M International Journal of Soft Computing 3 (3): 230-238, 2008
We]l

EAL . sl ¥ [SSN: 1816-9503
Online © Medwell Journals, 2008

Enhancing Max-Min Ant System for Examination Timetabling Problem

F. Djannaty and A R. Mirzaei
Department of Mathematics, University of Kurdistan, Sanandaj, Iran

Abstract: Examination Timetabling Problem (ETP) 15 a real hfe problem encountered in many academic
mstitutions and has attracted the attention of the Operational Research and Artificial Intelligence research
commurities since the 1960s. In this study, a variant of Ant Colony Optimization (ACQO), the Max-Mmn Ant
System (MMAS) is used to solve the Examination timetabling problem. The key feature of our approach is the
combination of a simple local search and MMAS. A preprocessing heuristic 1s utilized to mitially sort the exams.
Great Deluge algorithm is used as a local search to improve the constructed solutions by MMAS. We applied
our algorithm to a number of test problem data sets. The numerical results obtained from our method shows that
the quality of the solutions are better than some or tie the best-published results from the literature, especially

on capacitated examination timetabling problem.

Key words: Ant colony optimization, examination timetabling, great deluge algorithm, local search,

preprocessing
INTRODUCTION
Examination timetabling is a well-studied

combinatorial optimization problem. A significant amount
of timetabling research papers on this problem is
published in the last decade. This problem 1s important for
educational mstitutions and requires expensive human
and computer resources.

Scheduling an examination timetable 1s accomplished
manually n many high schools, colleges and universities
throughout the world, which causes some dissatisfaction
among the students and lecturers. The construction
of a timetable can be an extremely difficult task for
managers and administrators and its solution can require
extensive efforts. The quality of solutions in timetabling
often has significant impact
institutions.

on the associated

The examination timetabling problem 1s essentially
defined as scheduling a number of exams mnto a limited
number of timeslots or periods, while satisfying the
maximum number of constraints from a prespecified set
of comstramts. These constraints very widely from
mstitution to mstitution. Thus examination timetabling
problems are usually varied in their size, complexity,
constraint and etc.

Managing a high variety of different constraints is
quite a difficult task. Every additional constraint can
increase the total complexity of the problem and can make
the solution more resource-consuming.

These problems are known to be NP-complete
(Karp, 1972). This feature can contribute to making them
a difficult class of problems, suggesting some serious
research challenges. The difficulies 1 solving the
problem can be represented by the degrees of the vertices
in an undirected graph which models the exammation
timetabling problem by representing the exams as vertices
and conflicts by edges. Two exams mvolving the same
students are said to have a conflict. The difficulty of an
exam 18 represented by the number of conflicts it has with
other exams. Thus, the objective (goal) of the examination
timetabling process can be taken to be that of producing
the feasible timetable of the highest possible quality
{(minimum value of a particular cost function), subject to
a number of constraints explained.

Constraints: The constraints in an examination
timetabling problem are usually divided mto classes, hard
constraints and soft constraints, which are described as:

¢ Hard constraints are those which cannot be violated
under any conditions. For example,

+ Two exams involving a number of common students
carmmot be scheduled mto the same timeslot.

¢+ The number of students taking part in an exam
should not exceed the number of available seats for
that exam.

» Soft constraints are those which are deswed to be
satisfied, but are not absolutely necessary.
Practically, it may not be possible to find a feasible

Corresponding Author: F. Djannaty, Department of Mathematics, University of Kurdistan, Sanandaj, Tran

Int. J. Soft Comput., 3 (3): 230-238, 2008

solution that satisfies all of the soft constraints. Soft
constraints are usually varied from one mstitution to
another, in terms of both the type and their
umportance. Sometimes, soft constramts conflict with
each other. For example,

Conflicting exams are better to spread throughout the
examination session, so that students should not
have exams in consecutive times lots or two exams
on the same day.

Some of the most crowded exams should be
scheduled as early as possible to allow enough time
for marking.

Ordering (precedence) of exams 18 needed to be
satisfied.

A solution of examination timetabling which have
not violated hard constraint 1s called a conflict-free
assignment. As the real-world exam timetabling problem
15 difficult, some of the soft constramts may need to be
relaxed, because it is not usually possible to generate
solutions without violating these constraints, therefore,
they are penalised in the objective function.

