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Fast Training of Multilayer Perceptrons with Least Mean Fourth (.LMF) Algorithm

Sabeur Abid and Farhat Fnaiech
Research Team (Signal, Image and Intelligent Control of Industrial Systems: SICIST),

Ecole Supéneure des Sciences et Techniques de Tunis (ESSTT),
5 Av. Taha Hussein, 1008, Tunis, Tunisia

Abstract: In this study, we propose a new fast traimng algorithm for multilayer perceptron (MLP). This new
algorithm is based on the optimisation of Least Fourth (LF) criterion producing a modified form of the Standard
Back-Propagation (SBP) algorithm. In this criterion, the Least Fourth error signal 1s appropriately weighed by
the learming coefficient of the steepest descent method. To determine the updating rules for the hidden layers,
a similar back propagation method used in the SBP algorithm 1s developed. This permits the application of the
learning procedure to all the neural network layers. Several experiments was carried out indicate significant
reduction in the total iteration number, in the convergence time and in the generalization capacities when

compared to those of the SBP algorithm.
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INTRODUCTION

Neural networks viewed as nonlinear adaptive
systems, have drawn great interest in the last two decades
for multiple advantages such as: Capacities of learming
and generalisation.

The back propagation learning algorithm is the
standard algorithm used to train multilayer percpetrons.
This algorithm suffers from many drawbacks and
especially the slowlyness of the convergence. This
algorithm 13 based on the first order optimisation methods.
In the following we give a preview of main equations of
this algorithm.

Assume that E(w) 1s a cost function to minimize with
respect to the parameter vector w, V E(w) and is the
gradient vector of E(w) with respect to w, then first order
methods are based on the following rule:

Aw = —MM =—uVE(w) (M
W ow w

which 1s known in lterature as the steepest descent
algorithm (Abid et al, 2001; Fnaiech et al, 2002;
Cichocki and Unbehauen, 1993, Charalambous, 1992). p is

called the learming coefficient.
Us we noted above, this algorithm suffers from
multiple shortcomings. One of which is the slow rate
at which the algorithm converges. To accelerate the

convergence speed of the algorithm several methods and
techniques based on this algorithm are developed (Abid
et al., 2001; Fnaiech ef al, 2002; Jacoob, 1988). These
techniques use many ideas such as decreasing the
learning coefficient, using a decreasing momentum,
varying the objective function...

In this setting is located this present work that aims
at proposing a new fast algorithm based on first order
method and the SBP technique.

In Abid et al (2001) we have proposed a new fast
learning algorithm based on an optimization criterion
formed by the sum of the linear and the nonlinear
quadratic errors of a sigmoidal neuron. This has yielded
to a modified form of the conventional SBP algorithm. We
have shown that this can increases the convergence
speed considerably. In this paper a new algorithm is
presented, which is faster than the SBP algorithm. This
algorithm 1s based on the optimization of a Least Mean
Fourth Criterion (LMF).

The Least Square and Least Fourth algorithms
belong to the family of Least Mean Squares (LMS) and
Least Mean Fourth (LMF) algonthms. The LMS algorithm
15 the most widely used algorithm for adaptive filters in
many applications (Haykin, 1991). On the other hand the
LMF algorithm was proposed as a special case of general
family of steepest descend algorithms (Zerguine, 2002,
Walach and Widrow, 1984). The new proposed algorithm
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consists at minimizing a criterion expressed by the fourths
errors for all output neurons and for the current pattern.
Training patterns are run through the network until
convergence is reached. Experimental results show that
this algorithm requires a lower number of iterations for
convergence and less time 1n comparison with the SBP
algorithm. In some examples we can reach a decrease of
more than 40% in training iterations with better
generalization capacities.

MULTILAYER PERCEPTRON DESCRIPTION

The used MLP, 1s formed by mtercormections of
neurons of type given by Fig. 1:

The linear and nonlinear actual outputs are,
respectively given by:

ng +1
UES] = Z Wg_si]ygs-l] (2)
i=0
f(u[s])* 1 — lsl (3)
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where w7, is the weight of the ith unit in the (s-1)th layer
to the jth unit m the sth layer and (n,_,+1) 1s the number of
inputs to the neuron (j).

