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Abstract: This study investigates the sliding controller design of hybrid synchronization of Four-Wing Chaotic
Systems. In this study, researchers derive new results based on the Sliding Mode Control (SMC) for the hybrid
synchronization of identical Qi 3D Four-Wing Chaotic Systems (2008) and identical Liu 3D Four-Wing Chaotic
Systems (2009). The stability results for the hybrid synchronization schemes derived in this paper using SMC
are established using the Lyapunov Stability theory. Since, the Lyapunov exponents are not required for these
calculations, the sliding controller design is very effective and convenient to achieve global hybrid
synchronization of the identical Qi Four-Wing Chaotic Systems and the identical Liu Four-Wing Chaotic
Systems. Numerical simulations are presented to demonstrate the effectiveness of the synchromzation results

derived in this study.
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INTRODUCTION

Chaotic Systems are Nonlinear Dynamical Systems
which are highly sensitive to imtial conditions. This
sensitivity 15 popularly known as the butterfly effect
(Alligood et al., 1997). Chaos is an interesting nonlinear
phenomenon and has been studied well in the last three
decades. Chaos theory has wide applications in several
fields like physical systems (Lakshmanan and Murali,
1996), chemical systems (Han et al., 1995), ecological
systems (Blasius et al, 1999), secure communications
(Cuomo and Oppenheimn, 1993; Kocarev and Parlitz, 1995,
Murali and Lakshmanan, 2003), etc.

Chaos synchronization is a phenomenon that may
occur when two or more chaotic oscillators are coupled or
a chaotic oscillator drives another chaotic oscillator.
Because of the butterfly effect which causes the
exponential divergence of the trajectories of two identical
chaotic systems started with nearly the same initial
synchronizing two chaotic systems 1s
seemingly a very challenging problem. In most of the
chaos synchronization approaches, the master-slave or
drive-response formalism is used. If a particular Chaotic

conditions,

System 1s called the Master or Drive System and another
Chaotic System 1s called the Slave or Response System
then the idea of the chaos synchronization is to use the

output of the Master System to control the Slave System
so that the output of the Slave System tracks the output
of the Master System asymptotically. Since, the seminal
research by Pecora and Carroll (1990),
synchromization problem has been studied mtensively
and extensively in the literature (Pecora and Carroll, 1990;
Ott et al., 1990, Ho and Hung, 2002; Huang et al., 2004;
Chen, 2005; Sundarapandian, 2011a-f; Lu et af., 2004,
Chen and Lu, 2002; Park and Kwon, 2003; Xiau-Qun and
Jun-An, 2003; Park, 2006; Vincent, 2007, Lee et ai., 2010,
Wang and Guan, 2006, Qiang, 2007, Sarasu and
Sundarapandian, 2011; Slotine and Sastry, 1983).

In the last two decades, various schemes have been
successfully applied for chaos synchronization such as
OGY Method (Ott et al, 1990), Active Control
Method (Ho and Hung, 2002; Huang et al., 2004; Chen,
2005; Sundarapandian, 2011), Adaptive Control Method
(Lu et al., 2004; Chen and Tu, 2002; Sundarapandian,
20111, g) Time-Delay Feedback Method (Park and Kwon,
2003), Backstepping Design Method (Xiau-Qun and
Jun-An, 2003; Park, 2006, Vincent, 2007) Sampled-Data
Deedback Synchronization Method (Lee ef al., 2010), etc.

So far, many types of synchronization phenomenon
have been presented such as complete synchromzation
{(Pecora and Carroll, 1990), generalized synchronization
(Wang and Guan, 2006), anti-synchronization

chaos
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(Sundarapandian, 2011d), projective synchronization
(Qiang, 2007), generalized projective synchronization
(Sarasu and Sundarapandian, 2011), etc. Complete
Synchronization (CS) 15 characterized by the equality
of state variables evolving in time while Anti-
Synchronization  (AS) characterized by the
disappearance of the sum of relevant state variables
evolving n time.

Projective Synchronization (PS) is characterized by
the fast that the Master and Slave Systems could be
synchronized up to a scaling factor. In Generalized
Projective Synchronization (GPS), the responses of the
synchronized dynamical states synclronize up to a
constant scaling matrix «. It is easy to see that the
complete synchromzation and anti-synchromzation are

18

special cases of the generalized projective
synchronization where the scaling matrix ¢ =T and & = -1,
respectively.

In hybrid synchromzation of two Chaotic Systems
(Sundarapandian, 2011a-c) one part of the systems is
completely synchronized and the other part is anti-
synchronized so that the Complete Synchronization (CS)
and Anti-Synchromzation (AS) co-exist in the systems.

