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Abstract: Accurate prediction of reservorr mflows 1s crucial for optimizing the operations of managing water
resources. With emerging new data driven modeling approaches, methods based on neuro-fuzzy are becoming
established in academic and practical applications. This study investigates the ability of Adaptive Neuro-Fuzzy
Inference System (ANFIS) method to improve the accuracy of daily reservoir inflow forecasting. The subtractive
clustering method 1s used to find the best number of fuzzy rules. A comparison 1s made between the ANFIS
model and the Artificial Neural Network (ANN) model. A wide range of statistics measures are used to evaluate
the performance of the models. Based on comparisons, it was revealed that the ANFIS technique could not
umnprove the accuracy of estimations in a small tropical catchment and the ANN performed better, especially in

capturing peak inflows.
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INTRODUCTION

The ability to predict the uncontrollable hydrological
events such as dam reservoir inflows prior to making
decisions on water release helps in better managing of
water resources. It 18 necessary to estimate how much
water enters into the dam reservoir in a specific time in
order to provide the specific water release volume. The
main aim of the short term prediction of reservoir inflow 1s
to reduce the risk of floods through mitigating measures
such as appropriate and timely release of flood waters.
The non-linear relationship between mput and output
variables complicates effort to forecast reservor nflow
events. Various types of forecasting techmques have
been developed and implemented in the past which
basically there are two common types of solution that are
either knowledge driven or data driven. In order to
overcome difficulties of data availability, required for the
knowledge driven technique, data driven techniques are
more popular choice. Data-driven modeling approach is
emerging as a relative new methodology and 13 based on
dentification of the relationships between input and
output variables of a hydrological system using the
historical data. In this context, different Artificial
Intelligence (AI) techmiques have become popular in
modeling water resources events (Openshaw and
Openshaw, 2006). Soft Computing (3C), an

nnovative approach to constructing computationally
intelligent systems has recently come mto the limelight. It
is realize that complex real world problems require
intelligent systems that combine knowledge, techniques
and methodologies from various sources (Jang ef al.,
1997).

Artificial Newral Networks (ANN) and Fuzzy
Inference Systems (FIS) are the most popular and
successful approaches resulting from advances m a
branch of nonlinear system theoretic modeling. ANN
models have been used successfully to model complex
nonlinear input-output time series relationships in a wide
variety of water resources fields. FIS have been used in
controller systems and model identification also. The
synergism allows soft computing to incorporate human
knowledge effectively to deal with imprecision and
uncertaimnty and learn to adapt to unknown or changing
environment for better performance (Jang ef al., 1997).
Fuzzy systems and neural networks share their ability to
improve the intelligence of systems working in uncertain,
imprecise and noisy environments. Neuro-fuzzy networks
combine the explicit knowledge representation of fuzzy
logic with the learning power of newral networks
(Babuska and Verbruggen, 2003). For this reason, recently
interest m using the Adaptive Neuro-Fuzzy Inference
System (ANFIS) 1s increasingly raised. ANFIS 1s a typical
Neuro-fuzzy (Jang, 1993) which uses the Takagi-Sugeno

Corresponding Author: S.H. Karimi-Googhari, Department of Water Engineering, Shahid-Bahonar University of Kerman, Kerman,

Iran



Int. J. Soft Comput., 6 (3): 75-84, 2011

fuzzy inference engine model with a six layers feed-
forward network. The ANFIS has been shown to be
powerful in modeling numerous industrial processes such
as motor fault detection and diagnosis (Altug ef af., 1999),
power systems dynamic load (Oonsivilai and El-Hawary,
1999) and wind speed modeling (Sfetsos, 2000).
Neuro-fuzzy approach has been employed successfully in
some fields of water resources engineering such as ramnfall
runoff modeling (Vernisuwe et al., 2005; Chang and Chen,
2001) and reservoir operation (Chang et al., 2005;
Chang and Chang, 2001, Pommambalam et af, 2003).
ANFIS has been evaluated to improve the accuracy of
daily evaporation estimation (Kisi, 2006), reservoir water
level prediction (Chang and Chang, 2006) and river flow
forecasting (Firat and Gungora, 2007).

The main objective of this study 1s to investigate the
ability of adaptive neuro-fuzzy inference system to
forecast daily reservoir inflow. The modeling procedure is
demonstrated for an ungauged dam reservoir in Malaysia.
Reservoir catchments in Malaysia are usually ungauged
forest areas where collecting different types of data which
are essential when knowledge driven models (Physical or
Conceptual models) are used is very costly and
impossible in most cases.