The nonlinear error signal is given by:

[51 _ gis] _ fs]
e; =dj -,

(“4)

where, dj-[S] and yJ[S] are the desired and the actual outputs,
respectively.

The
neurons lead to the feedforward MLP given in Fig. 2.

n, is the number of the units in layer s and the
subscript I denotes the output layer.

The steepest descent method 1s the standard one
used to train these types of networks. This leads to the
learning  algorithm  which the
backpropagation algorithm. In the sequel we will give a
brief review of this algorithm.

feedforward mterconnections between these

most  known i

Review of the Standard Backpropagation (SBP)
algorithm: The SBP algorithm has become the standard
algorithm used for traimng MLP. It 1s a generalized Least
Mean Squared (LMS) algorithm that minimizes a criterion
equals to the sum of the squares of the errors between the
actual and the desired outputs. This criterion is equal to:

v

1]
yl“a-l
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Fig. 2: Fully connected feedforward multilayer perceptron

ng, 2
- [L]
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where the nonlinear error signal is given by:
[L] _ glL] _ (L] 6
e = d Y (6)

d™ and y are, respectively the desired and the
current outputs, for the * unit. p denoctes in (5) the p®
pattern and n, 1s the number of output umts. The
application of the gradient descent method given by
Eq. (1) to the criterion E, leads to:

OE,

aW[S]

Jji

Awgsi] =—u (7)

Since, the SBP algorithm is widely treated in literature
(Cichocki, 1993), we summarize it by the following steps:

Compute the local error signals for the output layer
using:

SEL] =f !(UE_L] )GEL] (8)

Compute the local error signals for the hidden layers,
e, fors =L-1to 1, using:

[s+1]
j
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where, " is the first derivative of f with respect to w,/J.
* Update the weights according to the followmng
equation without momentum:

wil e+ 1) = wltl )+ psllyle (10)

In the sequel we will study the different approaches
that govern the learming speed of a MLP neural network.

DIFFERENT APPROACHES FOR INCREASING
MLP TRAINING ALGORITHMS

As mentioned above, the learning of the MLP using
the SBP algorithm is plagued by slow convergence. We
have summarized the approaches for increasing the
convergence speed onto seven cases:

The weight updating procedure: There are two methods
used to present patterns to the network: the on-line
method and the batch method. The first consists to
present a pattern (a learning example) to the network
mputs and then all weights are updated before the next
pattern 1s presented, whereas the batch method consists
to accumulate weight changes Aw (w is the weight of any
neuron connection) over some number of the learning
examples and then synaptic weights are actually changed.

The optimization criterion choice: lost functions: Insome
applications and especially when the output layer of
neurons is large and the signals are contaminated by non-
Gaussian noise a varlety of loss functions can be used in
order to reduce the noise influence.

From many loss functions known from robust
statistics the following four functions are the most used
ones (Hampel et al., 1987):

The logistic function.

o, (e)= B’ In(cosh(e/ ) (1)
+  The Huber's function.
oy () = { Cr e (12)

B‘e|—[32/2 for ‘e| > B

The Huber's function with saturation, also called
Talvar's function.

Gz (e):{

e’ /2
B /2
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el <P
ol >p

(13)

for
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The Hampel's function.

where, B> O is a problem-dependent control parameter.
Different forms of error functions have been
proposed in order to increase the convergence speed
and/or to improve the generalization capacities.
In Karayianms and Venetesanopoulos (1992)
Karayianms and al developed the following generalized

criterion for traiming MLP neural networks:
np np 1 5
E, =(1-0)> 0,(e,)+2D 0,(e,) 15
i=1 i=1

where o, (e,) and 0, (e, ) are suitable loss functions, which
are everywhere convex and differentiable and Ae[0,1] is
gradually (from 1 to 0) decreasing parameter during the
learning process.

It has been proposed that the parameter A is
computed according to the following rule:

A= A(E) = exp(—c/E*) (16)

where, ¢ 0 18 a positive real number.

Based on Eq. (15), we have developed 1 (Abid ef al.,
2001) a new error function using the linear and nonlinear
neuren outputs (MBP algorithm).

