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Abstract: Digital Signal Processing (DSP) has become one of the most powerful technologies in reshaping
science and engineering especially in the areas of communication and medicine. In this research, DSP
applications, where the signal at a given sampling rate needs to be converted into another signal with a different
sampling rate known as multirate systems are investigated. This multirate DSP has been found useful in such
application like digital audio, video and even GSM technology. The design of digital filters and multirate system
using decimator structures is presented. The research is implemented using MATLAB  software. Several plotsTM

obtained showed that decimator structures reduce the number of operations required for a particular application.
With the sampling rate reduced, the processor runs at a lower clock rate thereby producing less heat. This will
eventually lead to lower power/battery consumption.
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INTRODUCTION functions in a transformed domain. Likewise, the

Digital Signal Processing (DSP) has become one of original domain of the signal or in a transformed domain.
the most powerful tools in reshaping science and A   digital   signal   processor   is   an   integrated
engineering. Revolutionary changes have already been circuit designed for high-speed data manipulations
made in a broad range of fields in communications, (Peterson  et  al.,  2000). The DSP performs multiplication
medicine, radar and sonar, hi-fi music reproduction and oil in a single cycle by implementing all shifts and add
prospecting using DSP systems. So, it appeals to the operations in parallel. When general purpose DSPs are
engineer, the medical doctor as well as the musician. not fast enough, the signal is either processed using
Under suitable software environment, DSP allows analogue circuits which may have some drawbacks, or
experimentation with sounds, images and video which application specific DSP hardware. Digital signal
contain a number of well defined mathematical problems, processing by its nature requires many manipulations of
from filtering to multirate to sigma delta modulation and to the form A = B×C + D. This may appear to be simple but
error correction, using Fast Fourier Transforms (FFT), when speed is also required, only dedicated hardware can
digital  filters  and  multirate  filters  as  building  blocks perform this task. Digital signal processors have
(Cristi, 2004). specialized instruction that allows them to multiply, add

A signal can be generated synthetically or by and save the result in a single instruction cycle. This
computer simulation to carry information. The objective of instruction is usually called MAC (Multiply and
signal processing is to extract useful information carried Accumulate) (Peterson et al., 2000).
by the signal. The method of information extraction Typical DSP systems consist of a DSP chip, memory,
depends on the type of signal and the nature of the possibly an Analogue-to-Digital Converter (ADC), a
information being carried by the signal. Thus signal Digital-to-Analogue Converter (DAC), arithmetic unit and
processing is concerned with the mathematical communication channels (Eyre, 2001) as shown in Fig. 1.
representation of signal and the algorithmic operation In this research, we are concerned with discrete time
carried out on signals to extract the information present. representation of signals and their time processing.
The representation of the signal can be expressed in terms Situations, where there is need to change the
of basis functions in the domain of the original sampling frequency of a digitized signal often arises such
independent variables or it can be in terms of basis as  transferring  music  from  Digital Audio Tape (DAT) to

information extraction process may be carried out in the
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Fig. 1: Typical contents of a DSP hardware

Compact Disc (CD) or when mixing signals with different
standards. Some other reasons for resampling may be
when there is need to pass data between two systems that
use incompatible sampling rates. In the bid to solve this
problem, multirate digital signal processing was
developed (Crochiere and Rabiner, 1983). Therefore, the
objective of this research is to investigate the problems
associated with changing of sampling frequency of a
discrete signal since it can lead to loss of valuable
information or distortion. With this, the number of
operations is highly reduced as well as heat dissipation
thereby conserving energy. 

Advantages  and  disadvantages  of  DSP:  Analogue
signal  processing   involves   linear   operations   such  as
amplification, filtering, integration and differentiation and
non-linear operations such as squaring, rectification etc.
Some of the limitations of analogue signal processing are
restricted accuracy and dynamic range, limited speed of
operation, component drift and sensitivity to noise. On
the other hand, digital signal processing involves
numerical operations such as addition, multiplication, data
transfer and logical operations. Consequently, digital
signal processing offers some clear advantages over
analogue signal processing. These include: 

Programmability: A single piece of digital DSP hardware
can perform many functions.

Upgradeability: Once a design have been implemented,
one may want to upgrade or add new functions or adapt
to a new environment altogether.

Flexibility: A single DSP board can be made to perform
many functions by simply loading new programs into it.
This flexibility reduces design time and complexity.

