International Tournal of Soft Computing 5 (4): 171-176, 2010

ISSN: 1816-9503
© Medwell Journals, 2010

Network Design Problem Using Genetic Algorithm-an
Empirical Study on Mutation Operator

'Anand Kumar and *N.N. Jani
"Department of Master of Computer Applications, AMC Engineering College, Bangalore, India
*Faculty of Computer Studies, Kadi Sarva Vishwavidyalya, Gandhinagar

Abstract: This study presents an influence of mutation operator in genetic algorithm for small to large network
design problem. A network design problem for this study falls under the network topology category which 1s
a minimum spanning tree with various types of constraint which males it NP-hard problem. Mutation operator
plays an important role in genetic algorithm approach. Since many researchers have tried to solve this problem
for small to mid size, we have explored the use of genetic algorithm with various mutation functions with
modification but without changing the nature of genetic algorithm. Various mutation functions have been
developed here as per the requirement of the problem and applied with the various size of network. In this study
we have tried to show that how mutation functions affects the performance of genetic algorithm and also shown
that GA 15 an alternative solution for this NP-hard problem.

Key words: Genetic algorithm, network design, mutation operator minimum spanning tree, performance,

approch, constraints

INTRODUCTION

In genetic algorithms of computing, mutation is a
genetic operator used to maintain genetic diversity from
one generation of a population of algorithm chromosomes
to the next. It is analogous to biological mutation. The
classic example of a mutation operator involves a
probability that an arbitrary bit in a genetic sequence will
be changed from its original state. A common method of
immplementing the mutation operator involves generating
a random variable for each bit in a sequence.

This random vanable tells whether or not a particular
bit will be modified. This mutation procedure, based on
the biological pomt mutation is called single pomt
mutation. Other types are inversion and floating point
mutation. When the gene encoding is restrictive as in
permutation problems, mutations are swaps, inversions
and scrambles.

The purpose of mutation in GAs is preserving and
introducing diversity. Mutation should allow the
algorithm to avoid local mimima by preventing the
population of chromosomes from becoming too sumilar to
each other, thus slowing or even stopping evolution. This
reasoning also explains the fact that most GA systems
avold only taking the fitness of the population in
generating the next but rather a random (or semi-random)
selection with a weighting toward those that are fitter.

There are many mutation schemes for Genetic
Algorithms (Gas) each with different characteristics. Since
the nature of genetic algorithm is very uncertain, various
mutation operators can be used to derive optimal result.
This study presents the mfluence of various types of
mutation operators with various size of network and 1t is
the extension of the research work Network design
problem (Kumar and JTani, 2010). This problem is one of
the hardest problems in NP-hard category.

There areno traditional methods available to solve
thus problem. A genetic algorithm approach to design the
network 1s one of the wultimate solutions because
traditional heuristics has the limited success. Researchers
1n operation research have examined this problem under
the broad category of minimum cost flow problem (Taha,
2007). A simple GA approach is applied by many
researchers (Basu, 20035; Melanie, 1998; Vose, 1999) but in
this study the influence of mutation function m genetic
algorithm is shown.

Genetic algorithms are being used extensively in
optimization problem as an alternative to traditional
heunistics. It 1s an appealing 1dea that the natural concepts
of evolution may be borrowed for use as a computational
optimization technique which is based on the principle
Survival of the fittest given by Darvin. We have tried to
show that the influence of mutation function and the little
variation in genetic algorithm approach is very effective.

Corresponding Author: Anand Kumar, Department of Master of Computer Applications, AMC Engineering College, Bangalore,

India

Int. J. Soft Comput., 5 (4): 171-176, 2010

Network design: Tn this study network design is
considered as network topology which is a spanning tree
consists of various nodes considered as vertex. A tree 1s
a comnected graph containing no cycles. A tree of a
general undirected graph G = (V, E) with a node (or vertex)
set V and edge set E is a connected subgraph T = (V, B)
containing no cycles with (n-1) edges where n 1s total no
of node.