In control theory, sliding mode control or SMC 1s a
Nonlinear Control Method that alters the dynamics of a
nonlinear system by application of a discontinuous
control signal that forces the system to slide along a
cross-section of the system’s normal behaviour. The
state-feedback control law is not a continuous function of
time. Instead, it can switch from one continuous structure
to another continuous structure based on the current
position in the state space. Hence, sliding mode control 1s
a variable structure control method.

In Robust Control Systems, sliding mode control 1s
often adopted due to its inherent advantages of easy
realization, fast response and good transient performance
as well as its insensitivity to parameter uncertainties and
disturbances. In this study, researchers derive new results
based on the shding mode control (Slotine and Sastry,
1983; Utkin, 1993, Vaidyanathan and Sampath, 2011) for
the hybrid chaos synchromzation of identical Q1 Four-
Wing Chactic Systems (Qi et al., 2008) and identical Liu
Four-Wing Chaotic Systems (Liu, 2009). The stability
results have been established wsing the Lyapunov
Stability theory (Hahn, 1967).

PROBLEM STATEMENT AND THE
METHODOLOGY USING SLIDING

MODE CONTROL
master-slave

Researchers discuss the

synchromization of identical Chaotic Systems and the
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methodology of achieving hybrid synchronization using
Sliding Mode Control (SMC). Consider the Chaotic
System described by the dynamics:

X = Ax+(x) (1
Where:
x€R" = The state of the system
A = The nxn matrix of the system parameters
f: R"™>R* = The nonlinear part of the system

We consider the system (1) as the master or drive
system. As the slave or response system, we consider the
following chaotic system described by the dynamics:

y=Ay+f(y)+u (2)
Where:
yeR* = The state of the system
ueR™ = The controller to be designed
In hybnd synchromzation, we define the

synchronization error so that the odd states of the
systems (1) and (2) are completely synchromzed and
the even states of the systems (1) and (2) are

anti-synchromized. Thus, we define the hybnd
synchronization error as:
—x., ifiisodd
o = YiTx fiiso 3)

1

y; %, ifiiseven

Then, the error dynamics can be expressed in the
form:

e=Ae+nx,y)+u (4

The objective of the global chaos synchronization
problem is to find a controller u such that:

{Eﬂ”e(t)H =0 forall e (0)eR® (5)

To solve this problem, we first define the control u
as:

u=-"n{x.y)+Bv (6)

where, B 1s a constant gain vector selected such that (A,
B) is controllable. Substituting Eq. 6 into Eq. 4, the error
dynamics simplifies to:

7

e=Ae+ Bv

Which 1s a linear time-invariant control system with
single input v. Thus, the original hybrid chaos
synchromzation problem can be replaced by an equivalent
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problem of stabilizing the zero solution e = 0 of the system
(7) by a suitable choice of the sliding mode control. In the
sliding mode control, we define the variable:
s(e)=Ce=ce +c,e, +--t+ce, (8)

Where:
C=[e

c c, |

1 2
is a constant vector to be determined. Tn the sliding mode
control, we constrain the motion of the system (7) to the

sliding mamfold defined by:
S :{XE R" |s(e) :O}

which is required to be invariant under the flow of the
error dynamics (7). When mn sliding mamfold S, the system
(7) satisfies the following conditions:

s(e)=0 &)
which 1s the defining equation for the mamfold S and:
$(e)=0 (10)

which is the necessary condition for the state trajectory
e (t) of (7) to stay on the sliding mamfold S. Using Eq. 7
and 8, the Eq. 10 can be rewritten as:

s(e) =C[Ae+ Bv]=0 (1)

Solving Eq. 11 for v, we obtamn the equivalent control
law:

v, (1) = ~(CB)'CA e(t) (12)

where, C is chosen such that CB # 0. Substituting Eq. 12
mto the error dynamics (7), we obtain the closed-loop
dynamics as:

e=[1-BCB)'C |Ae (13

The row vector C 1s selected such that the system
matrix of the controlled dynamics [I-B (CB)™'C] is Hurwitz
i.e., it has all eigenvalues with negative real parts. Then
the controlled system (13) 13 globally asymptotically
stable. To design the sliding mode controller for Eq. 7, we
apply the constant plus proportional rate reaching law:

§ =—qsgn(s) —ks (14)
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where, sgn (.) denotes the sign function and the gains
g=0, k»o are determined such that the sliding condition 1s
satisfied and sliding motion will occur. From Eq. 11 and 14,
we can obtain the control v (t) as:
v(t) = ~(CB)'[C(KI + A)e + qsgn(s)] (15)
which yields:
~(CBY ! [C(kI + A)e +q], ifs(e)>0

(16)
v(t)

—~(CBY'[C(kI + A)e—q], ifs(e)<0
Theorem 1: The Master System (1) and the Slave System
(2) are globally and asymptotically hybrid-synclhromzed
for all imtial conditions x (0), y (0)eR" by the feedback
control law:

u(t) = -n(x, )+ By(t) a7

where, v (1) is defined by Eq. 15 and B is a column vector
such that (A, B) 1s controllable. Also, the shiding mode
gains k, ¢ are positive.