Timetabling problems, without soft constraints, can
be modeled as graph coloring problems. Welsh and
Powell (1967) built the bridge between graph coloring and
timetabling, which led to a significant amount of later
research on graph heuristics in timetabling. The graph
coloring problem 1s assigning colors to vertices so that no
adjacent vertices have the same color. The early
approaches to exam timetabling tended to employ
ordering heuristic where a heuristic 1s used to measure the
difficulty of scheduling a particular exam. Carter et al.
(1996) studied the first five ordering strategies on real and
randomly generated exam timetabling problems.

Constraint programming methods have attracted the
attention of researchers in timetabling due to the ease and
flexibility with which they can be employed for timetabling
problems. Merlot et al. (2003) employed constramt
programming to produce iutial solutions. Then a
Simulated Annealing and a hill climbing method were
used to improve the solutions. The pure constraint
programming obtamed the best result for one of the
Toronto datasets.

In general, there are a large number of metaheuristics
for solving a given examination timetabling problem. Some
of these metaheuristics such as tabu search simulated
annealing and their variants are based on local search.
Tabu Search explores the search space by storing recent
moves in a tabu list so that these moves are not visited
again. One of the earliest mvestigations of this
metaheuristics for exam tunetabling was presented by

231

Hertz (1991). White and Xie (2001) presented a tabu
search based approach to examination timetabling. Their
approach applied both short term memory and longer
term memory to find good quality solutions. D1 Gaspero
and Schearf (2001) mvestigated a tabu search method for
exam tunetabling. Their approaches are heavily dependent
on graph coloring based heuristic methods. They present
a relatively detailed comparison of their approach with
other approaches on a range of benchmark problems
and produced very competitive results. These benchmark
problems are used in the current paper. Simulated
annealing is motivated by the natural annealing process.
The 1dea 1s to search a wider area of the search space at
the begimmng of the process by accepting worse moves
with a higher probability, which 1s gradually decreased as
the search continues. Thompson and Dowsland (1996)
accomplished a valuable work to develop a two-stage
approach where feasible solutions from the first stage
were improved in the second stage by Sunulated
Annealing concerning soft constraints. Burke et al. (2004)
studied a variant of Simulated Annealing, in which the
search accepts worse moves as long as the decrease on
the quality is below a certain level. Another classes of
metaheuristics applied on examination timetabling
problems are evolutionary algorithms which are based on
population, such as Genetic algorithms, Memetic
algorithms and Ant algorithms. Comne ef af. (1994)
provided a brief survey on using Genetic Algorithms in
general educational timetabling which was updated in
2003 by Ross et al (2003). Memetic algorithm 15 a
metaheuristic where the neighbourhood of the solutions
obtained by a genetic algorithm is explored and the search
toward the local optima (for each solution) 13 navigated,
before returning to the genetic algorithm and continuing
the process. Burke et al. (1996) developed a Memetic
Algorithm which employs light and heavy mutation
operators to reassign single exams and sets of exams,
respectively, with the aim of escaping from local optima.
To the best of our knowledge there are a few publications
on the topic of Ant Colony Optimization and exammation
timetabling problem. Naji Azimi (2005) implemented an Ant
Colony System algorithm for ETP and compared it with
simulated annealing, tabu search and a genetic algorithm
under a unified framework for solving some exam
timetabling problems. Tt was observed that the hybrid
approaches work better than each single algorithm.
However, only randomly generated data was tested.
Another work in this context is by Dowsland and
Thompson (2005) who developed Ant Algorithms based
on the graph coloring model for solving exam timetabling
problems without soft constraints.

Int. J. Soft Comput., 3 (3): 230-238, 2008

PROBLEM FORMULATION

The problem model proposed m this research adopts
the following notation:

E is the set of n exams, E = {e,, e,.....e,}.

S 1s the set of g students, S = {s,, s,.....8,}.

T 1s the set of p imeslots, T = {1,2,..., p}.

C,a 18 a conflict matrix where ¢; tells us the number of
students enrolled in both exams e, and e;.

Y., 18 a binary matrix such that y, = 1 when exam e,
1s assigned to the timeslot t € T and v, = O otherwise.
Cap, 1s the number of seats available in timeslot t.

Basically, the mathematical model of the exammation
timetabling can be stated as follows:
find

y, i=LZ.n t=12,..p

Zp:ynzl i=L2..n

t=1

s.t.

