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Lorenz and Hyperchaotic Qi Systems via Active Control
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Abstract: This study investigates the active controller design for Generalized Projective Synchronization (GPS)
of identical Hyperchaotic Lorenz Systems, 1dentical Hyperchaotic Q1 Systems and Non-Identical Hyperchaotic
Lorenz and Hyperchaotic Qi Systems. The GPS synchronization results for the Hyperchaotic Systems have been
derived using the active control method and established using Lyapunov Stability theory. Since, the Lyapunov
exponents are not required for these calculations, the active control method 1s a very effective and converient
method for achieving Generalized Projective Synchronization (GPS) of the Hyperchaotic Systems addressed
in this study. Numerical simulations are shown to demonstrate the effectiveness of the synchronization results

derived in this study for the Hyperchaotic Systems.
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INTRODUCTION

Chaotic Systems are Nonlinear Dynamical Systems
which possess some special features such as being
extremely sensitive to small variations of initial conditions
having bounded trajectories in the phase space and so
on. The sensitive nature of Chaotic Systems is commonly
called as the butterfly effect (Alligood et al., 1997). The
chaos phenomenon was first observed m weather models
by Lorenz (1963).

Hyperchaotic System is usually defined as a Chaotic
System having more than one positive Lyapunov
exponent. Since, Hyperchaotic System has the
characteristics of ligh capacity, high security and high
efficiency, it has the potential of broad applications in
nonlinear circuits, neural networks, lasers, secure
communications, biological systems and so on. The
hyperchaos phenomenon was first observed by Rossler
(1979).

Synchromzation of Chaotic Systems 18 a
phenomenon that may occur when two or more chaotic
oscillators are coupled or when a chaotic oscillator drives
another chaotic oscillator. Because of the buttertly effect
which causes the exponential divergence of the
trajectories of two identical chaotic systems started with
nearly the same imtial conditions, synchromzing two
Chaotic Systems is seemingly a very challenging research
problem.

In most of the chaos synchronization approaches, the
master-slave or drive-response formalism is used Ifa

particular Chaotic System is called a Master or Drive
System and another Chaoctic System is called a Slave or
Response System, then the idea of chaos synchronization
1s to use the output of the Master System to control the
Slave System so that the output of the Slave System
tracks the output of the Master System asymptotically.

Chaos is an interesting nonlinear phenomenon and it
has been mtensively and extensively studied mn the last
three decades. Chaos theory has wide applications in
several fields such as physical systems (Lakshmanan and
Murali, 1996), chemical systems (Han et al, 1995),
ecological systems (Blasius et al, 1999), secure
communications (Cuomo et al., 1993; Kocarev and Parlitz,
1995), etc.

The seminal work by Pecora and Carroll (1990) is
followed by a variety of impressive approaches for chaos
synchromization such as the Sampled-Data Feedback
Synchronization method (Yang and Chua, 1999), the OGY
method (Ott et al,, 1990), the time-delay feedback method
(Park and Kwon, 2003), the active control method (Ho and
Hung, 2002; Sundarapandian, 2011a, b), the adaptive
control method (Chen and Lu, 2002; Sundarapandian,
201 1¢, d), the backstepping method (Mascolo and Grassi,
1999; Tan et al., 2003), the shding mode control method
(Utkin, 1977; Sundarapandian, 2011le) and others. In
generalized projective synchronization (Zhou et al,
2010), the chaotic systems can synchronize up to a
constant scaling matrix. Complete synchromzation
(Sundarapandian, 20111), anti-synchronization
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(Sundarapandian, 2011g), hybrid synchronization
(Sundarapandian, 2011a-g), projective synchronization
(Mamier1 and Rehacek, 1999) and generalized
synchromzation (Wang and Guan, 2006) are special cases
of the generalized projective synchronization. The
Generalized Projective Synchronization (GPS) has
applications m secure communications.

