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Abstract: Pseudorandom number generators are used in many areas of contemporary technology such as
modern communication systems and engineering applications. In recent years a new approach to secure
transmission of information based on application of the theory of chaotic dynamic systems has been
developed. The idea of Constructing Random gystems based on chaotic (CRNG) intrinsically exploits the
property of extreme sensitivity of trajectories to small changes of initial conditions/system parameters and other
properties can be considered analogous to the confusion, diffusion with small changes in plaintext/secret key,
deterministic pseudorandom numbers and algorithmic complexity properties of traditional cryptosystems. As
a result of this close relationship, several chaos based cryptosystems have been put forward since 1990. We
discuss suitability of the chaos based random number in random number generator by using the genetic
algorithm that can calculate approximate answer in optimization problems. The simulation’s result showed that
chaos based random number generators can generate more uniform than low-discrepancy random number
generator.
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INTRODUCTION

Pseudo-random number generators with good
properties are frequently used in modern communication
systems as in a variety of engineering

applications. The quality of this means: How well a given

well as

chaotic system produces pseudorandom numbers that
has mdependent uniformly distributed numbers? Many
cryptographic schemes and protocols require a secure of
random or pseudorandom numbers. The quality of this
source 1s crucial for the security of the scheme or protocol
in question.

For the largest value of the control parameter, the
logistic map is able to generate an infinite chaotic
sequence of numbers (Andrecut, 1998). The reverse
Logistic map 1s a very simnple mathematical model often
used to describe the growth of biclogical populations. Tt’s
showed this simple model has complex behavior. The
simple modified mathematical form of the reverse logistic
map 1s given as Eq. 1.

fixy=x, =(0-1x )V 0=x,_ <1 (1)

Where:
x, = The state variable which lies in the interval (0, 1)
r = Called system parameter which can have any

value between O and 2

If the value of growth rate 1s equal to 0, then x, tends
to 1 1.e., the chaotic system has an absorbing point and
this point is 1.

For 0<r<0.75, x, tend to the stable state i.e., likewise,
the system has an absorbing point, the difference with
that the value of absorbing point decreased with
increasing value of r. In r = 0.75 15 the first step of
bifurcation. This type of vibration that x, iterated both
times called cycle with two periods. For r = 1.25
population leads to a cycle that has four stable states,
previous cycle’s periods duplicated and changed to cycle
with four periods. With increasing the value of r iterate
duplications of period continuously. This system’s
behavior called bifurcation event. In fact bifurcation event
causes duplications of period. For larger value of r, not
only the value of x, tends to a fixed point or iterative orbit
but it also has chaos behavior. In Fig. 1 has depicted one
such example of sensitivity on imtial conditions for
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Fig. 1: The sequences of reverse logistic map, behavior of
inverse logistic map and sensitivity of initial

conditions forr=1.99
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Fig. 2: Bifurcation reverse logistic function diagram, as

O=a<2

r =1.99. It is clear that the two trajectories of the chaotic
Inverse logistic maps starting nearby x, = 0.3 and x, =
0.3000001 soon diverge exponentially in the cross of time
and have no coloration between them. If we calculate
coloration coefficient for these two data sets confirms the
completely unallocated behavior of two trajectories which
are starting from almost same imtial conditions.

The bifurcation reverse logistic function 1s shown in
Fig. 2 to notice that the system hasn’t chaos behavior for
any =1 .4, so it"s a mix of discipline and chaos mn 1.4<r<2.
Therefore for value of 1 that 15 1.5<1<2, we can generate a
chaos based sequence of x, € (0, 1). Logistic map
{(function 2) and Parabolic map (function 3) are the other
chaotic map samples that are shown in Fig. 3aand b.
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Fig. 3: Bifurcation (a) logistic map and (b) Parabolic map
diagrams

In Fig. 3a and b, logistic map is chaotic system where
r = 2 can generate x, € [0,1] also a parabolic map 1s chaotic
system where r = 2 can generate x, € [1,1]. Thus these
systems have chaotic behavior.

Genetic algorithm is a search technique used to find
approximate solutions to optimization and search
problems. In this study we present a chaotic method to
generate initial population’s genetic algorithm (known as
the parent population), so we use random numbers for
parent population of some low-discrepancy and chaotic
methods.

A genetic algorithm for optimization problem (Reese,
2009) is defined That parent population was generated by
Random Number Generator (RNGs), Pseudo Random
Number Generator (PRNGs), Quasi Random Number
Generator (QRNGs) and chaotic Random WNumber
Generator (CRNGs) (Sen ef al., 2006). Finally we ranked
these generators with comparing precisions generated
answers by GA.