P
Zc1jy1tYJt:0 i)j:1,2,-..n lij
t=1

>ey,<Cap, t=12..p
i=1

y,=0orl i=12,..,n t=12..,p

Constramt 1 guarantees that each exam must be
allocated to exactly one and only one timeslot. Constraint
2 ensures that no student takes two exams scheduled at
the same timeslot and Constrant 3 tells that the total
number of students having exam 1in a timeslot should not
exceed the total number of seats available in that timeslot.
In the current work only the above hard constraints are
considered and any set of binary vamables y, wlich
satisfies these constraints constitute a feasible solution.
Soft constraints are considered by penalizing them in the
objective function of the model.

ANT COLONY OPTIMIZATION

Ant Colony Optimization is a metaheuristic approach
for solving hard combinatorial optimization problems
which is proposed by Dorigo et al. (1996). As the name
suggests, ACO has been inspired by the behavior of real
ant colonies, in particular by their foraging behavior.
While walking from food sources to the nest and vise
versa, ants deposit a substance called pheromone on
the ground. Paths marked by strong pheromone
concentrations are more probable to be chosen when
deciding about a direction to go. One of the main 1deas
15 to adopt the indirect communication among the

232

Procedure ACO algorithm
While (termination condition not met) do
ConstructSolutions
ApplyLocalSearch
Update Trails
End
End

Spoptional

Fig. 1: General framework of ACO

individuals of a colony of ants through pheromone, by
artificial ants. Artificial ants used in ACO are stochastic
solution construction procedures that probabilistically
build a solution by iteratively adding solution
components to a partial solution, taking into account
heuristic information on the problem instance being
solved, if available and (artificial) pheromone trails which
18 changed dynamically at run-time to reflect the agents’
acquired search experience. Artificial pheromone trails are
a kind of distributed numeric nformation which 1s
modified by the ants to reflect the experience accumulated
while solving a particular problem. This behavior is a
basis for a cooperative interaction which leads to the
emergence of shortest paths, thus minimizing the length
of the path between nest and food source. The seminal
work on ACO algorithm was Ant System (AS). In recent
years some changes and extensions of AS have been
proposed, e.g., Ant Colony System (ACS) and Max-Min
Ant System. The standard framework of an ACO
algorithm 1s shown in Fig. 1.

The three steps, construct solution, apply local
search and update trails in Fig. 1 are explained in the
implementation of ACO for the Traveling Salesman
Problem (T SP). The TSP can be represented as a complete
graph with a number of nodes also called cities. Tt is
necessary to find a shortest closed tour visiting each of
the cities exactly once. Initially, each ant is put on a
randomly chosen city and has a memory which stores the
partial solution it has constructed so far (Firstly, the
memory contains only the start city). Starting from its
start city, an ant iteratively moves from city to city.

When at a city 1, an ant k chooses to go to an as yet
unvisited city j with a probability given by:

_ [morm
2 e [T (OF I,

p; (1) if jeN*

Where m; = 1/d; and d; is distance from city i to city
j. o and P are two parameters which determine the relative
influence of pheromone trail and heuristic information and
N¥ is the set of cities which ant k has not yet visited. The
next step 1s local search which 1s optional and 15 used
order to ensure local optimality. The solution construction

Int. J. Soft Comput., 3 (3): 230-238, 2008

ends after all ants have completed their solution, then, the
pheromone trails are updated. For instance in AS this is
done by first lowering the pheromone trails by a constant
factor (this 15 pheromone evaporation) and then allowing
each ant to lay down pheromone on the edges that belong
to its tour:

V(1,7 0+ D={0-p).t; (1) + iArﬁ (t)
k=1

Where 0 < p =1 1s the pheromone trail evaporation
rate and m is the number of ants. The parameter p is used
to avoid unlimited accumulation of the pheromone trails
and enables the algorithm to forget previous bad
decisions. In AS, A", is defined as follows:

A’E:j () —{y Lf (t)if arc (i,j)isusedbyantkiniterationt

otherwise

Where L* (t) is the tour length of the k th ant. Cne of
the key points in developing an ACO algorithm is to
establish an appropriate balance between pheromone
update and heuristic information.

OUR APPROACH ON ETP

Preparations have to be made to imtiate the MMAS
algorithm. Tnitially, we introduce a solution representation
for examination timetabling problem. We show each
solution by a vector, with the mumber of components
equal to the munber of exams. Each component of this
vector shows the assigned timeslot for that exam.
Timeslots and exams are numbered as follow.