This study addresses the design of active controllers
for the Generalized Projective Synchronization (GPS) of
identical hyperchactic Lorenz Systems (Jia, 2007),
1dentical Hyperchaotic Q1 Systems (Chen et af., 2007) and
non-identical Hyperchaotic Lorenz and Hyperchaotic Qi
Systems. The synchronization results derived in this
paper are established using the Lyapunov Stability theory
(Hahn, 1967).

PROBLEM STATEMENT AND METHODOLOGY

Congider the Chaotic System described by the
dynamics:
%= Ax+f(x) (1

where, xcR" is the state of the system, A is the n x n matrix
of the system parameters and f: R">R" 13 the nonlnear part
of the system. Researchers consider the system (1) as the
Master or Drive System. As the Slave or Response
System, we consider the following Chaotic System
described by the dynamics:

¥=By+g(y)+u 2

where, yeR" is the state of the system, B is the n x n real
matrix of the system parameters, g: R*>R* is the nonlinear
part of the system and ucR" is the controller of the slave
systerm.

If A =B and f = g then x and y are the states of two
identical Chaotic Systems. If A # Borf # gthenx and y
are the states of two different Chaotic Systems.

In the active control approach, researchers design a
feedback controller u which achieves the Generalized
Projective Synchronization (GPS) between the states of
the master system (1) and the slave system (2) for all initial
conditions x (0), z (0)eR". For the GPS of the systems (1)
and (2), the synchronization error is defined as:

e=y-Mx 3)
Where:
a 0
0 0
M= - Ot:z - - (4)
0 o0 oy,

In other words, we have:

e —ymux, (1-12,...n) (5)

From Eq. 1-3, the error dynamics is easily obtained as:
é=By-MAx+g(y)-Mf(x)+u (6)

The amm of GPS is to find a feedback controller u so
that:

lim [e(t)| =0 forall e(0)e R" (7)
t—ce

Thus, the problem of Generalized Projective
Synchromzation (GPS) between the Master System (1)
and Slave System (2) can be translated into a problem of
how to realize the asymptotic stabilization of the system
(6). Hence, the objective 1s to design an active controller
u for stabilizing the Error Dynamical System (6) at the
origin. Researchers take as a candidate Lyapunov
function:

V(e)=e"Pe (%)

where, P is a positive definite matrix. V: R*>R is a positive
definite function by construction. We assume that the
parameters of the Master and Slave System are known
and that the states of both systems (1) and (2) are
measurable. If we find a feedback controller u so that:

Vie)=—eTQe )

where, Q is a positive definite matrix, then v.gr g isa
negative defimite function. Thus, by Lyapunov Stability
theory (Hahn, 1967), the error dynamics (6) 1s globally
exponentially stable and hence the condition (7) will be
satisfied. Hence, GPS is achieved between the states of
the Master System (1) and the Slave System (2).

SYSTEMS DESCRIPTION

The hyperchaotic Lorenz System (Jia, 2007) is
described by the dynamics:

X, =alx, —x)+x,
X, = XX, + ¥ —X, (10)
X, =X;X, — bx,

X, = XX, +dx,

where, x, are the state variables and a-d are positive,
constant parameters of the system. The system (10) 1s
hyperchaotic when the parameter values are chosen as:
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Fig. 1: Phase portrait of the Hyperchaotic Lorenz System
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Fig. 2: Phase portrait of the Hyperchaotic Q1 System
a=10,b=8/3,¢=28,d=13

Figure 1 shows the phase portrait of the hyperchaotic
Lorenz System (10). The Hyperchaotic Qi System
(Chen et al., 2007) 1s described by the dynamics:

X, =pix, — X, )t &x,X,
X, =IX, —SXX, t X, t X, (1)

Xy = XX, g%,

X, =X,

where, x; (1= 1-4) are the state variables and p-s, €, A are
positive, constant parameters of the system. The system
(11) 18 hyperchaotic when the parameter values are
chosen as:

p=35q=49r=25s5=5¢=35A=22

Figure 2 shows the phase portrait of the hyperchaotic
Q1 System (11).
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GPS OF IDENTICAL HYPERCHAOTIC
LORENZ SYSTEMS

