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Abstract: An attempt has been made to formulate the final size formula for infected nodes i a computer network
due to the attack of different malicious agents like viruses, Trojan horse, worms, etc. We assume that the
population of the nodes in a computer network is homogenous and there does not exist any heterogeneous
mixing. The concept of self-replication of infected nodes and the time lag for self-replication (replication period),
latent period and temporary immune period 1s introduced. The Susceptible Infected Recovered Susceptible
(SIRS) class populations 1s assumed to be bounded by the total size of the population N (t) which 1s constant
at any time instant. The stability of the result is stated in the terms of reproductive number R;. The system is
stable if reproductive number is >1 and unstable if reproductive number is <1. Numerical method is employed
to solve the system of integro-differential equations and is used to analyze the behavior of the susceptible,

mnfected and recovered nodes n a computer network.
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INTRODUCTION

Transmission of malicious objects in computer
network is epidemic in nature. Malicious object is a code
that infects computer systems. There are different kinds of
malicious codes such as: Worm, Virus, Trojan horse etc.,
which differ according to the way they attack computer
systems and the malicious actions they perform. Some of
them erase hard disks, some others clog the network while
some others sneak into the computer systems to steal
away confidential and valuable mformation Malicious
objects can be in any form like attachment of malicious
executable file, malicious hyperlink and Phishing.

By clicking incidentally or wrongly an attachment of
malicious executable file can infect the system, here the
user’s awareness is necessary to avoid such type of
attacks. If a hyperlink looks likes a spy-ware then by
clicking it a user can go to the direction of attack. In a
certain sense, the propagation of virtual malicious objects
mn a system of mteracting computers could be compared
with a disease transmitted by vectors when dealing with
public health.

Concerning diseases transmitted by vectors, one has
to take into account that the parasites spend part of its
lifetime inhabiting the vector, so that the infection
switches back and forth between host and vector

(Dickmamn and Heesterbeek, 2000). The well-known
formula for the final size of an epidemic was published by
Kermack and McKendrick (1927) and (Ma and Earn, 2006).
They analyzed a simple Susceptible-Infected-Recovered
(SIR) model and assumed exponential distribution of
infection. Recently, more researchers have stated that the
final size formula 1s valid irespective of the distribution of
infection in a population (Anderson and Britton, 2000;
Diekmann and Heesterbeek, 2000, Ma and Earn, 2006).

Whenever, any malicious agent enters a computer
network, a matter of immediate interest is the likely
magnitude of the outbreak. This 1s called the expected
final size of the epidemic which we denote it as Z in a
computer network (Anderson and Watson, 1980;
Anderson and May, 1991; Anderson and Britton, 2000;
Bailey, 1975; Diekmann and Heesterbeek, 2000).

The formula for Z that Kermack and McKendrick
(1927) obtamned was totally dependent on the basic
reproduction number, R, (the expected nmumber of
secondary cases caused by a typical primary case in a
fully susceptible population) and

Z=1-e ™"
The final size of epidemic in a computer network at

any nstant t 13 notlung but the total size of the infected
population at that instant t. We arrive to the final size of
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the population in a computer network at any instant of
time t by subtracting the susceptible and recovered
population from the susceptible population at time zero
which 1s nothing but the total size of the population, N (t).
Mishra and Sairni (2007a, b) and Mishra and Tha (2007)
developed epidemiological of
transmission of malicious objects in the computer
network.

The standard SIRS model equations for the
susceptible, infected and recovered classes given by
Diekmann and Heesterbeek (2000) is:

various models

ds SI
=bS+bR —uS —v—
dt H YN

dl SI
i u,HYN oLb>u
dR
i WR +pal
Where:
b = Per capita birth rate
pu = Per capita natural death rate
v = Product of average number of contacts of an
individual per unit time and the probability of
transmitting the infection during one contact by
the infective
p = Probability of temporary immunity acquired when
an mdividual 1s recovered from the mfective class
¢ = Constant recovery rate

The model developed by Diekmann and Heesterbeelk
(2000) does not consider time delays like latency period,
temporary immunity period, ete., as in the cyber world the
recovery 1s not permanent. We propose the final size
formula for infected nodes in a computer network
considering the above mentioned time delays and self
replication factor and the temporary mmmumty of the
recovered nodes.