Exam | 1 2 3 4 n-2 n-l n
Timeslot] 10 13 1 4 10 1 5

We denote each solution of length n by x such that
xi=tify,=10=1, 2,..., n), for example in the above
representation x; = 1 or (y;, = 1), x, = Sor (y,; = 1). We
have incorporated a preprocessing and a local search in
our algorithm which is explained in the following.

Preprocessing: Our preprocessing 1s carried out in two
stages. First, exams are sorted based on Largest Degree
first (D) in which exams are ordered decreasingly by the
number of conflict they have with other exams. Second, if
two exams have the same LD, then an exam with Larger
Enrollment degree (LE) has the priority. LE degree of an
exam is the number of students enrolled in that exam.

Local search: The main feature in our implementation of
MMAS algorithm is local search. In the algorithm

Set the initial solution s

Specify input parameter AB.
Calculate initial cost function f{s)
Tnitial level B =1(s)

While stopping condition not met do
Define neighbourhood N(s)
Randomly select the candidate solution s* ¢ N(s)

") «f(s)orf(s® <« B
s =g*
B=B-AB
End if
End while

Algorithm 1: Extended Great Deluge Algorithm

proposed here, the Great Deluge Algorithm (GDA) of
Dueck (1993) is used as local search.

GDA accepts every solution whose objective
function 1s less than or equal to the upper limit B. The
value of B 1s monotomcally decreased during the
search and bounds the feasible region of the search
space. In order to prevent a premature convergence and
thus to improve the performance of this method, we
propose to extend it by accepting all the candidate
solutions which are better than the current one. The
pseudo code of this extended algorithm is shown in
Algorithm 1.

The initial value of level B in algorithm 1 is equal to
the initial cost function of initial solutions.

This forestalls sharp descent and idle step in the
beginning of the search. In each step B., the decay rate,
has to be specified. The neighbourhood we use in
GDA is a slight variant of the Kempe chains used by
Merlot et al. (2003). We choose a neighbour by selecting
an exam ¢, at random which 1s located in timeslot t from the
set of all exams and selecting a session t° (t" # t) at
random from the set of sessions available for e, n the
current solution. Together e, t and t”. induce a Kempe
chain and hence a neighbour of the current solution

In the continuation, we described the general
structure of the MMAS algorithm. One of the best ACO
versions which have successfully been applied to
optimization problems 18 MMAS, which was proposed by
Stuzle and Hoos (2000). MMASS algorithms differs in three
main aspect from AS.

» In order to exploit good solutions, only the best ant
(the global-best or the iteration best) 1s allowed to
add pheromone after each algorithm iteration.

¢+ To limit the stagnation of the search a range of
possible pheromone trails should be introduced,
such as [Tuin Tl hat 15 | Toin < T £ Tam VT

¢ The pheromone trails are initialized to the upper trail
limit, which causes the higher exploration at the start
of the algorithm.

Int. J. Soft Comput., 3 (3): 230-238, 2008

input: A problem instance T
Tax — 1/P
Ty e
Tle, t) + 1y W(et) e ExT
sort E by preprocessing operation
while time limit not reached do
fora=1tomdo
{construction process of ant a}
A=
fori=1tondo
choose timeslot t randomly according to probabilities P,;, t for
event e;
A=Ay v {(e)}
end for
C + solution after applying matching algorithm to A,
Cientionbest — best of C and Cy pponpest
end for
Clomtonmes < Solution after applying GDA as local search to

Cmemmnbest
Cootarbest + best of Cpnasionsst AN Clgratuest
global pheromone update for T using C,pess Tran AN Tyy
end while
output: An optimized candidate solution Cypapes forl

Algonithm 2: MAX-MIN Ant System for the ETP

At the first glance, adding limits on the pheromone
may seem quite unnatural. But, AS is only rather loosely
coupled with the original behavior of ants and the
main goal is to provide an effective tool for the
solution of combinatorial optimization problem. The
basic principle of MMAS for tackling problem is
outlined in Algorithm 2.