Theoretical results: Researchers derive results for the
Generalized Projective Synchronization (GPS) of identical
hyperchactic Lorenz systems (Tia, 2007). Thus, the master

system is described by the Hyperchaotic Lorenz
dynamics:
X =ax, —x)Tx,
X, = —XX; T CX| — X, (12)
X, = X,X, —bx,
X, = XX, T dx,
Where:
X,;-X, = The state variables
a-d = Constant, positive parameters of the system

Also, the Slave System 1s described by the controlled
Hyperchaotic Lorenz dynamics:

v, =aly, -y +y, g
Y = THYs T T Y, T,
¥ =¥y, —bys +u,

Yo =—Viystdy, T,

(13)

Where:
Y1Ya The state variables
u-uy The active controllers of the system

For the GPS of the Hyperchaotic Systems (12) and
(13), the synchronization error 1s defined as:

e =y-ax, (1=1-4) (14

where, the scales o,-¢t, are real constants. A simple
calculation yields the error dynamics:

e =aly, —y ty, 70('1[3()(2 —%,) +X4]+u1
& =V.¥stoy, —Y, 0, [7X1X3 +ox, 7X2] tu, (15)
é:s =YY, _bY3 — Oy [XIXZ _bX3]+u3

& ==Yy, + dY4 -y [_X1X3 + dX4] Tu,

We consider the active nonlinear controller defined
by:
v, =-aly, -y, )-v, + o [ax, —-x) +x,]-ke,
U, =y, oy v, o[k, e — x| ke, (16)
u, =-y,y, + by, o, [xx, —bx,] - ke,
u, =yy, —dy, + o, [-xx, +dx, | -k,e,
where, the gains k -k, are positive constants. Substitution

of (16) mto (15) wields the closed-loop error
dynamics:
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¢ =-kge ¢, = ke, a7

]

e, =—ke, ., & =-kge,

Theorem 1: The active controller (16) achieves

Generalized Projective Synchromzation (GPS) between the
identical Hyperchaotic Lorenz Systems (12) and (13)
globally and exponentially.

Proof: We prove this result using the Lyapunov Stability
theory. We consider the Quadratic Lyapunov function

defined by:
1 1
V(e):EeTe:E(ef+e§+e§+ej) (18)

Which is positive definite on R*. Differentiating (18)
along the trajectories of the system (17), we get:

V(e)= ke’ —k,e’ — kel —k,e’ (19)

Which is a negative definite function on R*. Thus, by
the Lyapunov Stability theory (Hahn, 1967), 1t follows that
the error dynamics (17) is globally exponentially stable.
This completes the proof.

Numerical results: For the numerical simulations, the
fourth-order Runge-Kutta method with time steph =107
1s used to solve the two systems of differential Eq. 12 and
13 with the active controller (16). The parameters of the
1dentical Hyperchaotic Lorenz Systems are chosen as:

a=10,b=8/3,¢c-28,d=1.3

The initial values of the master system (12) are
chosen as:

x,(0) =5, %, (0) =11, %, (0)= 28, %, (0) = 20

The mitial values of the slave system (13) are chosen
as:

y: (0) = 18,y,(0) = 22, y; (0) = 7, y, (0) = 30
The GPS scales «, are taken as:
e, =62, 0,=23 a,=37,0,=56
We take the state feedback gains as:
k=4k=4k=4%k=4
Figure 3 shows the GPS between the identical

Hyperchaotic Lorenz Systems (12) and (13). Figure 4
shows the time history of the error states e;-e,.
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Fig. 3: GPS of the Identical Hyperchaoctic
Systems
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Fig. 4: Time hustory of the synchromzation error
GPS OF IDENTICAL HYPERCHAOTIC QI SYSTEMS

Theoretical results: Researchers derive results for the
Generalized Projective Synchronmization (GPS) of identical
Hyperchaotic Q1 Systems (Chen ef af., 2007). Thus, the
Master System 1s described by the hyperchaotic Q1
dynamics:
X = plX, =X, )+ €x,X,
X, =IX, —SX X, t X, t X, (20)

