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Abstract: Predicting hot methods of a program code using machine learing algorithms in compiler optimization
eliminates the overhead incwred during runtime identification. Since learning is a continuous process, the
system should be able to relearn and update itself. In this study we implement this 1dea in a virtual machine
which learns and relearns as to how hot methods can be effectively predicted m a program. This is the first
attempt to make a compilation system relearn about hot method prediction after each execution. By applying
relearning we are able to develop models for the prediction of the frequently called and the long running hot
methods that can obtain 19 and 37% accuracies showing an improvement of 10 and 21%, respectively over the
corresponding models without relearning. This is due to the ability of the model to learn from every program

that enters execution and reconstruct itself.
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INTRODUCTION

Hot method identification by profiling has long been
used by compilers and virtual machines. Profiling 1s
accurate but 1t incurs a lot of expensive overhead. To
overcome this problem of runtime overhead, researchers
are looking for innovative techniques for the identification
of hot methods. Although, many compiler writers endorse
the use of Machine Learning (ML) techmques in the
construction of compiler heuristics, the techmque has not
found its application in hot method prediction. The
Support Vector Machine (SVM) based hot method
prediction model constructed in the previous research is
a promising first step in this direction (Johnson and Vall,
2008a, b).

The performance of the predicive model 1s
convincing enough to improve program runtime
optimization and now that learning is a continuous
process, we want the learnt model to releamn and update
itself.

In this study we implement the effect of learning and
relearning on the prediction of hot methods by a Low
Level Virtual Machine (I.LVM) (Lattner and Adve, 2004).
The two models, one for predicting the Frequently Called
Hot Methods (FCHM) and another for the Long Running
Hot Methods (LRHM) are constructed using one set of
benchmark programs. The hot methods in a new program
from another benchmark program are predicted by the
learnt system for optimization. The learnt model
mnmediately relearns with the first set of benchmark
programs along with the second one and a new predictive

model is constructed. After predicting hot methods of a
program, the system relearns with a new program. Thus,
the predictive model keeps relearmng and making new
predictive models.

Literature review: Training and retraining have been
used for selective learning of the predictive model for an
online machine learning system (Ludl et al, 2008). An
algorithm for lifetime learming 1s experimented in a neural
network. Unlearning and relearming are done in two
phases, a positive and a negative phase m a neural
network (Carse and Oreland, 2000). A learning and a
reverse learning algorithm is used in boltzman machines
(Hinton and Sejnowski, 1986).

In a relearning approach to improve the classification
accuracy in the k-nearest neighbor classifiers, it has been
shown that the relearming combmed with ensemble
computing works better than relearning and other
conventional methods (Tshii et al., 2008a, b). Application
of relearning to improve the classification accuracy of the
k-nearest neighbor classification algorithm i1s also seen in
the research on Nearest Neighbor Classification by
Relearning (Ishu et al., 2009).

SYSTEM OVERVIEW

Figure 1 shows the system overview of the learning
and the relearning hot method predictive system. The
relearnt hot method predictive models for the frequently
called and the long runming hot methods are constructed
using the SVM-based model (Johnson and Valli, 2008a, b).
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Fig. 1: Relearning virtual machine-system architecture

These predictive models are used to predict hot
methods in programs which are optimized before
execution. The feedback through profiling and gprof tools
from the execution of the program is used to evaluate the
prediction accuracy of the models. The feedback obtamed
also used by the relearning system in the
reconstruction of the predictive models. Thus, after the

is

prediction, optimization and execution of every new
program, the predictive model 1s reconstructed by the
relearning system.

The predictive model is trained with all the sets of
programs in a benchmark suite. That is the feature vector
set 18 constructed using one full benchmark suite. A total
of ten features are used in developing the FCHM
predictive model whereas twenty nine features are used
for the LRHM predictive model. These feature sets
represent the effective feature sets comstructed m the
previous work using the sequential backward elimination
process coupled with a knock-out strategy (Johnson and
Valli, 2008a, b).