At each iteration of the algorithm, each of m ants
constructs, exam by exam, a complete assignment of the
exams to the timeslots. For the construction of an exam-
timeslot assignment each ant assigns sequentially
timeslots to the exams, which are processed according to
a pre-ordered list that was generated by our
preprocessing. This means, it constructs assigmments
AE — Tfor C°=0,1,.., n. The selection of timeslots are
guided by two types of information: heuristic information,
which 1s an evaluation of the constramt violations caused
by making the assignment, given that the assignments is
already made and pheromone trail information, which 1s an
estimate of the utility of making the assignment, as judged
by previous iterations of the algorithm. The pheromone
trail is represented by a matrix of pheromone values
T: B x T = R,, where E 15 the set of exams and T is the set
of timeslots. These values are initialized to a parameter T,
and then updated by a global pheromone update rule.
Generally, an exam-timeslot pair which has been part of
good solutions 1n the past will have a high pheromone
value and consequently it will have a higher chance of
being chosen again i the futire. At the end of the
iterative construction, an exam-timeslot assignment is
converted into a candidate solution (timetable) using the
matching algorithm. Among these solutions the algorithm
chooses the best solution and this candidate solution 1s

234

further improved by our local search routine. This
candidate solution 1s used as the imtial solution for the
GDA algorithm. After all m ants have generated their
candidate solution, a global update on the pheromone
values is performed using the best solution found since
the begmming. The whole construction phase is repeated,
until the time limit is reached.

In the construction step we start with the empty
assignment A; = ¢. After A, has been constructed, the
assignment A 18 constructed as A; = A u {(e, 1)} where
t 18 chosen randomly out of T with the following
probabilities:

[tle, tO]" e, O]
Z ueT[T(ei 71‘1)]&'[1’] (31 :vu)]IS

Pit=t'|A_,,T)=

Where

e, t)=————
n(e.t) 1+ Ve, t)

and V (e, t"). counts the additional cost of constraint
violations caused by adding (e, t’). to the partial
assignment A . In order to prevent the violation of hard
constraints, a large penalty which is considered as an
input parameter to the algorithm, is imposed on the
objective function. The pheromone matrix 1s updated only
once per iteration and the global best solution 1s used for
update.

The following update rule 1s used:

(e, t):= {(l)T AFA ., (@)=t
—-plte.t)

Pheromone update 1s completed using the following:

otherwise.

T iftlet)<t,,

nin

e t)i=qT,

t{e,t) otherwise

iftet) =1,

COMPUTATIONAL EXPERIMENTS

We demonstrate the strength of our approach by
evaluating it on three sets of accepted benchmark
problems, the uncapacitated benchmark problems and two
types of capacitated benchmark problems. We have not
mentioned the computational times because many of the
previous papers do not reports the relevant times and
comparisons across very different platforms are
impossible. All algorithms are coded in MATLAB version
7.0 and run on a Pentium TV with 1.8 GHz processor and
256 MB RAM in Windows XP system.

Int. J. Soft Comput., 3 (3): 230-238, 2008

Table 1: Parameter for the MMAS and GDA

p B
0.3 1

AB
0.0005

Parameter m
Value 12

o
28

T i

0.0096

Tonay

33

The parameters for the algorithmm described above
were chosen after several experiments on the given test
problem and reported in Table 1.

In GDA the local search iteration 1s stopped when the
value of objective function 1s not improved after 1000
consecutive iterations. For each unscheduled exam a
penalty as large as 10* is considered.

Uncapacitated benchmarks: In this problem instance 1t is
tried to space out exams throughout the exam period. The
objective function applies a penalty) w(t) to a timetable
whenever a student has to sit two exams scheduled t
period apart, with w(l) = 16, w(2) = 8, w(3) = 4, w(4) =2
and w(5) = 1. The total penalty is divided by the number
of students to get an average penalty per student. No
account was taken of weekends and there was no
differentiation between consecutive exam periods within
the same day.

This
formulated as

objective function can be mathematically

n

1
q i=1]Z;

1=

2

5
2 2 G Y Yiem2 "]

w=lt=w+l

The constramts considered in this model are the same
as those of problem formulation. On the other hand the
algorithmic objective used in this study is equivalent to
the objective function defined by Merlot ez al. (2003)
which is identical to that of Carter et ol (1996) calculated
as follows:

Set o(x)=10.
for each exam i in E:
for each exam j in E, with ;< x <x+ 6 and C; > 0:
0(x) = 0(x) + Wi - xiCy
endfor
endfor

In this series of experiments we employ Carter et al.
(1996) collection of examination timetabling data that are
available from (ftp://ftp.mie.utoronto.ca/pub/carter
ftestproby/). These problems were collected from different
high schools and universities around the world. The
characteristics of these problems are listed in Table 2.