Latent period (w): There 1s a certamn time lag for the node
to become mfective once it 1s m the network and 1s termed
as latent period .

Temporary immunity period (T): After the node becomes
mfected, the malicious object in it may/may not self
replicate. Hence, after the run of anti malicious software,
the node recovers and attains temporary immunity for a
time period termed as period of temporary immunity T.

Replication factor (r,): The factor by which any malicious
agent self-replicates after infecting any node is called the
factor of self replication
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Replication period (¢,): The time lag between a malicious
agent infecting a node and its replicated copies becoming
infective 1s called the time for self replication.

Deaths of malicious objects equivalently mean to say
the complete recovery of infected files from malicious
objects when anti malicious software is run in the
computer node for a specific session.

MATERIALS AND METHODS

Mathematical model: We try to find the final size formula
for infected nodes in a computer network considering the
latency period w, temporary immunity period T and time
for self replication of kth malicious agent to be constant.
The immunity from malicious agents is not permanent but
temporary, since in the cyber world, nodes are not
permanently immune. We assume that any new node
added into the network is susceptible and death rate other
then the attack of malicious agents, p 13 constant. We
further assume that death rate of the nodes due to
infection is constant (Deaths of a node equivalently mean
to say the isolation of the node which even on running of
anti-malicious software may spread malicious agents).
When a node 1s infected, it may self-replicate with a
probability g, and may not self-replicate with a probability
(1-qy) and when a node 1s removed from infected class, it
may recover with a probability p, and may not recover
with a probability (1-p,) and that recovery is temporary.
Susceptible population 1s divided mto different groups.
Nodes may be susceptible due to virus, worms, Trojans,
etc. Malicious objects m each group have homogeneous
susceptibility but susceptibility of malicious objects from
different group is distinct (Mishra and Saini, 2007a, b).
Infected population is also divided into different groups
(as per their susceptible behavior group). Malicious
objects m each group has homogeneous infection but
infection of malicious objects from different group is
distinct. The flow of malicious objects 1s shown in Fig. 1.
The recovery starts soon after the completion of

R

Fig. 1: Flow of malicious agents
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the latent period that is the time lag between the start of
mfection and the start of runming of anti-malicious
software is considered to be zero. But the rate of infection
1s assummed to be different from the rate of recovery and so
the final size of infected population builds up. As per the
assumptions, we get a system of integro-differential
equations:

ds, (t) _bS, 1R, S, - YeSp (1)L (1)
N(1)

AL -1 o o

&t =Y N(t—r)'s(t e +

I(t—(T+m+ ¢ St
Na @+m+%n
(T+ o+ ¢, )r, e @)
S, + 3R dR(t)
Lo p oL (D o
]21 {(t _ T)efp.r _ SkRk(t)} - “-'Rk(t)

RESULTS AND DISCUSSION

Case I: No birth and no death of nodes: In this case, the
birth rate and death rate at any stage are assumed to be
zero, i.e., no birth and no death (b = p = 0 = ) which
umplies that the total population 1s always constant. The
Equations thus obtained from (1) are as follows:

ds, (7S (YL (t)
dt N(t)

d,(_ It-1 S(- 4
dt N(t-1) '

2

IE—(T+o+¢, )

Nt (T+m+ g, )
S(t—(t+m+d g

% - i [p,o, I, () -1, (t —T)]

—(a Ity

We give a formula to find the final size of the infected
nodes m a computer network: Final size of infected nodes
in a computer network at time t = Total size of the nodes
(size of susceptible nodes at time t + size of temporary
recovered nodes after the run of anti-malicious software
at time t), Thus:

Z () =N{t) -8, (t) - R.(t) 3)
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The susceptible and infected population functions are
bounded by the total size of population at any time t that
is:

t

S, (1) <N(t)= jsk(t)dt < [N(tyat
tn tn (5)
L (1) <N(t) = 1, (t)dt < [N(t)dt

Now putting these mequalitties 1 Eq. 4, we get the
final size formula for the infected population in a computer
network at any instant of time t as:

Z, (t)sN

Case I1: Birth rate and natural death rates to be positive
constants: In this case, we consider the birth rate and
natural death rates to be positive constants and both are
assumed to be equal, i.e., b = u and also assume that
recovery 1s complete and temporary that 1s there 15 no
death due to infected and no disease induced mortality for
recovered nodes 1.e., p, = 1. The system of equations thus
obtained is as follows:

(t) [1+th7pk0"kt] (©)

S, (0 1 LR s S (L (t)
t k k k N(t)
di(ty  I(t-7) "
e kN(t 9 St-1e ™+
[(t—(T+m+0,)) (7)
NG (Tt g, ) =t a I

S(t—(T+ o+ Nx, e Hrh)

dR(t) & -wr
== 2[Rk - o L 0o ] R, ()

=1

The final size formula for the size of infected
population at any time t and putting all the bounded
constraints for susceptible and infected class populations
as n discussed in Case I gives the following mequality:

Z, (1) SN{t)[1+ v, t—port] &)

From this, 1t can be easily observed that the mequality
obtained in Eq. 61s identical toHq. 8. This proves the
correctness of theinequality obtamed, since the equality
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Fig. 2: Variation of final size of infected populaion

of the positive birth and death rates is equivalent to no
birth and no death which implies that the total size of the

population is invariant of time.

It would be
premature to end the discussion by just stating the
only. Numerical method
employed to solve Eq. 1-7 under different parameters.

Numerical methods and conclusion:

boundary conditions 1s
Using these in Hq. 8, we observe that the final size of
mnfected population varies as a sinusoidal curve shown in
Fig. 2.

In the context of this study, cycle length 1s the time
for one SIRS cycle, ie., from susceptible stage to
completion of temporary immumty after the run of
anti-malicious software of the recovered stage.

In a cycle, the size of infected population is initially
minimum and it increases gradually and reaches a
maximmum and as recovery stage starts it gradually
decreases. This pattern of variation of the size of infected
population repeats in the coming cycles and is periodic in
nature.

The susceptible nodes either behave like a cosine
curve or exponential curve (Mishra and Saim, 2007a, b).
We first assume that the susceptible population varies as
a cosine curve as the initial susceptible population for any
cycle 13 maximum and as tume passes, the infection
increases. This decreases the size of the susceptible
population and hence is assumed to vary as a cosine
curve. Consider,

S(t):Ncos(2T[(t))
R(t) :Asin(

(9)
2a(t —m) )+ Bsin(2n(t -0~ ¢, ))

and using the final size formula Hq. 4, we have
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Fig. 3: Varnation of final size of mfected nodes in the
computer network when the infection starts very
early in a cycle

z,(1) :N(t)—%sm(zn(t))—%cos(—znm o) .

B
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The behavior of the susceptible population is also
exponential (Mishra and Saini, 2007a, b) as the initial
population in the susceptible class mn a cycle 1s maximum
and as time increases, the infection increases, the size of
susceptible population decreases
minimum and again with temporary recovery on run of
anti-malicious software, the size of susceptible population
increases and this carries on periodically for different
cycles. The size of susceptible population is assumed to
decrease exponentially and the size of infected population
increases exponentially. After self-replication with a delay,
the size of infected population reaches a maximum m a
cycle and 1t gradually decreases with the recovery stage
and this carries on periodically. Consider,

and reaches a

A(t —(c —(ﬂ))et’(“w) + B(t —(c—m—q)k))et’(m”“)

(1)
and using the final size formula Eq. 4, we get
2,(1) = N(t)+ N(t)e™ A (t ~(c—0)) e =7 |
- B[(t —(c—m—0, ))et_(c_m_q"‘) —gllrh) }

(12)
If the infection starts very early in a cycle, the final
size of infected population is constant for most time and

after taking a dip it suddenly increases to a maximum
value (Fig. 3). If the infection starts very late in a cycle,
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Fig. 4. Varation of final size of infected nodes in the
computer network when the infection starts very
late in a cycle

the size of infected population is almost zero for most time
and after the latent period, 1t mcreases exponentially and
after the period for self-replication, it drastically increases
exponentially to reach maximum and then 1t gradually
decreases with the recovery and reaches a minimum and
this repeats periodically (Fig. 4).