The use of adaptive parameters: In literature we have
found that the use of an adaptive slope of the activation
function or global adaptation of the learning rate can
increase the convergence speed in many applications.

For example to find the updating rule for the slope of
the activation fimction, we apply the gradient method
with respect to a:

ratky= -, =
oa

(17)

where a and E are the slope of the activation function of
a neuron and the optimization function, respectively.

For the learning parameter, Darken and Moody in
(Darkin and Moody, 1991) have suggested a modification
of the learning coefficient along the training phase (PRC
algorithm) such as:
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Where, ¢ and k; are positive constants and p, is the
mnitial value of the learning coefficient p.

Estimation of optimal initial conditions: The general
problem of iterative search methods lies in the
mitialisation point. In the SBP algorithm, we always start
with random initial weight values. The convergence speed
of these algorithms can be considerably improved by
finding appropriate initial weights.

Pre-processing the problem before using MLP: The pre-
processing of data (by employing future extraction
algorithms or projection methods) allows to reduce the
size of the problem and then the MLP size. This can in
many cases increases the learning speed.

Optimisation of the MLP structure: One can think that,
starting with optimal MLP structure 1.e. optimal number of
the hidden layers and their corresponding number of
neuron, can improve the learning stage.

Use of more advanced algorithms: Numerous optimization
algorithms have been proposed to improve the
convergence speed of the SBP algorithm. Unfortunately,
some of these algorithms are computationally very
expensive, Le. they require a large increase of storage and
computational cost which can become unmanageable
even for a moderate size of neural networks. Among these
algorithms we state:

¢ The Recursive Least Square algorithm (RLS).
*  The Marquardt Levenberg algorithm.

In the sequel, we propose a new fast algorithm based
on the minimisation of a fowth order optimisation
criterion.

THE NEW MEAN LEAST FOURTH (MLF)
ALGORITHM

The new proposed minimizing criterion, based on
fourth order errors 1s given by:
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(20)

Next, we derive the updating equations for both
output and hidden layers.

Learning of the output layer: The weight update rule for
the output layer can be derived by applying the gradient
descent method to E, we get then:

ok

P

w -
awji

AwlH = ( wy e

/—\W[JIL] =uf '(u[L )YIL 1]( 1) (22)

By analogy to Eq. (8), we define the local error
signals for the output layer by:

S[L] £ '(ul ! )( [L]) (23)
The updating equation becomes then:
) =y @

Learning of the hidden layers: First we apply the gradient
descent method to E, for the layer [L-1] and then we
generalize results for the other hidden layers.

For the [L-1]* hidden layer we can write:

cE

P
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The application of the chain rule derivation yields to:
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Let us define the local signal errors by:

n

L
[L-1] _ [L
831 - Z(CJ

=1

1)3 £ yw! 27



Int. J. Soft Comput., 3 (3): 359-367, 2008

Table 1 : Different steps of the new LMF algorithm

Run selected pattern p through the network for each layer (), (s = 1... 1) and calculate for each node j the linear and nonlinear outputs: Eq.

Step 1:  TInitialization:
*From layer s=1 to L, set all v, to values different from 0, (0.5 for example).
*Randomize all the weights at ;¥ random values.
*Choose a small positive value p.
Step 2:  Select training pattern:
Select an input/output pattern to be fed into the network.
Step 3:
(2) and (3).
Step 4 Error signals:
*For the output layer L: calculate the local output errors: Eq. (14) and (15).
*For the hidden layers: s =1.-1 to 1 compute the local signal errors: Eq. (23) and (24).
Step 5:  Updating the synaptic coefficients:
For the output layer 1., update the weights: Eq. (16)
For any node j of the layer s=1 to L-1 modify the synaptic coefficients using Eq. (22).
Step 6:  Testing for the ending of the nminning:

Various criteria are tested for ending. We can use the mean squared error of the network output as a convergence test or we can run the program for
a fixed number of iterations. If the condition is not verified, go back to Step 2.

The updating Eq. (24) for the [L-11" layer becomes:

awl =t g e @

This differentiation procedure may be performed layer
by layer. Hence, for a given layer s the weight updating
equation becomes:

[s] _ 17190813 151151 29
Awl = pf )yl s (29)
Where:

nS
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[s+1]
h)

[s+1]

)Wp [(€]4)]

8[5] —

3

bothfors =L-1...1
Fmally, Table 1 summarizes the different steps of the
new algorithm.