Table 3 provides the comparison of our
computational results with the previous state of the art on
the data sets of Table 2 (compared with Carter ez al.
(1996), Caramia ef al. (2001), D1 Gaspero and Schaerf

235

(2001), Merlot et ai. (2003), Burke and Newall (1999),
Casey and Thompson (2003) and Burke et al. (1996).

The best results are presented in bold. Our method 1s
superior to that of Di Gaspero and Schaerf (2001) on all
problems (with one tie) and produces better results than
Carter et al. (1996) on 5 out of 12 data sets (with a tie on
uta-s-92) and better than Casey and Thompson on 3 of 12
{(with a tie and two are not reported). Compared with Burke
and Newall (1999) better in 2 data sets and one is not
reported and with Merlot ef af. (2003) better i one plus
one tie and in Purke et al. (1996) better in 2 data sets.
Based on this comparison, the method of Caramia et al.
(2001) produced the best results. However, our results are
better than his results in three datasets.

Capacitated benchmarks 1: Burke ef al. (1996) created a
new class of capacitated exammation timetabling problem
for the publicly available date sets, having three sessions
per weekday with one timeslot on Saturday and Sunday
has none. It 1s assumed that the exam period starts on
Monday. The first exam session starts from the first
timeslot on Monday morning of the first week which 1s
designated as timeslot 1 and this number is increased
sequentially, so that, the single session of Saturday in
the first week is numbered as 16 and this same session
on next Saturday is numbered a 32. The total
capacity of each timeslot 15 considered as a hard
constraint, that is, room capacities are also added to the
conflict-free assignment. The objective function 1s to
minimize the number of students having 2 exams on the
same day. For this problem class our algorithm uses an
objective score identical to Merlot et al. (2003).
Burke ef al. (1996) have mtroduced a new data set of
Nottingham University whose characteristics
mentioned in Table 4 and can be accessed from
(ftp://ftp.cs.nott.ac.uk/ttp/Data/).

The following objective function which is a adsopted
by Merlet et al. (2003) is undertalken here.

arc

Set o(x)=0.
for each exam i in E, with (3; mod 16) not equal {0, 3, 6, 9, 12, 15}:
for each exam j in E, with x;=x, + 1 and C; > 0
o(x): = ofx) + Cj
endfor
endfor

The characteristics capacities of six more capacitated
problems employed by us are listed in column 2 on
Table 5 and results of the comparison of the performance
of our algorithm with other algorithms are mentioned in
Table 4 as well.

Int. J. Soft Comput., 3 (3): 230-238, 2008

Table 2: Characteristics of toronto benchmark datasets

Problem Number of Numberof Number of Conflict
Instance Institution exams timeslots students density
car-f-92 Carleton University,

Ottawa 543 32 18419 0.14
car-f-91 Carleton University,

Ottawa 682 35 16925 0.13
ear-f-83 Earl Haig Colleagiate

Institute, Toronto 190 24 1125 0.27
hec-s-92 Ecole des Hautes Ftudes

Commerciales,Montreal 81 18 2823 0.42
kfi1-s-93 King Fahd University,

Dharan 461 20 5349 0.06
lse--91 London School of

Economic 381 18 2726 0.06
rye-f-92 Ryeson University,

Toronto 461 23 11483 0.07
sta-f-83 St. Andrew’s Junior

High School, Toronto 139 13 611 0.14
tre-s-92 Trent University,

Peterborough, Ontario 261 23 4360 0.06
uta-s-92 Faculty of Arts and

Sciences, Uni. of Toronto 622 35 21266 0.13
ute-s-92 Faculty of Engineering,

University of Toronto 184 10 2750 0.08
yor-t-83 York Mills Collegiate

Institute, Toronto 181 21 941 0.29

Table 3: Results on the uncapacitated problem

Data Our Carter Di Gaspero Burke and Merlot Casey and Caramia Burke
set method et dl. and Schaerf Newall et al. Thompson et al. etal.