Once trained, both the predictive models are used to
predict the hot methods in a new benchmark suite. This
new prediction experience 1s compared with the actual hot
methods during execution to evaluate the Hot Method
Prediction Accuracy (HMPA). The system now starts its
relearning process and constructs a new training set by
appending the training feature vector constructed from
the new benchmark program. The new training data
set 13 then used to construct two new predictive models,
one for the FCHM and another for the LRHM. The system
unlearns and releams in the process of making a new
predictive model. The new predictive model could be used
for predicting any new benchmark program. Thus, the
model learns from every new program that enters the
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system for execution. This research 1s the first attempt to
apply relearming in virtual machines. The limitations of the
system are:

* An offline relearning happens throughout the
lifetime of the system and this makes it difficult for
real time and online systems to use the system

The system unlearns and then relearns instead of
incremental learming or updating the leamt system.
This kind of relearning after unlearning consumes
time but it can be done as a background process in
an online system

LEARNING AND RELEARNING BY
THE PREDICTIVE MODEL

The ten and twenty mne static features that are used
in the construction of the respective predictive models for
the FCHM and the LRHM are collected from each method
by an oftline static analysis of the LLVM’s bytecode.
These features form the feature vectors that are
accumulated in the training data set file. The feature
vector is labeled +1 for the hot methods and -1 for the
cold methods. Profiling and gprof tool are used,
respectively for the identification of the FCHM and
LRHM.

EVALUATION METHODOLOGY

The effects of learning and relearning of the virtual
machine are evaluated on six different combinations of
three benchmark suites namely, SPEC (2000), UTDSP
(Lee, 1998) and Mediabench (Lee et al., 1997). The
predictive model constructed using one benchmark suite
is used to predict the hot methods of the other two
benchmark suites. The prediction accuracies obtained are
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the outcome of the initial learning on the first benchmarlk
suite. Next, the predictive models are subjected to a
relearming process. The relearming system is evaluated by
using various combinations of the three benchmark
suites. After the initial learning of the predictive models
by one of the benchmark suites, programs from another
benchmark swute are used as testing programs for hot
method prediction. The predicted hot methods are
optimized and then executed. The prediction results are
compared with the actual hot methods generated by a
profiler for FCHM and the gprof tool for LRHM. Next, the
test benchmark programs are added to the existing set of
training benchmark programs and the predictive models
are retramned. Thus new predictive models are constructed
with the old and the new benchmark programs. When a
new program enters the system for execution, the existing
predictive model predicts the hot methods in the program
and after execution, the predictive models are
reconstructed using the additional information obtained
from the new program. The training and evaluation
methodology adopted in the present study, trams the
predictive model m one benchmark suite and tests using
another benchmark suite which is an improvement over
the leave-one-out evaluation strategy within a benchmark
suite used in the previous research (Jolmson and Valli,
2008a, b).

RESULTS OF RELEARNING OF THE
PREDICTIVE MODELS

Figure 2-4 show the LRHM prediction accuracies
obtained for the individual programs of the benchmark
suites using the initial training prior to relearning. For
instance Fig. 2 shows HMPA% obtained on the SPEC
benchmark using the predictive models trained by either
UTDSP or Mediabench. The observations of imtial
learning are presented as HMPA% without relearning in
Table 1. In the results with FCHM predictive model, the
prediction accuracies are small and the observations of
the initial model are shown in Table 2 as HMPA % without
relearning.

Relearning of FCHM: Table 2 shows the data on the
performance of the relearning predictive models for the
FCHM. It 1s seen that with the models for the FCHM, the
accuracy of prediction 1s low before and after relearming
compared with the prediction accuracies of 68 and 16%
got in the previous research where the UTDSP and SPEC
benchmark programs are evaluated using the leave-one-
out methodology within a benchmark suite (Johnson and
Valli, 2008a, b). However, the relearning system shows a
consistent prediction with five out of six benchmark
combinations mdicating overall improvement. When
individual predictive models are considered, the model
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benchmark suite by models trained by SPEC,
UTDSP

built by Mediabench can predict SPEC with 19% HMPA
and UTDSP with 0%. The system when relearnt first by
using UTDSP and later by SPEC benchmark suites can
achieve 26 and 12%, respectively. It is an overall 10%
improvement over prediction prior to relearning.