ADAPTIVE NEURO-FUZZY INFERENCE
SYSTEM (ANFIS)

Adaptive Neuro-Fuzzy Inference System (ANFIS),
first was proposed by Jang (1993) can achieve a hughly
nonlinear mapping and it is superior to common linear
methods in producing nonlinear time series (Jang et al.,
1997). Throughout this research, it was considered the
ANFTS architecture for the first order Sugeno fuzzy model
(Sugeno and Kang, 1988). The ANFIS 1s a multilayer feed
forward network which uses neural network learming
algorithms and fuzzy reasoning to map an input space to
an output space (Chang and Chang, 2006). Assuming the
fuzzy inference system under consideration has two
mputs, x and y and one output, f for a first-order Sugeno
fuzzy model, a common rule set with two fuzzy if then
rules can be expressed as:

Rule 1: Tfx is A,and y is B, then

f, = p x+q yi1, (1)
Rule 2: If x is A, and y is B, then
£, = p, x+q yi1, (2)

where, A, A, and B,, B, are the membership
functions (mfs) for mputs x and y, respectively; p, g; and
1 (1 =1 or 2) are linear parameters in the consequent part
of the first-order Sugeno fuzzy model. Figure 1ashows
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Fig. 1: (a) A two input first order Sugeno fuzzy model
with two rules; (b) Equivalent ANFIS structure
(Jang et al., 1997)

the fuzzy reasoning mechamsm for this Sugeno model to
derive an output function (f) from mputs x and y. The
corresponding equivalent ANFIS architecture is shown in
Fig. 1b where nodes of the same layer have similar
functions. ANFIS consists of five layers.

Layer 1: Every node 1 mn this layer is an adaptive node
with a node function:

O = pa (%), fori=1,20r

O = Pez (), fori=3.4 (3)
where, x (or y) 1s the mput to node 1 and A1 (or B1) 15 the
linguistic label (such as small, large, etc.) characterized by
appropriate membership functions p;, p,, respectively.
O, 1s the membership grade of a fuzzy set A (= A, A, B,
B,) and it specifies the degree to which the given input x
(or y) satisfies the quantifier A. Here the Gaussian
membership function was used. Gaussian membership
function is determined by two parameters §; and o;:

o e @
Bio

where, {8, 0} is the parameter set of the membership
functions in the premise part of fuzzy if then rules that
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changes the shapes of the membership function.
Parameters in tlus layer are referred to as the premise
parameters.

Layer 2: Every node in this layer is a fixed node
whose output is the product of all the incoming signals
using AND operator as O, , which represents the firing
strength:

Oy = Wy = Mg, (X) % g, (y)

1=1,27=1,2k=1,...4 (5)
Layer 3: Every node in this layer is a fixed node. Tt is to
calculate the ratio of each ith rule’s firing strength to the
sum of all rules” firing strength. For convenience, outputs
of this layer are called normalized firing strengths:

W .
! 1=1

4
Ek:lwk

Layer 4: Every node i in this layer is an adaptive node
with a node function:

O

X sl (6)

1:W1:

(7)

O,, =wf, =w,(px+q +1), i=1..4

where, w, is the normalized firing strength from layer 3
and {p, g, r;} are the coefficients of this node and as
parameters in this layer are referred to as consequent
parameters.

Layer 5: The single node m this layer is affixed node
which calculates overall output by summing all the
incoming signals. Accordingly, the defuzzification
process transforms each rule’s fuzzy results into a crisp
output in this layer:

(&)

Premise parameters {8, 0;} which identify the shape
of the mfs and the consequent parameters {p, q;, r;} which
determine the overall output of the system have to be
optimized. It 1is possible to identify successfully
parameters in an adaptive network using the back-
propagation algorithm which is based on the gradient
descent rule however, it is generally slow and likely to
become trapped m local mmima (Jang, 1993). The hybrid
learning algorithm (Jang, 1993) 15 a faster learming
algorithm which combines the gradient descent method
and the TLeast Squares Estimate (LSE) to identify
parameters.