Stability: DSP gives stable performance over time.

Temperature effect: A temperature sensitive analogue
circuit will definitely perform quite differently in different

Fig. 2: Block diagram of discrete-time digital processing
of a continuous time signal

climatic regions of the world. Digital circuits do not
change their characteristics with temperature. They either
work or do not work.

Digital repeatability: A properly designed digital circuit
will reproduce the same result every time in addition to
being identical from unit to unit.

Digital signal processing equally have some
disadvantages. One of such disadvantages is increased
system complexity in the digital processing of analogue
signals (Mitra, 2006). Another disadvantage is the limited
range of frequencies available for processing. 

Fundamental of Digital Signal Processing (DSP): DSP is
achieved by sampling the analogue signal at regular
intervals and converting each of these samples, with a
binary number quantization. Several operations such as
filtering, resampling etc can then be performed on the
sequence of numbers (signal). The basic building block of
the discrete-time digital processing of a continuous time
signal is as shown in Fig. 2 where, x (t) and y (t) are
analogue signals, while x(n) and y(n) are discrete time
signals. The DSP processor implements the desired
algorithm.

MATERIALS AND METHODS

Multirate signal processing: The process of converting
the given rate of a signal into a different rate is called
sampling  rate  conversion.  Systems   that  employ
multiple  sampling  rates in the processing of digital
signals are called multirate digital processing systems
(http://www.dspguru.org/Info/faqs/multirate/decim.htm;
http://www.idealgroup.com/downloads/excerpts/190307
08300Book.Ex.Pdf:). The reduction of a sampling rate is
called decimation because the original sample set is
reduced or decimated (http://www.dspguru.org/Info/faqs/
multirate/basics.htm).

Decimation consists of two stages; filtering and
downsampling as shown in Fig. 3. Downsampling reduces
the input sampling rate f  by an integer factor M. The1

output signal y(m) is called a downsampled signal and is
obtained by taking only every Mth sample of the input
signal and discarding all others:

(1)



( )'
Mx n   x (n)C (n)=

1 for n mM
M otherwise0

C (n) { ==

nj2 kM 1
M

M
k 0

1
C (n) C(k)e

M

π−

=

= ∑

nj2 kM 1
M

M
n 0

C(K) C (n)e
− π−

=

= ∑

nj2 kM 1
M

M
k 0

1
C (n) e

M

π−

=

= ∑

' j ' j n

n

j n
M

n

x (e ) x (n)e

x(n)C (n)e

∞
ω − ω

=−∞

∞
− ω

=−∞

=

=

∑

∑

nj2 KM 1
' j j nM

n k 0

1
x (e ) x(n) e e

M

π∞ −
ω − ω

=−∞ =

= ∑ ∑

n2 kM 1 )' j jn ( M

k 0 n

x (e ) x(n)e
π− ∞

ω − ω−

= = −∞

= ∑ ∑

' j j n

n

x (e ) x(n)e
∞

ω − ω

=−∞

= ∑

2 k 2 k
M Mj( ) jn( )

n

x(e ) x(n)e
π π

∞
ω− − ω−

=−∞

= ∑

2 k
M

M 1
j( )' j

k 0

1
x (e ) xe

M

π
−

ω−ω

=

= ∑

M Mj jn' '

n

x (e ) x (n)e
ω ω

∞
−

=−∞

= ∑

M Mj j( )mM' '

n

j m

n

x (e ) x (mM)e

x(mM)e

ω ω
∞

−

=−∞

∞
− ω

=∞

=

=

∑

∑

Int. J. Soft Comput., 4 (6): 236-242, 2009

238

Fig. 3: Decimator stages

To model the downsampling process, it is convenient
to divide it into two steps. The output of the first step is
the signal x (n), which is obtained by setting all samples’

whose indices are not integer multiples of M to zero. In
the second step, all zeroes that were introduced in the first
step are discarded. This result is the downsampled signal.
The downsampling operation is not invertible because it
requires setting some of the samples to zero i.e., x(n)
cannot be recovered from y(m) exactly but can only
compute an approximate value.

The sampling rate is not altered during the first step
so that the signals x(n) and x (n) have the same sampling’

rate. The signal x  (n) can be considered as a multiplication’

of x(n) with the discrete sampling function C  (n) where,M

M denotes the downsampling factor.