GENETIC ALGORITHM

The first step of a genetic algorithm is to generate an
mitial population of candidate solutions by coding the
parameter set as a finite-length binary string where each
bit is assigned a meaning. The bit string is the concept
defimition language for the GA (Banzhaf ef al., 1998). This
binary string represents a real value of the variable. How
should one choose the population size? Tt can be set
anywhere from 10-1000,000. It has been suggested that for
smaller problems, a population size of 1000 should be
used; however, as the problem becomes more difficult, the
population size should increase (Banzhaf et al., 1998). To
generate the parent population, an amray of random
mumbers is generated and then converted to binary
strings. Each binary string will contain 22 bits so as to
assure the required precision of six places after the
decimal point. The binary strings are then converted to
base 10 representation and then nto a real number.
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To illustrate this procedure, suppose the random
number 0.9501 was generated (Reese, 2009). This value is
then multiplied by 2% to ensure 22 bits in the binary
conversion. The decimal to binary conversion results in
the string 1111001100111001110000.

The conversion from binary to base 10 results in
3985008. Lastly, the conversion to a real number requires
the endpoints of the interval for the variable. Suppose a
value between -1 and 2 1s to be generated. Then the real
number conversion 1s found by multiplying the base 10
representation by the length of the mterval, dividing by
(27-1) and then adding the left endpeint of the interval. In
this case:

x = -14+3985008*3 (2% -1) = 1.8503

Starting with the parent population of strings, the GA
then generates successive populations of strings. This
simulated evolution allows the good strings to reproduce
and the bad strings to die off (through the reproduction
operator). The search for better structures is based solely
on the fitness values associated with the individual
strings and is guided by probabilistic transition rules.
Reproduction (also known as selection) is a process in
which individual strings from the parent population are
copied according to their objective function values (i.e.,
payoft values) and is the second step of the GA. Tt is an
asexual process in that only a single string is involved
(Baker, 1998).

Holland's method uses fitness-proportionate selection
with roulette wheel. In this method, the chance of an
individual string being selected is proportional to the
amount by which its fitness is greater or less than its
competitor's fitness (Mitchell, 1997) causing stronger
strings to be selected over weaker strings. This method
will produce a new generation of the same size as the
parent population. Holland's method is conducted as
follows. First, the absolute value of the fitness value of
each parent string is calculated.

From this the total fitness of the entire population can
be found by summing the individual fitness values. Then
for each parent string, the probability of selection is
calculated by dividing the individual fitness value by the
total fitness. Lastly, the cumulatve probability
distribution is calculated. To select parent strings to copy,
a random number between 0 and 1 (inclusive) is first
generated Using the cumulative probability distribution,
if the generated random number lies withuin a parent
string's cumulative probability range then that parent
string 1s chosen for reproduction. For example, if the
generated random number is less than the first value of
the cumulative probability distribution, then the first
chromosome will be selected. This random number
generation is repeated until a new generation of the same
size as the parent generation has been created. The third
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step of the GA is crossover (also known as partial string
exchange). Crossover combines the features of two parent
strings to form similar (i.e., of the same size) offspring by
swapping corresponding  segments of the parents
(Zbigniew, 1996). The expected number of parent strings
to crossover can be found by multiplying the population
size by the probability of crossover (which is chosen by
the user). According to Mitchell (1997), the probability of
crogsover can be set at the fairly typical value of 0.7.
However, Banzhaf ef al. (1998) suggest that the crossover
probability should be set high, around 90%. Obitko and
Slavik (1999) also suggest that the crossover rate should
be set high about 80, 95%.

To generate the set of strings to be involved in
crossover, a random number is generated for each string.
If the random number is less than the probability of
crossover, the chromosome 1s selected for crossover. If an
odd number of strings are chosen to crossover, another
string can be added or an existing string can be deleted.
Strings are then paired together to undergo crossover. For
each pair, a random number between 1 and (the total
number of bits-1) inclusive 1s generated (in this case
between 1 and 21 inclusive). Crossover will occur at the
bit after the generated random number. This 1s called
single point crossover and is the simplest method. To
illustrate, suppose we have the following two strings
selected for crossover:

0011101001111100110111 and
1100000011010111000100

If the generated random number was 5, crossover
would oceur after the fifth bit:

00111/01001111100110111 and
11000]00011010111000100

Each part after the crossover position 1s exchanged
to form two new offspring:

0011100011010111000100 and
1100001001111100110111

Other crossover methods meclude two point
crossover (where two crossover points are selected and
the binary string from the beginning of the chromosome
to the first crossover point 1s copied from the first parent
and the part from the first to the second crossover point
is copied from the other parent and the rest is copied from
the first parent), uniform crossover (where bits are
randomly copied from the first or from the second parent)
and arithmetic crossover (where some arithmetic operation
is performed to make a new offspring) (Obitko and Slavik,
1999).
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The last step in the GA is mutation. Mutation plays
a secondary role n the operation of GAs (Goldberg, 1989).
It is the occasional random alteration of the value of a
string position. Mutation, like reproduction, 15 an asexual
process. The expected number of mutated bits can be
found by multiplying the probability of mutation (this 1s
also chosen by the user) by the total number of bits
(in this case, 22) by the population size. According to
Mitchell (1997), the probability of mutation can be set at
a fairly typical value of 0.001. However, Banzhaf et al
(1998) suggest that the mutation probability should be set
low, around 10%. Obitko and Slavik (1999) also suggest
the mutation rate should be set low, about 0.5-1%.

The procedure for mutation 1s as follows: for every
bit in the population, a random mumber between 0 and 1
(inclusive) is generated. If the generated random number
is less than the probability of mutation, the bit is mutated.
If the original bit was O, it now becomes a 1 and vice
versa. Mutation and crossover can be performed 1n either
order. However, it has been shown that mutation before
crossover is less efficient than mutation after crossover
(Vose, 1999). After crossover and mutation have been
performed, the first generation (after the parent
population) has been formed.

The fitness values of this newly formed generation
are then evaluated. The GA should be repeated starting
with reproduction using this first generation as the new
parent population. The total mumber of generations to
evaluate is often based on previous results and can range
anywhere from 50 to =500 (Mitchell, 1997). One option for
termination 18 to run the algorithm for a set number of
generations (which is the approach used here). An
optional approach is to end the algorithm after a certain
number of generations pass with no improvement in the
fitness of the best individual in the population.

NUMERICAL EXPERTMENT

To evaluate the test problems (many of wlich are
violently fluctuating, 1.e., contaming many local maxima)
the n-dimensional bisection method will be implemented.

This method is most commonly associated with
root-finding, but it can also be used to show that a
continuous function on a closed interval achieves its
maximum (Wood, 1992). Bisection is the division into two
equal halves of a given curve, figure or interval. The
domain for one dimension (i.e., one variable) 1s a line
segment. The one-dimensional bisection procedure for
iteratively converging on a solution which is known to lie
inside some interval (a, b) proceeds by evaluating the
function at the midpoint of the original mterval x = (a+b)/2
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and testing to see in which of the subintervals [c, (atb)/2]
or [(a+h)/2,b] the solution lies. This procedure is then
repeated with the new interval as often as needed to
locate the solution to the desired accuracy.

For two dimensions (i.e., two variables), the domain
1s a regular hexagon The bisection method will produce
four search areas. For example, if the first variable lies
between (a, b) and the second variable lies between (c, d)
then the bisection method will produce two subintervals
for each variable [(a+b)/2] and [(a+b)2,b] for the first
variable and [(¢+d)/2] and [(c+d)/2,d] for the second
variable. There are four possible combinations since there
are two options for each variable.

The combination resulting in the largest function
value will be chosen for the next iteration. For three
dimensions, there would be eight subintervals in which to
choose one for the next iteration. This procedure can be
generalized for higher dimensions. The bisection method
will terminate when the relative error is <0.005%. The
relative error is calculated as the absolute wvalue of
the proposed solution minus the actual solution
divided by the absolute value of the actual solution, i.e.
I ppeFaral )

The parameters of the GA are set at 512 for
population size, 10 for the number of generations, 0.80
for the crossover rate and 0.001 for the mutation rate. The
GA was run 30 times and the maximum function value is
reported In the next session we used GA that parent
population generated by different random number
generator (for example: Halton, Sobol, Faure, Niederreiter,
R250 and also proposed our CRNGs) and then discuss
about some optimization problems.