car-f-92 4.4 6.2 52 4.1 4.3 4.4 6.0 4.2
car-f-91 5.3 71 6.2 4.65 5.1 5.4 6.6 4.8
ear-f-83 36.8 364 45.7 37.05 351 348 20.3 354
hec-s-92 12.1 10.8 12.4 11.54 10.6 10.8 9.2 10.8
kfii-s-93 15.0 14.0 18.0 13.9 13.5 14.1 13.8 13.7
lse-f-91 11.3 10.5 15.5 10.82 10.5 14.7 9.6 104
rye-f-92 8.3 7.3 - - 8.8 - 6.8 8.9
sta-f-83 158.2 161.5 160.8 168.73 157.3 134.9 158.2 159.1
tre-s-92 8.5 9.6 10.0 8.35 84 8.7 9.4 83
uta-s-92 35 35 4.2 320 3.5 - 35 3.4
ute-s-92 27.3 25.8 29.0 25.83 251 254 24.4 25.7
yvor-f-83 39.1 41.7 41.0 37.28 374 37.5 36.2 36.7

Table 4: Characteristics of the nottingharm university benchmark datasets

Data Tnstitution Number of Number of Number of Conflict
set exams timeslots students density
Nott Nottingham

University, UK 800 23.26 7896 0.0311

Table 5: Results on the capacitated benchmarks 1

Data Number of Our Di gaspero Buike Merlot Caramia
set Capacity timeslots method and schaerf’ el . et al. el .
car-f-92 2000 31 503 424 331 158 268
car-f-91 1550 51 0 88 81 31 74
kfi1-s-93 1955 20 80 512 974 247 912
tre-s-92 655 35 0 4 3 0 2
uta-s-92 2800 38 75 554 T2 334 680
nott 1550 23 11 123 269 83 -
nott 1550 26 0 11 53 2 44

Clearly, our method is the superior method when iterations, the results are inferior in comparison with the
applied to these capacitated versions of the data sets, result of other authors.
providing best solutions in all instances except for data
set car-f-92. However, with the car-f-92 dataset, even Capacitated benchmarks 2: Burke and Newall (1999)
though our algorithm 1s run with higher number of locked at some of the test problems of Table 2 and 4

236

Int. J. Soft Comput., 3 (3): 230-238, 2008

Table 6: Results on the capacitated benchmarks 2

Data Number of Our Di gaspero Burke and Merlot Carter

sel Capacity timeslots method and Schaerf Newall (2001) et ai. (2003) et ad. (1999)
car-f-92 2000 36 2804 3048 1665 1744 2915
kfu-s-93 1955 21 690 1733 1388 1082 2700
nott 1550 23 105 751 498 371 918

optimized them with a different objective function. They
consider 3 exam sessions per day on weekdays and one
exam session on Saturday morning. The objective
function considers only students with 2 exams in 2
consecutive sessions. They give a penalty of 3 per
student for 2 exams in a row in the same day and one per
student for 2 exams in a row overnight. The arrangement
and numbering of timeslots in the study is adopted here.
The following objective functions which 1s
mentioned by Merlot ef al. (2003) 1s utilized here.

also

Set o(x)=10.
for each exam i in E, with (x; mod 16) not equal {0}:
for each exam j in E, with x;=x, + 1 and G > O:
if [(ximod 16)= {3, 6,9, 12, 15}] then
o(x): = o{x) + G
else
o(x): = o(x) + 3C;
end if
endfor
endfor

Our computational results on these data sets are
presented in Table 6.

Considering the fact that there are not many papers
using these data sets, we had to compare our results with
other methods in three data sets. As can be seen from
Table 6, our method 1s much superior in 2 data sets.

CONCLUSION

We combmed solution construction with local
search. Tt is turned out that hybridized procedures perform
better than single heuristics. Our approach outperformed
the current state of the art on three standard benchmark
problems that are usually used by researchers working
with ETP. Although, our results are not satisfactory in all
instances, but proved to be superior to those of others in
capacitated timetabling problems. We understood that
preprocessing heuristics are effective in finding feasible
solutions for large scale ETP problems where finding
such solutions is difficult. We realized that MMAS which
15 a strong version of Ant Colony Optimization can
produce better results than other versions of ACO when
dealing with a problem instance. On the other hand, since
GDA is one of the local search algorithms which do not
require many tunings, we propose to use this local search
i combinatorial optimization problems
improvement of the solutions is considered.

where

237

It 1s proposed that our approach be applied to other
combinatorial optimization problems where the solutions
are made constructively.