(2)

Where:

and
m = -, -, -1, 0, +1, -, -, -

The sampling function C  (n) is periodic with periodM

M and as such can be represented by the Fourier series
expansion:

(3)

where, C (k) are complex value Fourier series coefficients
defined by:

(4)

Substituting Eq. 4 into 3, it follows that C (k) = 1 for
all K. Hence,

(5)

to analyze the frequency representation of first step of
down sampling, Fourier Transform (FT) of the sequence
x (n) is computed using Eq. 2.’

(6)

Using the relationship established in Eq. 5 and 6
becomes:

(7)

By interchanging the sums in Eq. 7, x (e ) becomes:’ jT

(8)

Computing the FT of x(n)

(9)

Applying the frequency shift property of FT gives:

(10)

The expression on the right hand side of Eq. 10
resembles the one in Eq. 8. Then, it can be concluded that:

(11)

From Eq. 11, it will be observed that the amplitude is
scaled by 1/M and that the replicas of the input spectrum
are introduced at multiples of 2B/M. The zeros previously
introduced have to be eliminated. This operation does not
change the content of the signal x(n), rather it just'

introduces time scaling by a factor of 1/M. Because the
operations in time and frequency are inverse to each
other, the frequency scale will be multiplied by M i.e.,
x(e ) becomes y(e ).' jT/M   jT

Again, using the definition of FT for x(n)'

(12)

Because x(n) is non zero for only n = mM, then '

(13)
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Substituting Eq. 1 into 13 and using the definition of Consequently, the expression in Eq. 15 can be
F.T. for y(m). expressed in terms of z-transform as:

(14) (18)

Using Eq. 11 and 14 can be rewritten as: RESULTS AND DISCUSSION

(15)

Equation 15 gives the expression for the
downsampled  signal.  Sometimes,  it  is  more convenient
to  express  the   downsampled   signal   in   terms   of  its
z-transform. For a sequence x(n), its z-transform is defined
as:

(16)

where, z is a complex variable given by z = re . It is welljT

known  that  when  it  exists,  the  F.T.  is simply x(z) with
z =e .jT

(17)

To illustrate downsampling in the time domain,
consider the input signal shown in the Fig. 4a with the
down sampling factor of M = 2. The corresponding
sampling function for n = 0, 2…, 16 is given in Fig. 4b.
Figure 4c demonstrates the first step of down sampling,
where every second sample is set to zero. In the second
step, Fig. 4d, the zeros introduced in the previous step are
eliminated to finally obtain the down sampled signal. It
can be observed that the downsampled signal is a
compressed in time version of the input signal.

The frequency domain representation of the
downsampling is as shown in Fig. 5a during the first step,
Fig. 5b, one image (M-1 = 1) is introduced in the interval
(0, 2B) and the amplitude of the spectrum is scaled by ½.
In  the  second  step,  Fig.  5c,  the frequency is scaled by
m = 2, as proved in Eq. 15.

Fig. 4: Downsampling in time domain
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Fig. 5: Downsampling in frequency domain

It can be observed that the spectrum of the Downsampling operation in the time and frequency
downsampled  signal  is  the input spectrum stretched by
2, while in the time domain, the opposite was true
(compressed by a factor of 2) because the time and
frequency representations are inverse to each other.

Aliasing effect: The individual spectra obtained during
the first step of downsampling are the repeated replicas of
the original spectrum. If the original signal is not band
limited to B/M, the replicas will overlap. This overlapping
effect is called aliasing. In order to avoid aliasing, it is
necessary to limit the spectrum of the signal before
downsampling to below B/M by allowing low pass
filtering to precede the downsampler (Lyons) as shown in
Fig. 3.

This filter is called a decimation or anti-aliasing filter.
The exact filter specifications depend on how much
aliasing (if any) is permitted. The specifications for the
low pass decimation filter are given by as (http://www.ifn.
et-tudresden.de/MNS/veroeffertlichugen/2000/Hentsche.
com):

(19)

domain using MATLAB : We investigated theTM

downsampling of a sinusoidal input sequence using
MATLAB (Chapman, 2002).

The  codes  for  the   program   are   listed  in
Appendix 1. Its input data are the length of the input
sequence, the downsampling factor and the frequency of
the sinusoid in Hz. It then plots the input and its
downsampled version. The result obtained for a length of
50 sinusoidal sequences with a frequency of 0.042 H  andZ

with a downsampling factor of 3 is as shown in Fig. 6.
From these plots, it can be verified that the relation
between  the  output  and  the  input  sequences  satisfied
Eq. 1.