COMPARISON OF THE COMPUTATION
COMPLEXITY

Table 2 gives a comparison of the number of
multiplication operations needed for each algorithm to
compute the error signals and the updating equations for
one pattern. Obviously, the proposed algorithm 1s slightly
more complex than the SBP algorithm. However, it 1s
shown below to have faster convergence behavior in
terms of the number of iterations needed and
computation time.

n

EVALUATION OF THE SENSITIVITY TO
SYNAPTIC WEIGHTS INITIALIZATION

To study the sensitivity to weights mitialization, we
have tested the convergence of each algorithm for a huge
number of different random mtialization trials. For all
sinulations we have taken the same number of trials
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Table 2: Multiplication operation number of the LE/SBP algorithm

Algorithm SBP LF
Errors L-1 L-1 )
2n, + Z nn, +2) 2n, + Zns(ns +n,, +2)
s=1 s=1
Updating

L L
>on,(n,_ +2) donn,+3)
s=1 s=1

(1000). We mean by a trial one training phase with one
weight random 1mtialization. The ending criterion is the
Mean Squared Error (MSE) defined by:

N n

NS

p=1 i=1

1

E=— (31)
N

where, N is the total number of training patterns.

Each training phase is stopped if the MSE reaches a
threshold fixed beforehand. This threshold is selected
depending on the application and 1t will be denoted in the
sequel as: ending  threshold.

Each learning trial must be stopped if the ending
threshold is not reached after an iteration number fixed a
priori. The choice of this number depends on the
application too. This number is denoted by: Tter  mumber.
The convergence is assumed to be failed if Iter _ number
1s reached before the value of ending _ threshold.

The sensitivity to weight initialization 1s evaluated via:

|

(32)

number of convergent trials

S (%) =100 1- -
total number of trials

Then: more S, is small, less the algorithm is sensitive
to weight initialization.

STUDY OF THE GENERALIZATION CAPACITIES

To study the generalization capacities (G.) after the
training phase, we should present new patterns (testing
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patterns), that we know the desired outputs, to the
netwoarks and compare the neural outputs with respect to
the desired ones. If the norm of the error between these
two inputs is smaller than a threshold chosen beforehand
(denoted in the sequel gen  threshold) then the new
pattern is assumed to be recognized with success.

The generalization capacity is evaluated via the
following proposed formula:

G (%) =100 recognized pattern number (33)

total testing patterns number

Then: More G, 1s big, more the network have a good
generalization capacity.

SIMULATION RESULTS AND
PERFORMANCES COMPARISON

To compare performances of the new algorithm with
respect to the conventional SBP one, both algorithms are
used to train networks for the same problem. In this
study, we present four examples, the 4-b parity checker
(logic problem), the circle in the square problem
(analog problem) and the brain diseases classification
(a real medical problem). For both algorithms, learning
parameters (such as p...) are selected after a lot of
trials (100) to maximize performances of each algorithm.
However, an exhaustive search for best possible
parameters 13 beyond the scope of this paper and other
optimal values may exist for each algorithm. In order to
make sutable comparison we keep the same neural
network size for testing both algorithms.

The 4-b parity checker: The aim of this application is to
determine the parity of 4-bit binary number. For more
details see (Abid et al,, 2001). Figure 3 shows the average
of the Mean Squared Error (MSE) over 100 different
weight (only convergent trials
considered for tracing these curves).

We note that the LMF algorithm is highly faster than
the SBP. The new LMF algerithm remains below 510 after
only 220 iterations as opposed to the SBP algorithm at 500
iterations. Based on these experiments, clearly we see that
there 1s an improvement ratio, nearly 2.25, for the number
of iterations. The computation time per iteration was
calculated and found to be sumilar for the two algorithms.
Consequently the improvement ratio for the convergence
time is about 2.25.