In this study undirected networks are considered
with the weight (distance) associated with each node. For
a given comnected, undirected graph G with n nodes, a
minimum spanning tree T 1is a sub graph of a G that
comnects all of G’s nodes and contains no cycles (Deo,
2000). When every edge (i, j) is associated with a distance
cl] , a mimmumn spanning tree s a spanning tree of the
smallest possible total edge cost:

C=Zg

Where (i, j). € T

Genetic algorithm: Genetic Algorithms (GA) is a
powerful, robust search and optimization tool which work
on the natural concept of evolution, based on natural
genetics and natural selection:

Work flow of GA:

¢ TInitialisation of parent population

» Hvaluation
» Self loop check
¢ Tsolated node or edge check
¢ Cycle check
» Store the best result
Selection of child population
Apply crossover/Recombination
Evaluation
Replace the result if it 1s better than previously stored
Apply mutation
Evaluation
Replace the result if it is better than previously stored
(Go to step 3 until termination criteria satisfies

NETWORK DESIGN PROBLEM
PRESENTATION AND ITS SOLUTION
USING GENETIC ALGORITHM APPROACH

The Network design problem is considered as a
unidirectional graph and represented with the help of
adjacency matrix.

172

Parent population in the form of chromosome is
generated rendomly according to the size of network.
Number of gene in a chromosome 1s equal to mumber of
node m a network.

The total number of chromosome may vary and it 1s
based on user input. Here a clromosome 1s generated for
a 10 node network. The association between nodes 1is
considered between positions to position.

Node:1 2345678910
Chromosome: 2 10 4 96 7598 3

The logic behind association 18 that the node
(Taha, 2007) is connected with node 2; node (Basw, 2005)
is connected with 10 andso on. From Fig. 1 it is clear
that this is not a spanning tree because of the isclated
circle. Similarly with some other randomly generated
chromosome, some other problems have been observed.
By observing these problems it has been concluded that
there are three main reasons for illegal chromosome:

» Selfloop
Cycle and
Isolated node or edge

Evaluation: By observing these problems, fitness
functions have been developed (Kumar and Jani, 2010) to
On the
fitness points are given to the

evaluate these chromosomes. basis of these
fimess functions,
chromosomes and on the basis of these fitness pomts
chromosomes are selected as a child population for next
generation. Following fitmess functions have been

developed to evaluate chromosomes:

Self loop
Isolated node or edge
Cycle

Cycle and isolation

Fig. 1: Tsolated circle

Int. J. Soft Comput., 5 (4): 171-176, 2010

MUTATION

This is the main part of this study. Mutation 1s a
background operator which produces spontaneous
random changes m various chromosomes. A simple way
to achieve mutation would be to alter one or more genes.
In GA, mutation serves the crucial role of either (a)
replacing the genes lost from the population during the
selection process so that they can be tried in a new
context or (b) providing the genes that were not present
in the initial population. The mutation probability
(denoted by Pm) 1s defined as the percentage of the total
number of genes in the population.

The mutation probability controls the probability with
which new genes are introduced into the population for
trial. If it is too low, many genes that would have been
useful are never tried out while if it 1s too high, there will
be much random perturbation, the offspring will start
losing their resemblance to the parents and the algorithm
(Knuth, 1997) will lose the ability to learn from the lustory
of the search.

Up to now, several mutation operators have been
proposed for real numbers encoding which can roughly
be put into four classes as crossover can be classified.
Random mutation operators such as uniform mutation,
boundary mutation and plain mutation belong to the
conventional mutation operators which simply replace a
gene with a randomly selected real number with a
specified range.

Dynamic mutation (non uniform mutation) is
designed for fine-tumng capabilities aimed at achieving
high precision which is classified as the arithmetical
mutation operator. Directional mutation operator 1s a kind
of dwection-based mutation which uses the gradient
expansion of objective function.

The direction can be given randomly as a free
direction to avoid the chromosomes jamming into a
corner. If the chromosome is near the boundary, the
mutation direction given by some criteria might pomt
toward the close boundary and then jamming could
occur. Several mutation operators for integer encoding
have been proposed. Inversion mutation selects two
positions within a clromosome at random and then
mverts the substring between these two positions.

Insertion mutation selects a gene at random and
ingerts it in a random position

Displacement mutation selects a substring of genes
at random and inserts it in a random position
Therefore, insertion can be viewed as a special case

173

of displacement. Reciprocal exchange mutation
selects two positions random and then swaps the
genes on the positions
!
Paren:1 001110101
Child: 1001010101

Following mutation operators have been developed
and tested for different size of network. Following data
sttucture have been used for all these developed
functions.