From the ANFIS architecture shows in Fig. 1, it is
observed that given the values of the premise parameters,
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the overall output can be expressed as linear
combinations of consequent parameters. More precisely,

the output f can be rewritten as:

f= ;11?1 + W_zfz = (;lx)pl + (Ey)ch +

©)

(WL +(W,3)p, +(W,y)q, + (W, ),

This 1s linear in the consequent parameters (p,, q;, I,
P2 @ and 1,). As a result, the total number of parameters
in an ANFIS can be divided inte a set of premise
parameters and a set of consequent parameters.
hybrid-learming  algorithm  which
combines the back propagation gradient descent and least

Consequently the

squares method can be used as an effective search for the
optimal parameters of the ANFIS. More specifically in the
forward pass of the hybrnd learming algorithm, the node
output goes forward until layer 4 and the consequent
parameters are identified by the least squares method. In
the backward pass, the error signal propagates backwards
and the premise parameters are updated by gradient
descent. As mentioned earlier, the consequent parameters
thus identified are optimal under the condition that the
premise parameters are fixed. Accordingly, the hybrid
approach converges much faster since, it reduces the
dimension of the search space of the original back
propagation method. More details of hybrid leaming
algorithm and its mathematical equations can be found in
Tang et al (1997) and Jang (1993).

MODEL DEVELOPMENT

Study area and data: The Sembrong dam flood mitigation
program was considered for this study and it is located in
the West of Malaysia. The climate at the reservoir’s
catchment is equatorial through the year with relatively
uniform temperatures, high humidity and heavy ramfalls.
The catchment has no single principal stream but a series
of short water courses converging into the reservoir. The
available data were collected and reservoir inflows were
evaluated using the water balance equation for the
reservoir as below:

I, =*AS, + (O, +Se, + E, + Ws, —P) (10)
Where:
+As, The storage change
I, = The inflow
P, = The precipitation in dam lake
O, = The release water from dam gates and
penstocks
Se, = The dam seepage
E, = The evaporation
Ws, = The water supply withdrawal at time t
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Table 1: Statistics of raw and transformed reservoir inflow data

Data Types of sets No. of data Mean nr’ day~! Standard deviation m’ day~!  CoefTicient of skewness
Raw data Training and validation set 2188 319389.00 592623.0 6.20

Testing set 304 160251.00 326862.0 3.87
Transformed data Training and validation set 2188 11.74 1.5 0.65

Testing set 34 11.07 1.2 0.74

Average ramnfall across the catchment was calculated
by constructing the Theissen polygon. The 6 years daily
data, 1995-1998 and 2002-2004 were considered as the
traimng validation set and the other 10 months daily data,
March 2005 to end of December 2005 as the testing set.

Data pre-processing and model input selection: In most
conventional statistical models, the data should be
normally distributed before the model parameters can be
estimated efficiently. In practice, for most applications it
15 however advantageous first to transform the data into
some new representation before model optimization.
Similarly, the outputs of the network are often post-
processed to give the required output values. Therefore,
the models have been developed with transformed data to
normal distributions. In this study, the reservoir nflow
and rainfall data were tested for different probability
distributions by using Probability-Probability (P-P)
curves. The best fitted distribution was the Log-Normal
distribution for reservoir mflow data. A summary of the
data result 1s shown in Table 1. The statistics of the
transformed training-validation and testing data sets are
similar and the coefficient of skewness has been reduced
sigmficantly. The average ramnfall values followed the
Gamma distribution and the root square transform was
considered.

Familiarity with the hydrologic system under
consideration plays an mmportant role in the successful
implementation of ANFIS. This helps in avoiding missing
some useful model inputs or preventing the complex
model being assigned mnsigmficants inputs. In the daily
reservoir mflow modeling, values of mputs include
average daily rainfall across the catchment and reservoir
mflow m suitable lags and the value of output is the
reservoir inflow during the immediate first following
period, Q (t+1). However, the number of antecedent
values to be included m the mput vector was determined
using the Auto-Correlation Function (ACF), Partial Auto-
Correlation Function (PACF) and Cross-Correlation
Function (CCF) as Q (t), Q (1), Q (t-2), Q (t-3),
Q (=D, R (1), R (t-1), R (t-2), R (t-3) where Q (t) and R (t) are
daily reservorr mflow and average ramnfall data at time
step t.