Xy = XX, — g, X, = AX,

where, x,-x, are the state variables and p, q, 1, s, €, A are
constant, positive parameters of the system. Also, the
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Slave System is described by the controlled hyperchaotic
Qi dynamics:
Vi =Py, — V) ey Ty

Y:5IY, 8 ¥t ¥, H Y, U,

(21)
Y =YY, —qy; T u;
Yo = 7}‘*}72 +u,
Where:
V1-¥4 The state variables
u,-, The active controllers of the system

For the GPS of the Hyperchaotic Systems (20) and
(21), the synchronization error is defined as:

e = yimtx, (1= 1-4) (22)

where the scales o,-¢, are real constants.
calculation yields the error dynamics:

A simple

& =Py, — ¥+ 8y,¥; — o [P(x, —x)+ex x|+,
&, =Ty, —Sy, Y, ty, v, —o [mx, —sxx, b X, x|,
& =YY, —qy; —0[xx, —qx, ]+ u,
&, =—hy, -0, [-hx, ]+ u,
(23)

We consider the active nonlhinear contreller defined

by:

u, = —p(y, —¥,) €Y., +Otl[p(X2 —X)+ szxz]_k1e1

U, =Ty, +8Y1¥: — ¥, — ¥, T 0 [IX1 TEX Kt Rt X4] —kye,
U, ==y ¥, Tqy; T, [X1X2 7qX3] ~kse,
u, =y, + oA, ] - ke,

24
where the gains k,-k, are positive constants. Substitution
of (24) into (23) yields the closed-loop error dynamics:

& =-kg , &=-kg (25)

e, =-k.e, , & ="k,

Theorem 2: The active controller (24) achieves
Generalized Projective Synchronization (GPS) between the
identical Hyperchaotic Q1 Systems (20) and (21) globally
and exponentially.

Proof: We prove this result using the Lyapunov Stability
theory. We consider the quadratic Lyapunov function
defined by:

1 1
V(e):EeTe:E(elereé +e§+ei) (26)

Which is positive definite on R*. Differentiating (26)
along the trajectories of the system (25), we get:
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Vie) = kel —k,el —k.el —k,el (27)

Which is a negative definite function on R*. Thus, by
the Lyapunov Stability theory (Hahn, 1967), it follows that
the error dynamics (25) is globally exponentially stable.
This completes the proof.

NUMERICAL RESULTS

For the numerical simulations, the fourth-order
Runge-Kutta method with time step h = 107° is used to
solve the two systems of differential Eq. 20 and 21 with
the active controller (24). The parameters of the identical
Hyperchaotic Qi Systems are chosen as:

p=35,q=49r=255=5¢e=354=22

The mitial values of the Master System (20) are
chosen as:

X (0)=12,%(0)=7,%x,(0)=28 %, (0)=6

The initial values of the Slave System (21) are chosen
as:

yi(0)=9,y,(0)=17,y,(0)=22,y,(0) = 18
The GPS scales «; are taken as:
o, =-68 w=56,0,=42 «,=-37
We take the state feedback gams as:
k=4k=4%k=4%k=4
Figure 5 shows the GPS between the identical

Hyperchactic Qi Systems (20) and (21). Figure 6 shows
the time history of the error states e-e,.
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Fig. 5: GPS of the identical Hyperchaotic Q1 Systems
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Fig. 6: Time history of the synchronization error

GPS OF NON-IDENTICAL HYPERCHAOTIC
LORENZ AND HYPERCHAOTIC QI SYSTEMS

Theoretical results: Researchers derive results for the
Generalized Projective Synchromzation (GPS) of non-
identical hyperchaotic systems, viz., Hyperchaotic Lorenz
System (Jia, 2007) and Hyperchaotic Qi System
(Chen et al., 2007). Thus, the Master System is described
by the Hyperchaotic Lorenz dynamics:

X =alx, —x,)+x,

= XX, t 00X, —X,

- (28)
X, = XX, —bx,
X, = XX, +dx,

Where:

XXy The state variables

a-d = Constant, positive parameters of the system

Also, the Slave System 1s described by the controlled
Hyperchaotic Q1 dynamics:

Y1 = p(yz _Y1)+ EY, ¥, T 1,
V. =y, o8y Y, ty, ty, T,

Yi=¥¥:, ~qy:t U,
Vo= 7}‘*}72 +u,

(29)

where, y,-y, are the state variables, p-s, €, A are constant,
positive parameters of the system and u,-u, are the active
controllers of the system. For the GPS of the Hyperchaotic
Systems (28) and (29), the synchronization error is
defined as:
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& = YU, (1 = 1_4) (30)

where the scales «,-¢, are real constants. A simple
calculation yields the error dynamics:

é1 :p(yz _Y1)+ €Y, ¥; —
051[3(7(2 _X1)+X4]+u1

&, =1y, —8Y¥:t ¥, + Y. - (31)
0[2 [—X1X3 + CX, _XZ] + u,

é:s =YY, T qy; — Gy [X1X2 _bxz] Tu,

e, =—Ay, -, [_XIXS + dX4] tu,
We consider the active nonlinear controller defined

u = _p(Y2 _y1)_8y2y3 +
o [alx, —x)+x,|-ke,
U, =-1Y, +8Y,¥: — ¥, ¥ + (32)
a, [_XIXB +ex, _Xz] —k,e,
U; =—yy, +qy, +a, [X1X2 - bx:s] —ke,

u, = 7\'3/2 o, [_X1X3 + dX4] _k4e4

where the gams k -k, are positive constants. Substitution
of (32) mto (31) yields the closed-loop error dynamics:

(33)

Theorem 3: The active controller (32) achieves
Generalized Projective Synchromization (GPS) between the
Hyperchaotic Lorenz System (28) and the Hyperchaotic Qi
System (29) globally and exponentially.

Proof: We prove this result using the Lyapunov Stability
theory. We consider the Quadratic Lyapunov function
defined by:

1 1
V(e):EeTe:E(ef +el+el +e§) (34

Which is positive definite on R*. Differentiating (26)
along the trajectories of the system (33), we get:
Vie)= ke’ —k,el ke’ —k,e’ (35)

Which is a negative definite function on R*. Thus, by

the Lyapunov Stability theory (Haln, 1967), it follows that

the error dynamics (33) 1s globally exponentially stable.
This completes the proof.

Numerical results: For the numerical simulations, the
fourth-order Runge-Kutta method with time step is used
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to solve the two systems of differential Eq. 28 and 29 with
the active controller (32). The parameters of the
Hyperchaotic Lorenz and Hyperchaotic Qi Systems are
chosen as:

a=10,b=8/3,¢=28,d=1.3

p=35q=49r=25s5=5¢=35A=22

The imtial values of the master system (28) are
chosen as:
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x, (0) =15, %, (0) =4, %, (0) = 18, %, (0) = 20

The 1mtial values of the Slave System (29) are chosen
as:

v (0) =4 y,(0) = 20,y,(0) = 6,5, (0) = 12
The GPS scales o, are taken as:
¢, =230¢,=18a¢,=-39,¢,=-17
We take the state feedback gains as:
k=4k =4k =4k=4

Figure 7 shows the GPS between the non-identical
Hyperchaotic Lorenz System (28) and Hyperchaotic Qi

System (29). Figure 8 shows the time history of the error
states e,-e,.

CONCLUSION

In thus study, researchers have deployed active
control method for achieving Generalized Projective

Synchronization (GPS) of the following Hyperchaotic
Systems:

Identical Hyperchaotic Lorenz Systems

Tdentical Hyperchaotic Qi Systems

Non-identical Hyperchaotic Lorenz and Hyperchaotic
Qi Systems

The synchronization results (GPS) derived in this
study for the Hyperchaotic Systems have been proved
using the Lyapunov Stability theory.

Since, the Lyapunov exponents are not required for
these calculations, the proposed Active Control Method
is very effective and convenient for achieving GPS of the
Hyperchaotic systems addressed in this study. Numerical
simulations are shown to demonstrate the effectiveness
of the synchronization results (GPS) derived in this
study.
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