Chromosomes: it 1s a matrix of size N X N to store N
randomly generated chromosomes. After the fitness
function, fitness point for each chromosome 13 stored in
its last column. Subscript starts from 1.

S (1): Tt holds the no of row of matrix chromosome.
S (2): It holds the no of column of matrix chromosome.

Fitness: It 15 an array which holds the fitness value for
each chromosome.

Mutation I: This mutation operator mutates only those
chromosomes which does not have the maximum fitness.
The logic applied behind this fimction 18 to sumply find
the chromosome and change its value with its position. If
first chromosome is selected then its first place will be
replaced by maximum number where maximum number is
equal to number of node. Similarly if second unfit
chromosome 1s selected then its second position will be
replaced by maximum number-1 and so on.

Mutationl (chromosome)
Begin
Setk=1;
for i=1to row do
if (chromosome(i, col) not equal
to maximum fitness)
new-chromosome (i, i) = (col-i); end
end
fori=1torow
for j =1 to col-1 do mutated_chromosome (i, j) = new-chromosom
e(i, j); end
end

End

Mutation II: This mutation operator mutates only those
chromosomes which does not have the maximum fitmess
value. Mutation 1s done to remove self loop. If the locus
and allele both have the same vlaue than this value 1s
replaced by (position+1). This function 1s also working as
the repairing of chromosome.

Int. J. Soft Comput., 5 (4): 171-176, 2010

Mutation IT (chromosome)

Begin
setk=1;
for i =1 torow do
if (chromosome (i, col) not equal
to maximum fitness)
forj=1tocol-1do
if {chromosome (i,j)) ==])
if (j equal to col-1)
new-chromosome (i, j) =j-1;

else
new-chromosome (i,j) =j+1;
end
end
end
end
end

for i =1 torow do
forj=1tocol-1
mutated-chromosome(i,j) =
new-chromosome(i,j);
end
end
End

Random mutation: This mutationo peratormu tatesonly
those chromosomes which does not have the maximum
fitness value. Mutation is done by selecting a random
position and replace its value with random number. It 1s
considered that no self loop could form at the time of
replacement.

Random_mutation (chromosome)
Begin
setk=1;
for i =1 torow do
if (chromosome (i, col) not equal

to maximum fitness)

posi = randomly generated
number within limit;

val = randomly generated
number within limit;

it (posi equal to 0)

posi=1;
end
it (val equal to O)
val=1,

end
if ((posi equal to val) AND (posi ==col-1))
chromosome (I, posi) = val-1;
else
chromosome (i,posi) = val;
end
end
end
for i =1 torow do
for j=1to col-1
mutated chromosome (i, j) =
new_chromosome(i,j);
end
end
End

174

Swap mutation: This mutation operator swaps two
random position of each of the chromosomes. If the
randomly generated positions are 3 and 7.

! l
Chromosome: 51498213101

After mutation

Chromosome: 51198243101

Swap _mutation (new_chromosorme)
Begin
Setk=1;
fori=1torow do

p = randomly generated number

within the lirnit;

q =randomly generated number within the limit;
temp = new_chromosome (i, p);
new chromosome (i, p) =

new chromosome (i, q);
new chromosome (i, q) = termnp;
end
End

Mutation inversion: This mutation operator mverts the
genes between two random position for each of the
chromosomes. For each chromosome there are different
random position. Tf the randomly generated positions are
2 and 8.