Proof: First, we note that substituting Eq. 17 and 15 into
the error dynamics (4), we obtain the closed-loop error
dynamics as:

¢=Ac - B(CB) '[CI+ A+ gsgns)] (¥

To prove that the error dynamics (18) is globally

asymptotically stable, we consider the candidate
Lyapunov function defined by the equation:

12 19

Vier=—stte) (19)

which is a positive definite function on R”. Differentiating
V along the trajectories of Eq. 18 or the equvalent
dynamics (14), we get:

V(e) =s(e)i(e) = —ks? — gsgnis)s (20)

which is a negative definite function on R® This
calculation shows that V 15 a globally defined, positive
definite, Lyapunov function for the error dynamics (18)
which has a globally defined, negative definite time
derivative v. Thus, by Lyapunov Stability theory (Hahn,
1967), it 1s immediate that the error dynamics (18) 1s
globally asymptotically stable for all imtial conditions
e (0)eR". This means that for all initial conditions e (0)eR"
we have:

lim [e(t)| =0
t—xo
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Hence, it follows that the Master System (1) and the
Slave System (2) are globally and asymptotically hybrid
synchromzed for all imtial conditions x (0), y (0)eR*. This
completes the proof.

HYBRID SYNCHRONIZATION OF IDENTICAL
QI FOUR-WING CHAOTIC SYSTEMS

Theoretical results: We apply the sliding mode control
results derived in study for the hybrid synchronization of
1identical Q1 Four-Wing Chaotic Systems (Q1 ef af., 2008).
Thus, the Master System 1s described by the Q1 dynamics:

X, =a(x, —x )+ ex,X,
@D

X, =cx, +dx, XX,

X, = —bx, + XX,

where, x,-x, are state variables and a-d, ¢ are constant, real
parameters of the system with a>0, b>0 and d>0. The
Slave System is also described by the controlled Qi
dynamics:

yy=aly, —y)+eyy, +y,

¥, =cy tdy, —yys T, (22)
V= _bY3 TYY, T,
where, y,-y; are state variables and u-u; are the

controllers to be designed. The Q1 Systems (21) and (22)
are chactic when:

a=14,b=43,¢c=-1,d=16ande=4

Figure 1 shows the four-wing strange attractor of the
Q1 Chaotic System (21). The hybrid synchromzation error
is defined by:

B1=Y1 X , €3 =Yzt Xz L 63 =¥ X3 (23)
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Fig. 1: Strange attractor of the Q1 Four-Wing System
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The error dynamics is easily obtained as:

e —ale, —e)) — 2ax, Te(y,¥g —XaX3)+ 1y
ey =cep +dey + 20X — ¥ ¥y — X X3 + 1y (24)

&3 =—bes+ yi¥; —%X; + Uy

We write the error dynamics (24) in the matrix
notation as:

E=Ae+n(x,y)+u (25)
Where:
—-a a 0
A=lc¢c d 0 (26)
0 0 —b
—2axXy T E(yyy3 — XgX3)
Ny =) 2ox - yiys XX @7
Yi¥a X%y
And:
g
u=|u, (28)
Uz

The sliding mode controller design is carried out as
detailed in study. First, we set u as:

u=-n(x,y)+Bv (29)

where, B is chosen such that (A, B) is controllable. We
take B as:

1
B=|1 (30)
1
In the chaotic case, the parameter values are:
a=14,b=43,c=-1,d=16ande=4
The sliding mode variable 1s selected as:
s=Ce=[2 8 1 (31)
which makes the sliding mode state equation

asymptotically stable. We choose the sliding mode gains
as k = 4 and q = 0.2. We note that a large value of k can
cause chattering and an appropriate value of q is chosen
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Fig. 2: Hybrid synchronization of the identical Qi

Four-Wing Chaotic Systems

to speed up the time taken to reach the sliding manifold as
well as to reduce the system chattering. From Eq. 15, we
can obtain v (t) as:

v=2546e, ~17.091e, + 3.546¢,  0.018sgn(s)  (32)

Thus, the required sliding mode controller 1s obtamned
as:
u=-n(xy)+Bv (33)

where, 1) (x, y) and v (t) are defined as i the Eq. 27, 30 and
32. By Theorem 1, we obtain the following result.

Theorem 3: The identical Q1 Four-Wing Chaotic Systems
(21) and (22) are globally hybrid-synchronized for all imtial
conditions with the sliding controller u defined by Eq. 33.