REFERENCES

Burke, EK. and JP. Newall, 1999. A multi-stage
evolutionary algorithm for the timetable problem.
[EEE Transactions on Evolutionary Computation,
3 63-74,

Burke, EX., J.P. Newall and R.F. Weare, 1996. A Memetic
Algorithm for University Exam Tinetabling. In: Burke,
EX. and P. Ross (Eds.). Practice and Theory of
Automated Timetabling: Selected Papers from the 1st
International Conference. Springer Lecture Notes in
Computer Science, 1153: 241-250.

Burke, EX., Y. Bykov, IP. Newall and 3. Petrovic,
2004. A time-predefined local search approach
to exam timetabling problems. IIE Transactions.,
36: 509-528.

Caramia, M., P. DellOlmo and G.F. Italiano, 2001. New
Algorithms for Examination Timetabling. Tn: Naher, S.
and D. Wagner (Eds.). Algorithm Engineering 4th
International Workshop, Proceedings WAE 2000.
Springer Lecture Notes in Computer Science,
Pp: 230-241.

Carter, MW, G. Laporte and S.Y. Lee, 1996. Examination
timetabling: Algorithmic strategies and applications.
I. Operational Res. Soc., 47: 373-383.

Casey, S. and J. Thompson, 2003. GRASPing the
Examination Scheduling Problem. In: E.K. Burke and
P. De Causmaecker (Eds.). Practice and Theory of
Automated Timetabling: Selected Papers from the 4th
International Conference. Springer Lecture Notes 1n
Computer Science, 2740: 232-244.

Comne, D., P. Ross and H. Fang, 1994. Evolutionary
timetabling: Practice, Prospects and Work in
Progress. In: P. Prosser (Ed). Proceedings of UK
Planning and Scheduling SIG Workshop.

Di Gaspero, L. and A. Schaerf, 2001. Tabu Search
Techniques for Examination Timetabling. In: Burke,
EK.and W. Erben (Eds.). (2001). Practice and Theory
of Automated Timetabling: Selected Papers from the
3rd International Conference. Springer Lecture Notes
in Computer Science, 2079: 104-117.

Int. J. Soft Comput., 3 (3): 230-238, 2008

Dorigo, M., V. Maniezzo and A. Colomi. 1996. The Ant
System: Optimization by a colony of cooperating
agents. IEEE. Trans. Sys. Man and Cybermetics,
26: 29-41.

Dowsland, K.A. and T. Thompson, 2005. Ant colony
optimization for the examination scheduling problem.
I, Operational Res. Soc., 56: 426-438.

Dueck, G, 1993. New optimization heuristics: the great
deluge and the recordtorecord travel. 1.
Computational Phys., 104: 86-92.

Hertz, A, 1991. Tabu search for large scale timetabling
problems. Eur. I. Operational Res., 54: 39-47.

Karp, R.M, 1972, Reducibility among combinatorial
problems. Complexity of Computer Computations.
Plenum Press, New York.

Merlot, 1..T.G., N. Boland, B.D. Hughes and P.T. Stuckey,
2003. A Hybrid Algorithm for the Examination
Timetabling Problem. In: Burke, EXX. and P. De
Causmaecker (Eds.), Practice and Theory of
Automated Tinetabling: Selected Papers from the 4th
International Conference. Springer Lecture Notes in
Computer Science, 2740; 207-231.

Naji Azimi, 7., 2005. Hybrid heuristics for examination
timetabling problem. Applied Mathematics and
Computation, 163: 705-733.

Ross, P., E. Hart and D. Corne, 2003. Genetic Algorithms
and Timetabling. In: Ghosh, A. and S. Tsutsui (Eds.).
Advances in Evolutionary Computing: Theory and
Applications. Springer-Verlag New York, USA.,
pp: 755-771.

Stutzle, T. and H.H. Hoos, 2000. MAX-MIN Ant System.
Future Generation Computer Sys., 16: 889-914.
Thompson, J. and K. Dowsland, 1996. Variants of
simulated annealing for the examination timetabling

problem. Ann. Operational Res., 63: 105-128.

Welsh, D.J.A. and M.B. Powell, 1976. The upper bound
for the chromatic number of a graph and its
application to timetabling problems. The Computer
Journal, 11: 41-47.

White, G M. and B.S. Xie, 2001 . Examination Timetables
and Tabu Search with TLonger-Term Memory.
In: Burke, EK. and W. Erben (Eds.). Practice and
Theory of Automated Timetabling: Selected Papers
from the 3rd International Conference. Springer
Lecture Notes in Computer Science, 2079: 85-103.

238