Construction of fuzzy rule base using substractive fuzzy
clustering: In the ANFIS model, each input varniable might
be clustered mto several class values i layer 1 to build up
fuzzy rules and each fuzzy rule would be constructed
through several parameters of membership function in
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layer 2. The number of membership functions (mfs) and
rules are mutually related; more membership functions
implies more rules and determine the level of details of the
model. For a successful network training and estimation
of parameters, good imtialization is important. Fuzzy
clustering, subtractive clustering method was used in
this study to identify the antecedent mfs. Subtractive
clustering was introduced by Chiu (1994). For this method
which 1s described in (Vermeuwe ef af., 2005), data points
have to be rescaled to [0, 1] in each dimension. Each data
point 7 = (x, y,) 1s assigned a potential P, according to its
location to all other data points:

M 2
P - Ze-@frﬁllz,-zkl\ (11)
P
Where:
N = Thenumber of data pomts
= The Euclidean distance
r, = A positive constant called cluster radius

The potential of a data point to be a cluster center is
higher when more data points are closer. The data point
with the highest potential, denoted by P* is considered
as the first cluster center ¢, = (d,, e,). The potential is then
recalculated for all other points excluding the influence of
the first cluster center according to;

- of

o 12
P]m—Pl (12)

Pnsw _

1

with r, = 1 * 1, the radius defining the neighborhood that
will have measurable reductions in potential and 1 a
positive constant, called the quash factor. Generally
1 = 1.5 as suggested by Chiu (1994). Again, the data point
with the highest potential is considered to be the next
cluster center c, if;
P;)eP! (13)
Where, ¢ 1s the accept ratio. If this 1s not the case but
the following condition holds:

G Bl
T P,

a

(14)

where, d_ 1s the mimimal distance between ¢, and all
previously found cluster centers, the data point 1s stll
accepted as the next cluster center c,. Further iterations
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can then be performed to obtain new cluster centers ¢. If
a possible cluster center does not fulfill the above
described conditions, it is rejected as a cluster center and
its potential 1s set to 0. The data point with the next
highest potential P,* 1s selected as the new possible
cluster center and re-tested. The clustering ends if the
following condition is fulfilled:

Plji <§P1* (15)

where, £ is the reject ratio. Indicative parameters
values for r, 7, € and & have been suggested by Chiu
(1994). Fach cluster center is considered as a fuzzy
rule that describes the system behavior (Chiu, 1994). The
degree to which a rule i is fulfilled is defined in terms of
the distance to the defined cluster centers:

ef(:urf b ESEN|

w,(X) = (16)

In this study, first order Takagi-Sugeno (TS) fuzzy
inference technique (Sugeno and Kang, 1988) with a rule
base of the following type is developed:

Ri: IF(Q(1), QU —1),Q(t - 2),Q(t - 3),
Q(t — 4, RILRU-D.R-2)LR(t-3)

Belong to cluster Ci1 then:

Qi(t+1) =p.Qt) + QU ~D+1Q(t ~2) +5,Q(t =3) +
kQt—H+IR(+gR(-D+hR(t- 2+ jR(t-3+d,
a7)

In the second part of each fuzzy rule (Ri), there are 10
parameters (p, g, 1, 5 k L g b 3 d) that have to be
determined in the training process besides premise
parameters which belong to membership functions. The
Gaussian membership function was considered for
modeling as it is more popular and simple. The sensitivity
of selected models for using another practical membership
functions was evaluated.

The fuzzy rule-base for the TS model based on
Subtractive Clustering (SC) was determined using the
Fuzzy Logic Toolbox of MATLAB. In this case, command
anfisedit was used to run the Graphical User Interface
(GUT) of ANFTS in MATLAB. In order to find the optimal
model, the parameters of the SC algorithm were 1, 1.25 and
1.5 for squash factor (1)) and 0.2-0.8 for range of influence
(ra) with steps of 0.05. The value of accept ratio and reject
ratio were fixed based on MATLAB defaults (0.5 and 0.15,
respectively). For each combination of these parameters,
amodel was built and trained. Through optimization of the
performance RMSE obtained on the identification data,
the optimal parameter combination was sought.
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Neural networks model: Artificial Neural Networks
(ANNs) are essentially semi-parametric regression
estimators and are suitable for simulate the behavior of
complicate physical phenomena. A significant advantage
of the ANN approach in system modeling is that there is
no need to have a well defined physical relationship for
systematically converting an input to an output. Tt is
needed for most networks provide a collecton of
representative examples (input-output pairs) of the
deswred mapping. The ANN then adapts itself to
reproduce the desired output when presented with
traiming sample mputs. Network architecture determines
the number of connection weights (free parameters) and
the way information flows through the network.
Determination of appropriate networlk architecture is one
of the most important but also one of the most difficult,
tasks in the model building process.

