flipping Attack FEq. 20 and
Eq. 21 1s
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Fig. 5: The Probability Py, as a function of L, averaging
1000 simulation with K = 3 and n = 1000 in Hebbian

Learning Rule
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Fig. 6: The Probability Py, as a function of L, found from
10000 runs of the iterative equations for K =3
o( v BL

Pﬂip(a:b) o (22)

The Eq. 22 shows that, the feedback improves the
security of neural cryptography. The synchronization time
on the other side also increased (Fig. 6).

CONCLUSION

The Neural Cryptography 1s based on repulsive and
attractive stochastic forces. A feedback mechanism for
hidden and dynamic units has been increased the
synchromization time of 2 networks and decreases the
probability of a successful attack. The synchromzation
time, feedback vields a small enhancement the security of
the system. After synchronization, the system
generates a pseudorandom bit sequence which passes
test on random numbers like gap test and poker test.
When another network is trained on this bit sequence it
is not possible to extract some information on the

is

statistical properties of the sequence. The Tree Parity
Machines generate a secret key and also encrypt and
decrypt a secret message.
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