We note that the new algorithm is very sensitive to
the choice of p and one should make many trials to find a
good value to ensure the rapidity of the algorithm.

initializations are
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Fig. 3: Learming curve for the LF versus SBP algorithm for
the 4-b parity checker (u = 5)

Table 3: Performance comparison of the LMF algorithm with respect to the
SBP one for the 4-b parity checker

Improvement ratio  Improvement
S, G, on iterations ratioon time
LF 42 98 22 22
SBP 81.8 82

To evaluate the sensitivity to weights initialization S
we have chosen iter  number = 500 and ending
threshold = 0.1.

For the generalization test G, we have presented to
the network a 4-bit distorted numbers. The distortion rate
with respect to the exact 4-bit binary numbers is about
30% and gen _ thresholds. Table 3 resumes performances
of the 2 algorithms for this application.

From these results we note that the LMF network 1s
less affected by the choice of the mitial weights and 1t has
good generalization capacities with respect to the SBP
one.

The circle in the square problem: In this application, the
MLP have to decide if a point of coordinate (x, y) varying
from -0.5 to +0.5 15 1n the circle of radius equals to 0.35.
The input coordinates are selected randomly. If the
distance of training point from the origin is less than 0.35,
the desired output 1s assigned the value 0.1 indicating
that the point 1s inside the circle. A distance greater than
0.35 means that the point is outside the circle and the
desired output becomes 0.9. Training patterns are
presented to the network alternating between the two
classes (inside and outside the circle). In one iteration we
present to the network 100 input/output patterns. The
output of the networl at various iteration numbers is
shown in Fig. 4(a-c) for the SBP algorithm and Fig. 5(a-c)
for the new algorithm. It is seen that the new algorithm
forms a circle in 10-30 iterations whereas the SBP
algorithm needs more than 100 iterations.

It should be also noted that tlus method of
specifying the desired output forces the "traming
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Fig 4 3BF (p = 0.95); (&) Iterations 2. MEE =027E
(b Iterations 30, LISE = 0.106. (&) Iterations 100,
LIZE = 00198

[a) Ll (e

Fig & LF. (p=02957, (g Iteraticns 2. MISE = 0,259 (1)
Iterations 100 MIBSE = 00321 (c) Iterations 30.
LIZE = 00102

sutface” to asmune a top hat-like shape, a constard high
walue outside the circle and a constant low walue inside
the citcle, which is not the hest choice for the circle
problem. Since, dring the training period fewer etrors
ocowy when the outpot walues are closer to 0.1 and 0.9, the
al gorittum s tetwd to sacrifice the transition region it of der
to flatten the inside and odside regions. The result iz less
thaty petfect circle. A traiting swface with corditoous
first detivatives and gradual transition region would
ity ove the appearance of the circle.

Figiwe & shows the average of the MSE ower 100
differert good weight irdtializations versus the iteration
tngnbet for both al gorithen & doring trairing.

The new algorithm remaing below 2x10* after 100
iteratiotis as opposed to the ZBP dgoriftunm at 120
iteratiotis. Motice that there iz an improvemert ratio of
ahout 1.2 in the moamber of iteratione and in the learning
titne.

To evaluate 25, we have chosen iter  mynber = 200,
ending _ threshold = 107", For G we have presented to
the netwotk a new coardinate (2,3 atd we have choszsen
getr _threshold=01.

Takhle 4 Remunes the petformances of the two
al gotithun s for thi s application.

For thiz anslog problem we note again good
performances of the new algorithen with respect to the
=BF one.

Brain diseases ¢ lassification: In this application, we
uze fediwes from Cortingent Megative Variation (CH V)

(3] L]
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Table 5: Fesale of reral nebaordks e with the MLELF snd SEP
algoriffone (p=05; B= 1.25]

Enprowerrerd ratio Euprowenerit

S EX O feratioges Tatio am e
LF 47 T4 15 15
SEP 730 555

waveforms of the electroencephalograms to train a MLP
to classify four types of subjects: Huntingtonl s disease,
Parlinsorls disease patients, patierts with schizophrenia
and normal subjects, Fig 5 To study the redundancy
betwreen the CHV data used for the disease classification
hefore the training step, we define a charactenization
capability as the ratio bebween "irter-class" and "irdra-
class" dewiations of each feature (Friaiech ef al, 20047
The featires are setinto vectors v =%, of 17 elements,
with k the disease index and n the example index. Let
define H, as the mamber of examples in disease classk (11,
16, 20 and 40, respectively for the Huntingtor! s disease,
Patkinson s disease, schizophreria sndnormal cases). For
classification purposes, the subjects were classified inthe
cotvertiona way using the different feswes of CHV
data. These features were used as input vectors to the
MLP newra network Fig 7.