Numerical results: For the numerical simulations, the
fourth-order Runge-Kutta method with time-step h =
107" is used to solve the Qi Four-Wing Chaotic Systems
(21) and (22) with the sliding mode controller u given by
(33) using MATLAB. The mitial values of the Master
System (21 ) are taken as:

X (M=32%x,=(00),x,=(0)=4

The mutial values of the slave system (22) are taken
as:

y1(0)=10,y,(0) = 5,y;(0) = 18

Figure 2 shows the hybrid synchronization of the
identical Q1 Four-Wing Chaotic Systems (21) and (22).
Figure 3 shows the time-history of the synchronization
eITor €.
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Fig. 3: Time history of the synchronization error

HYBRID SYNCHRONIZATION OF IDENTICAL
LIU FOUR-WING CHAOTIC SYSTEMS

Theoretical results: We apply the sliding mode control
results derived m this study for the hybrd
synchronization of identical Liu Four-Wing Chaotic
Systems (Liu, 2009). Thus, the Master System is described
by the Liu dynamics:

X, ma(x, —x ) +x,X

2
273
%, =bix, +x,) —xx} (34)

X, = —CX, +dX, + X X,X,

where, x,-x, are state variables and a-d are constant, real
parameters of the system. The Slave System is also
described by the controlled Liu dynamics:

Y1 = a(Yz 7)/1)7L Y2Y§ +u
¥, =b(y, +y,) - vy T,
¥y = ¢y, +dy, +¥,y,¥, +u,

(35)

where, y,-y; are state variables and u-u | are the
controllers to be designed. The Liu Systems (34) and (35)
are chaotic when:

a=50b=13,c¢=13andd=6
Figure 4 shows the four-wing strange attractor of the

Liu chaotic system (34). The hybrid synchronization error
1s defined by:
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B =Y1 X .62 =Y2tX; , 83 =¥3 ~X3 (36)
The error dynamics is easily obtained as:
e, —ale, —e)— 2ax2+y2y§ - X2X§ +1
(37)

&5 = ble; + ey )+ 2bx; —ylyg —xlxg U,
e3 =—ce3 +de, —2dx, + y1V,¥; — X XXy T Uy

We write the error dynamics (37) in the matrix
notation as:

E=Ae+n(x,¥)+u (38)
Where:
-a a 0
A=|b b 0 (39)
0 d —c¢
—2ax, + YzY% - X2X§
nixy)= 2bx; —y1y3 —XX3 (40)
—2dxy + ¥1¥2¥3 — XX X3
And:
0
u=|u, (41)
us

The sliding mode controller design 1s carried out as
shown in study. First, we set u as:

u=-n(xy)+Bv (42)
where, B is chosen such that (A, B) is controllable.
We take B as:
B= (43)

—_— =
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In the chaotic case, the parameter values are:
a=50b=13,c¢=13andd=6
The sliding mode variable is selected as:

s=Ce=[2 8 1 (44)

which makes the sliding mode state equation
asymptotically stable. We choose the sliding mode gains
ask=4andq=0.2.

We note that a large value of ¢ can cause chattering
and an appropriate value of q 1s chosen to speed up the
time taken to reach the sliding mamifold as well as to
reduce the system chattering. From FEq. 15, we can
obtain v (1) as:

v=—1.091e, - 21.455¢, + 0.818e, —0.018 sign(s)  (45)

Thus, the required sliding mode controller is
obtained as:

u=-n(xy}+Bv (46)

where, 1 (x, y), Band v (t) are defined as m the Eq. 40, 43
and 45. By Theorem 1, we obtain the followmng
result.

Theorem 4: The identical Liu Four-Wing Chaotic Systems
(34) and (35) are globally hybrid-synchromzed for all
initial conditions with the sliding controller u defined by
Eq. 46.

Numerical results: For the numerical simulations, the
ourth-order Runge-Kutta method with time-step h = 107
is used to solve the Qi Four-Wing Chaotic Systems (34)
and (35) with the shiding mode controller u given by Eq. 46
using MATLAB. The imitial values of the Master System
(34) are taken as:

% (0)=14,x,(0)=3,x(0)= 26

The initial values of the Slave System (35) are
taken as:

v () =7y, (=35 y,(0)=5

Figure 5 shows the hybrid synchromization of the
identical Tiu Four-Wing Chaotic Systems (34) and (35).
Figure 6 shows the time-lustory of the synchromzation
eITor €.
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CONCLUSION

In this study, we have designed sliding controllers to
achieve hybrid synchronization for the identical Qi
Four-Wmg Chaotic Systems (Q1 ef al,, 2008) and Liu
Four-Wing Chaotic  Systems (L, 2009). The
synchronization results have been proved using the
Lyapunov Stability theory. Numerical simulations are also
shown to validate synchronization results derived in this
study.
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