PERFORMANCE EVALUATION’S CRNGS

Unconstrained global optimization problems (Eq. 4)
have the form:

max f{x) x € [a.b] )
Where:
f(x) = The objective function
aandb = The endpoints of the search interval for each

variable

Test function 1: A unimodal one variable problem. The
goal is to find x in the closed interval from -3 to 3 that
MExImizes:

£ (x) =-x*+12 x’15 x*-56 x+60

Figure 4 shows the graph of this function over the
domain of x. To obtain the precision requirement of six
places after the decimal point, x requires 23 bits:
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Fig. 4: Graph of f (x) over x€ [-3, 3]
Table 1: GA results for f (0) over xe [-3, 3]
Relative
Ranking  error (%) F () X RNG
3 0.000006 88.891563  -0.869857 Halton (dim = 2)
5 0.000510 88.891115  -0.867187 Faure (dim = 2)
5 0.000510 88.891115  -0.867187 Sobol
2 0.000002 88.891566  -0.869992 Niederreiter
4 0.000009 88.891560  -0.870562 R250
1 0.0000001 88.891568  -0.870173 Reverse logistic
1 0.0000001 88.891568  -0.870173 Logistic
1 0.0000001 88.891568  -0.870173 Parabolic
Table 2: GA results for g (x) over xe [-1, 2]
Relative
Ranking  emror (%) F(x) X RNG
2 0.0016 2.850274 1.850548 Halton (dim = 2)
1 0.0015 2.850272 1.850586 Faure (dim = 2)
1 0.0015 2.850272 1.850586 Sobol
2 0.0016 2.850274 1.850547 Niederreiter
2 0.0016 2.850274 1.850547 R250
1 0.0015 2.850271 1.830605 Reverse logistic
2 0.0016 2.850274 1.85054 Logistic
3 10.8186 2.541871 1.662185 Parabolic

(2% = 4194,304<6x1000,000 = 6000,000<8388,608 = 27)

The known solution is found at x = -0.8702 resulting in
a function value of 88.891568. The initial results using the
different RNGs as the parent population are shown in
Table 1.

Test function 2: A multimodal one variable problem with
one global maximum. Using a test problem provided by
Goldberg (1989), the goal 1s to find x i the closed mnterval
from -1 to 2 that maximizes g (x) = 1.0+ sin (1 0mx). Figure
5 shows the graph of this function over the domain of x.
The known solution is found at x = 1.8508 resulting in a

F(x)

1 05 0 05 1 15 2

Fig. 6: Graph of h (x,, x,) over x,, x; € [-500, 500]

function value of 2.850227. The results for tlus test
problem wusing the different RNGs as the parent
population are shown in Table 2.

Test function 3: A multimodal two variable problem with
one global maximum. Figure 6 shows the graph of this
function. lis two variable test problem 1s known as
Schwefel's function and was also obtamed at The GA
Playground. The function is characterized by a global
maximum that is geometrically distant from the next
best local mexima. Therefore, search algorithms are
prone to comvergence i the wrong direction. The
function is defined as:

h(x,.,x,)=x, sin(,/\ X, D+x, sin(,ﬂ X, )

over the closed interval of (-500, 500) for both x, and x,.
To obtain the precision requirement of six places after the
decimal point, x, and x; each require 30 bits:
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Table 3: Initial GA results forh (x), x;) over xx;, [-500, 500]

Relative
Ranking error (%) F{x) X b RNG
4 0.003750  837.934351 420.668662 420.569975 Halton (dm=2)
7 28449170 599.571422  500.000000 420.898438 Faure {dim =2)
7 28449170 599.571422  500.000000 420.898438 Sobol
2 0.000287 837.963366 421.096803 420916932 Niederreiter
3 0.000878 837958415 420.895100 420.738733 R250
1 0.000276  837.963480 420.835399 420944746 Reverse logistic
6 0.009890 837.8628526 421.779098 420951363 Logistic
5 0.002109  837.948103  421.067159 421329774 Parabolic

(2% = 536,870,912<1000=1000,000 =
1000,000,000<1073,741,824 = 2™)

Therefore, the parent population will contain strings
of 30430 = 60 bits. The known solution for this test
problem 1s found at x; = x, = 420.9687, resulting in a
function value of f (x,, x,) = 837.965775. Table 3 shows the
results of the initial run for the different RNGs.

CONCLUSION

Which existing random number generator 13 the best
under all circumstances is still an open problem. The
answer will depend on numerous parameters, such as
parent population because the target of such algorithms
1s getting the best answer of optimization problem without
survey of all of the state space. So the more the parent
population is more uniform, we have higher chances to
get the overall maxmmum and get away from local maximum.
So the genetic algorithm 1s a criterion to realize what mnitial
population is more uniformity. Then we evaluated that the
proposed chaotic random number generator has the best
performance to get the overall maximum with less percent
relative error.
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