Two networls were trained using the SBF and the
LMIF algorithn s with 75% of the available data and tested
with the remsining ones. The network weights were
updated on each presentation of a feabwe wector. The
trained networks have 1T impot urdts, tero hidden layers
with 7 and 11 wdts, respectively and 4 output neurons.
The ending threshold is equal to 0.01. The performances
of the two dgorithin s are summoarizedin Table 5.

From these results, for this real medical problem,
we note again that the new LMF algorittum hasa good
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j 3 Huntington's disease

. —> Parkinson’s disease
e . 17| MLP —> Schizophrenic patien

—)| —>Nomnal subject
CNY data

Fig. 7: Principle of brain disease classification with MLP,
from CNV data

convergence speed, it is less affected by the choice of the
mitial weights and it has good generalization capacities
with respect to the SBP one.

GRAFPHIC INTERPRETATION OF THE HIGH
CONVERGENCE RATE OF THE ALGORITHM

We give here a heuristic graphic mterpretation of the
high convergence of the LMF algorithm with respect to
the SBP one.

Recall that the least mean fourth algorithm is based
on the squared signal of the optimization criterion of the
SBP algorithm. Indeed for the SBP algorithm we have:

i

while, for the LMF algorithm we have:

1

L
_ [0
Egp = Z(eJ

=1

Assume that Eqgp admits a local (or global) minimum
in any range of R then E ;- admits the same minimum but
in this case the absolute value of the slope of the E ;s
curve, will be greater than that of Fy; in the same point.
Fig. (8) represents an example of a searching curve of a
Squared Error (SE) near a local or global minimum (je” < 1|)
and its correspending fourth error (FE). For simplicity, we
have assumed, for the representation, that By, and E, ¢
depend each one only on one variable w.

We know that the gradient method allows to follow
the gradient in a descending direction. The convergence
of the method 1s governed by the amplitude of the
searching rate p. If p is big then we have a fast
convergence but this can leads to oscillation phenomena
or even a divergence. Whereas if u is small then the
algorithm becomes stable but this leads to a very slow
convergence behavior.
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10

]

0.5

Fig. 8 Graphic interpretation of the higher speed of the
fourth error algorithm with respect to the squared
error one (SE: squared error’s curve, FE: fourth
error’s curve). For the same amplitude of the
searching rate n, the error obtamed in FE is less
than that of SE.

Figure 8 shows that, for the same amplitude of p and
near the local or the global mimmum, we reach a smaller
error in the Fouwrth Error surface with respect to the
Squared Error surface. And this is trivial because we have
near the minimum (e.i. when) (|e,/) < 1)

It becomes that for the same learning coefficient p
and for the same number of iterations, the error value
reached following the curve of the mean fourth error 1s
less than the one obtained when following the squared
error’s curve.

CONCLUSION

In this study, we have proposed a new fast algorithm
for training multilayer neural network based on a new cost
function of fourths errors. The convergence of the new
LMF algorithm requires less iterations and less training
time than the SBP for convergence and provides better
generalization.

We have seen that for a real medical application, this
new algorithm, in spite of its sumplicity and its slight
modification with respect to the SBP one, ensures a gain
of convergence time near 40%. For other simple
applications this gain is bigger. Furthermore this new
algorithm has almost the same computation complexity of
the SBP one.



Int. J. Soft Comput., 3 (3): 359-367, 2008

Moreover, the convergence of the LMF algorithm (as
in the case of the SBP one) is governed by the learning
parameter 1. A bad choice of this parameter can cause the
divergence. It 1s very important to develop the theory to
find rules that help to choose this parameter. It will be
unportant alse to compare performances of this new
algorithm with other fast algorithms such as the Modified
Back propagation algorithm introduced in (Abid et al.,
2001) and Recursive Least Square algorithm in (Azimi-
Sadjadi and Liou, 1992).
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