| |
Chromosome: 51498213101

After mutation

Chromosome: 53128941101

Mutation inversion{new _chromosorme)
Begin
Setk=1;
fori=1 to row do
p = randomly generated number
within the limit;
q =randomly generated number
within the limit;
sort p,q
forx=ptoqdo
temp = new_chromosome (i, x);
new_chromosome (i, x) =
new_chromosome (i,q);
new_chromosome (i, q) =temp;
decrement q by - 1;
fx ==gl =
break;
end
end

end
End

Int. J. Soft Comput., 5 (4): 171-176, 2010

Table 1: Minimum cost of network for various mutation operators

Network Random Mutation Mutation Swap Inversion Insertion
size mutation 1 i mutation _rmitation mutation
10 226 281 247 241 266 234
20 624 682 646 567 652 680
40 1262 1293 1388 1281 1238 1306
60 2028 2026 2189 1977 2140 2203
80 2981 2044 3121 2999 2933 2813
100 3632 3555 3738 3464 3455 3368
200 7730 7390 7353 7561 7344 7407
300 11387 11305 11359 11559 11228 11300
400 15454 15401 15815 15066 15252 15337
500 19245 19296 19297 192546 19240 19295
600 23589 23315 22999 23440 23095 23246
700 27200 27421 28198 27626 26860 27234
800 32002 31335 31266 31251 30852 30833
900 35184 34643 35156 35383 35027 35204
1000 39172 39092 309315 39291 39100 39503

Mutation insertion: This mutation operator inserts one
gene with another gene by displacing other genes. Two
random positions are generated to denote two gene then
one random place gene is inserted with the another
random place gene. Other inbetween genes are shifted.
For each chromosome there are different random position.
If the randomly generated positions are 2 and 8.
l l

Chromosome: 51498213101
After mutation

l
Chromosome: 51349821101

-

Mutation insertion(new chromosome)
Begin
Setk=1;

fori=1torowdo

p = randomly generated number
within the limit;

q = randomly generated number
within the limit;

sortp, q

temp = new_chromosome (i, q);

it (p not equal to q)

x=q-1;
While (x greater than equal to p+1)
new_chromosome (ix+1)=
new_chromosome (i,x);
decrement x by -1;

end

new_chromosome (i,p+1) = temp;
end
end

End

Crossover/recombination: Chromosomes have been done
on a single point.

EXPERIMENTAL RESULT

Experiment based on Mutation Operator for small
tolarge size network. The experiment 1s done in MATLAB
R2008a version 7.6.0.324. Following parameters have been
considered:

175

40000

35000

30000

25000

20000

Cost of network

15000

5000
0- 7 A
123 45 6 7 8 9101112 1314 15
Network
n Randommutation DSNap mutation
0§ Mutation| ll Inversionmutation
I:I Mutation | u Insertion mutation

Fig. 2: Network cost chart based on mutation function

Population size: 100

No of generations: 100

Selection: Roulette wheel selection
Crossover: Uniform

From the above experimental result of Table 1 and the
chart shown in Fig. 2, it is clear that, mutation operator is
one of the important factor of genetic algorithm.

CONCLUSION

From these six mutation function it 1s observed that
insertion, inversion and swap mutation operator gives the
better result. This is the improved approach of
evolutionary computing which gives the very positive
result. The mmportance of mutation operator. The
effectiveness of the methodology however can be
increased by applying the various genetic operators with
variations of network size as the densely connected
locations.

ACKNOWLEDGEMENT

Researchers thanks to the reviewers for their cogent
and insightful comments.

REFERENCES

Basu, SK., 2005 Design Methods and Analysis of
Algorithms. Prentice-Hall of India Pvt. Ltd., India,
ISBN-10: 8120326377.

Int. J. Soft Comput., 5 (4): 171-176, 2010

Deo, N., 2000. Graph Theory with Applications to
Engineering and Computer Science. Prentice-Hall,
Englewood Cliffs, New Jersey.

Knuth, D., 1997. The Art of Computer Programming:
Sorting and Searching. 3rd Edn., Addison-Wesley,
USA.

Kumar, A. and NN. Jani, 2010. Genetic algorithm for
network design problem: An empirical study of
crossover operator with generation and population
variation. Int. J. Inform. Technol. Knowledge
Manage., 2: 605-611.

176

Melanie, M., 1998. An Introduction to Genetic Algorithm.
Ist Rev. Edn., MIT Press, Cambridge, MA ., ISBN-10:
0262631857,

Taha, H.A., 2007. Operation Research: An Introduction.
8th Edn., Pearson Education, India, ISBN-13:
9788131711040.

Vose, M.D., 1999. The Simple Genetic Algorithm,
Foundation and Theory. A Bradford Book MIT
Press, Cambridge, Massachusetts. London,

England.