Reproductive number: In epidemiology, the basic
reproduction number of an infection 1s the mean number
of secondary cases a typical single mnfected case
will cause in a population with no immunity to
the

control the mfection. It

infection in the absence of interventions to
18 often denoted R, This
metric 18 useful because it helps to determine whether
or not an infectious agent will spread through a
population.

When Ry<1, the infection will die out with certainty.
But if Ry>1, there is some possibility of a major
epidemic. In particular, the proportion of the
population that needs to be immunized to provide
immunity and prevent sustained spread of the infection 1s
given by:

1

1— —
R

0

We discuss the final size of different nodes under
different situations.

Case I : In this case, we consider the birth rate and natural
death rates to be positive constants and both are
assumed to be equal ie., b = p and also assume that
recovery 1s complete and temporary that is there 15 no
death due to mfected and no disease induced mortality
for recovered nodes, i.e., p, = 1. For the final size of
infected nodes in Eq. 4 that 1s:

&0

Z, (t) = N(t)[l+ Til 7pk0‘r‘kt]

the proportion of infected population that must be
immunized to get temporary immurty 1s:

Substituting the corresponding values, we get:

1 (13)

< -
Tl — Pyt

RU

Case II: For the final size of infected nodes in Eq. 10 that
15!

Zu() =N(t) = _sin(2n(1)) - - cos

(—2n+ 2n(t)) —%ces(—2nm+ 2n{—t+9,))

where, A 15 the recovery rate of the nodes directly
recovering from the infected state and B 1s the
recovery rate of the nodes which is infected due to the
self-replicated malicious agents, the proportion of infected
population that must be immunized to get temporary
lmmunity 1s:

Substituting the corresponding values, we get:

_ N(t)

]

R

N . A
Esm(zn(t)) +Ecos(—2nm+ 2mt)

(14)

B
+£cos(72n0)+ 2t +0,))

Case III: For the final size of nfected nodes in Eq. 12 that
is:

Zy (t) = N(t)+ N(t)eit *A[(t f(cfm))et’(c’m) 761:7(:—01)}7

B{t=(e-emo e ) e ]

the proportion of infected population that must be
immunized to get temporary immurty 1s:
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Substituting the corresponding values, we get

_ N(Y)
~N{t)e "+ A[(t —{c~ m))et’(“m) —gitee } + (15)
B[(t —(c—m—o, ))etf(cfww“) —etleEh) J

R,

The final size of infected nodes m a computer network
using SIRS epidemic model has been formulated. The
boundedness of the final size of infected population has
been derived for the system of integro-differential
equations. The variation of final size formula for infected
population in a computer network under different
behaviors of susceptible and recovered populations is
analyzed.

CONCLUSION

In this study, the behavior of susceptible population
1s analogous to cosine and exponential curve whereas the
mnfected population behavior 1s analogous to sinusoidal
curve. The stability of the system is stated in terms of the
reproductive number. The basic reproductive rate is
affected by several factors including the duration of
mfectivity of affected nodes, the mfectiousness of the
malicious agent and the number of susceptible nodes in
the computer network. Generally, the larger the value of
R,, the more difficult it is to control the epidemic.

Nomenclature:

Se Inflow population rate

b = Constant birth rate

m; = Probability of getting susceptible by the ith

malicious agent

Infectivity rate

Matural death rate

Infectious rate

Death rate of nodes which are infected due to
infection

Disease induced mortality rate for recovered
nodes

Recovery rate

Probability of self replication of the kth malicious
agent

Self-replication factor of the kth malicious agent
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Probability of recovery from the attack of the ltth
malicious agent

Probability of non recovery from the attack of the
kth malicious agent

Temporary immunity period

Latency period

Time for self replication of kth malicious agent
S +1+R, the total population size
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