Relearning of LRHM: Table 1 shows a similar data on the
relearning experience of the LRHM predictive model. Tt is
seen that the highest LRHM prediction accuracies of 48
and 38% are obtained, respectively on benchmark suites
SPEC and Mediabench when the model 13 mitially learnt
by UTDSP. Even though the same model predicts LRHM
with a reasonably high prediction accuracy percentage of
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Table 1: HMPA%6 and its improvement on relearning with various benchmark combination sequences for LRHM predictive model

HMPA% without
relearning Releaming Releaming Overall
Benchmark for
initial leamning  Benchmark  HMPA% Benchmark 1 HMPA% Improvement Benchmark 2 HMPA% Improvement HMPA%  Improvement
UTDSP SPEC 48 SPEC 31 -17 Media bench 31 -7 31 -12
Mediabench 38 Media bench 17 221 SPEC 1 -47 9 34
SPEC UTDSP 32 UTDSP 63 31 Media bench 11 11 37 21
Media bench 0 Media bench 11 1 UTDSP 0 -32 6 -11
Mediabench SPEC 5 SPEC 31 26 UTDSP 31 28 31 27
UTDSP 3 UTDSP 55 52 SPEC 11 6 33 29
Table 2: HMPA% and its improvement on relearning with various benchmark combination sequences for FCHM predictive model
HMPA%0
without releaming Relearning Relearning Overall
Renchmark for
initial leaming Benchimark HMPA% Benchimark 1  HMPA% Improvement®s Benchmark 2 HMPA% Improvemnent® HMPA% Improvernent%e
UTDSP SPEC & SPEC 0 -6 Media bench 0 0 0 -3
Media bench 0 Media bench 0 0 SPEC 11 5 6 3
SPEC UTDSP 2 UTDSP 20 18 Media bench 0 0 10 9
Media bench 0 Media bench 0 0 UTDSP 25 23 13 12
Mediabench SPEC 19 SPEC 10 -9 UTDSP 23 23 17 7
UTDSP 0 UTDSP 26 26 SPEC 12 7 19 10

31% after relearning with SPEC as the first benchmark and
Mediabench as the second, the system’s overall
prediction accuracy decreases by 17 and 7%, respectively
for the SPEC and Mediabench benchmarks. The LRHM
predictive model can achieve a maximum HMPA of 48 and
32% prior to relearning for the UTDSP and SPEC
benchmark programs while the previous research has
shown 86 and 48% on the same benchmarks when the
leave-one-out methodology is used (Johnson and Valli,
2008a, b). In this research, we train the predictive model in
one benchmark and test it on a different benchmark suite.

The highlight of the performance of the predictive
model for LRHM 15 a model mtially built by SPEC which
can obtain a prediction accuracy of 32% on UTDSP and
0% on Mediabench prior to relearning. With the first
relearning experience on UTDSP, it can achieve a HMPA
of 63% and with subsequent relearning on Mediabench,
it gives 11% leading to an overall HMPA of 37%. Itis a
21% improvement over the system without relearming.
Although, the model is initially trained with Mediabench
and later relearnt in SPEC-UTDSP order and UTDSP-SPEC
order shows the highest overall improvement of 27 and
29%, respectively the SPEC trained model when relearnt
i UTDSP-Mediabench order gives the highest and the
most consistent HMPA%. Unlike the high performing
LRHM predictive model which invariably yields better
prediction accuracies, the predictions of the FCHM model
are small. Nevertheless, the FCHM predictive model also
performs fairly well on relearming. It may be concluded
that the hot method prediction keeps improving with
machine relearmng.

CONCLUSION

The research 1s an attempt to construct a relearning
virtual machine which learns every time a new program
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enters the system for execution. The HMPA percentages
obtained with some of the relearnt predictive models are
very impressive clearly indicating that the models could
achieve a reasomable improvement of 10 and 21%,
respectively for the frequently called and the long runming
hot methods when releamnt using different combinations
of SPEC, UTDSP and Mediabench benchmarks, over the
systems without relearning. These results confirm the
effective predictability of hot methods by machine learnt
models previously observed i the research. The online
systems can do the relearning as a background process.
To address the problem of unlearming that precedes
relearning, future research on relearning systems will
concentrate on updating the predictive model instead of
a routine unlearning and relearning.
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