We further investigated the frequency domain
properties  of  the  downsampling  using   MATLABTM

.

The  input   is   a   causal   finite   length   sequence  with
a  band  limited   frequency   response   generated   using
M  file  FIR  2  with  a  triangular  magnitude  response  as
in  Mitra  (2006)   with   the   frequency   vector  selected
to  ensure  that  there are no appreciable signal
components above the normalized frequency of 0.5. The
MATLAB codes are listed in Appendix 2 and the plots are
in Fig. 7.
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Fig. 6: Input and output plots generated by running
appendix 1

Fig. 7: Input and output plots generated by running
appendix 2

Fig. 8: Input and output plots generated by running
appendix 3

Decimation operation using MATLAB: We further
carried  out  the  decimation  of  a  sum  of  two  sinusoidal

sequences of normalized frequencies f and f by an1  2 

arbitrary down sampling factor M using the MATLABTM

codes listed in Appendix 3. The input data to the program
are the length (N) of the input x(n), the downsampling
factor M and the two normalized frequencies in Hz. The
program uses a Finite Impulse Response (FIR) low-pass
decimation filter with stop band edge at B/M so as to
satisfy Eq. 19. The input and output sequences are as
indicated   in  Fig.  8.  For  N  = 100, M = 2, F  = 0.043 and1

F  = 0.031.2

CONCLUSION

The sampling rate conversion (Mutirate) can be
viewed as another way of filter design. It must satisfy all
the specification necessary to avoid signal degradation
such as aliasing and imaging while keeping the number of
coefficients at minimum to further reduce computational
cost. Multirate Digital Signal Processing (MDSP) has
proved to be a powerful method of significantly reducing
the number of computation in the sampling rate
conversion processes. This is certainly an important
issue, especially in telecommunications. Of particular
importance is in GSM (Global System for Mobile)
applications. With the sampling rate reduced, the
processor runs at a lower clock rate thereby producing
less heat. This will eventually lead to lower power/battery
consumption. Users will have to use their devices longer
without the need to recharge more regularly. 

APPENDIX 1

% Illustration of Down-sampling by an Integer factor
%
clf; 
n = 0: 49;
m= 0:50*3-1;
x = sin(2*pi*0.042*m);
y = x([l:3:length(x)]);
subplot(2,l,l)
Stem(n,x(l:50)); axis([0 50 -1.2 1.2]);
title('Input Sequence');
xlabel(Time index n');
ylabel('Amplitude');
subplot(2,l,2)
stem(n, y); axis([0 50-1.2 1.2]);
tille('Output Sequence');
xlabel(‘Time index n');
ylabel('Amplitude');
From these plots it can be verified that the relation between the output and
input sequences satisfies Eq. 3.1

APPENDIX 2

Effect of Down-sampling in the frequency domain
Use fir2 to create a band-limited input sequence
clf;
freq = [0 0.42 0.48 1]; mag = [0 1 0 0];
x=fir2(101, freq, mag);
Evaluate and plot the input spectrum
[Xz,w]==freqz(x, 1,512);
subplot(2,l,l)
plot(w/pi, abs(Xz)); grid
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xlabel('\omega/\pi'); ylabel('Magnitude');
title('Input Spectrum');
Generate the up-sampled sequence
M = input('Type in the Down-sampling factor = ');
Type in the Down-sampling factor = 2
Y = x([l:M:lengthCx)]);
% Evaluate and plot the output spectrum
[Yz, w] = freqz(y, 1, 512);
subplot(2,1,2);
plot(w/pi, abs(Yz); grid
xlabel(‘\omega/\pi’); ylabel(‘Magnitude’);
title(‘Output Spectrum’);

APPENDIX 3

% Program 4.5
% Illustration of Decimation process
clf;
M = input('Down-sampling factor = ');
Down-sampling factor == 2
n=0:99;
x= sin(2*pi*0.043*n) + sin(2*pi*0.031*n);
y = decimate(x,M,'fir');
subplot(2,l,l);
stem(n,x(l:100));
title(‘Input Sequencer’);
xlabel('Time index n');ylabel('Amplitude');
subplot(2,l,2);
m=0:(100/M)-l;
stem(m,y(l:100/M));
title('Output Sequence');
xlabel('Time index n');
ylabel('Amplitude')
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