One of the most popular ANN architectures 1s Multi
Layer Perceptron (MLP). A typical MLP has neurons
arranged in a distinct layered topology. The input layer
simply sends the values of the input variables into the
hidden layer. The hidden and output layer neurons are
fully connected to all of the units in the preceding layer.
Each hidden neuron in an ANN receives a number of
inputs from original data or other layer nodes. Each input
comes via a connection that has a strength (or weight)
attached. The weighted sum of the inputs is formed, to
compose the activation of the neuron. The activation
signal is passed through an activation (transfer) function
produce the output of the neuron. A feed-forward MLP
network where nodes in one layer are only connected to
nodes in the next layer was used for modeling. Network
geometry determines the number of connection weights
and how these are arranged. This is generally done by
fixing the number of lidden layers and choosing the
number of nodes i each of these. It has been shown that
ANNs with one hidden layer can approximate any
function. The number of nodes in the mput layer 1s fixed
by the number of model inputs whereas the number of
nodes n the output layer 1s equal to the number of model
outputs. In this study, there was only one output
(reservoir mtlow). For selecting the final structure of the
ANN model, it being a trial and error procedure, started
with a mimimum number of nodes 1 the hidden layer and
the network was trained until a minimum mean square
error will be attained. The number of nodes m a hidden
layer has been increased gradually until such an increase
did not significantly improve the performance of the
neural network.

The process of optimizing the commection weights 1s
known as traming or learming. Here, the Levenberg-
Marquardt Backpropagation traimng (LMBP) has been
used for train a Feed-forward Neural Network (FNN)
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where nodes in one layer are only connected to nodes in
the next layer. The sigmoidal transfer functions that are
most common was used.

Models evaluation: The performances of the models which
were developed in this study were evaluated by using a
variety of standard statistical performance evaluation
measures.  Specifically, five different statistical
performance indices have been employed: Average
Absolute Relative Error (AARE), Pearson’s correlation
coefficient (R), Nash-Sutcliff Efficiency (CE), Normalized
Mean Bias Error (NMBE) and Normalized Root Mean
Square Error (NRMSE). These statistical parameters can
be calculated using the total observed and estimated
inflow data from the ANFIS and ANN models. On view of
the need to consider these different performances criteria,
the decision to select the best model is not so easy.
Therefore, in this study an Overall Index (OT) comprising
of the different performances criteria is proposed as
below:
(R*+ E)% 100
(([NMBE|+ RMSE ) x AARE]

(18)

In order to optimize this performance index, it 1s
desirable to have the maximum value of R and E and
minimum value of NMBE, NRMSE and AARE.

The mean error in estimating peak inflow (MF%) and
persistence coefficient (Eper) of models were calculated as
follows:

MF(%):wXIOO (19)
. _EP-E o)
= EP
Where:
EP:E::1(QD(t)_QO(t_1))2 (21)

Table 2: Values of overall index for different FISs during training

B, = 2 {Q-Q,m) (22)
t=1
Where:
Qo (t) = The observed mflow at time t
Q) The estimated mflow at time t
n = The total number of runoff data points
estimated from an ANFIS model
Qe = The maximum estimated mnflow
Quuez = The maximum observed inflow
Q(t-1) = The observed inflow at time (t-1)

The MF% statistic quantifies the error in predicting
the peak magmitude of nflow. The Eper statistic gives a
measure of the goodness of a model in comparison to a
persistence model. The values of Eper statistic larger than
zero, ensure that the model forecasts are better than those
from a simple persistence model.

APPLICATION AND RESULTS

Different models were built using the transformed and
normalized data. The Gaussian membership function was
considered. Subtractive Clustering (SC) was used for
determining number of membership functions and rules
with different value of influence range and squash
factor (Table 2). For the case of influence range and
squash factor of 0.2 and 1, respectively, it resultedin
61 rules. In this case, the number of model
parameters is more than training data pairs (>1600
parameters) and it could not be tramned. It 1s apparent from
Table 2 that increasing the influence range and squash
factor decreases the rules number. ANFIS tramning needs
at least 2 rules. Thus, in cases of one rule, it could not be
trained. The total of 34 models were obtained for different
values of influence range and squash factor and they are
named by ther mfluence range and squash factor. For

FI8’s narme No. of mfs Overall index FI3’s narme No. of mfs Overall index
FI820125 26 0.634 FI850100 5 0.335
FI820150 15 0.435 FI850125 4 0.297
FIS25100 32 0.662 FIS50150 2 0.261
FIS25125 12 0.489 FIS55100 6 0.345
FIS25150 6 0.577 FIS55125 4 0.345
FIS30100 19 0.510 FIS55150 2 0.259
FIS30125 9 0.397 FIS60100 5 0.303
FIS30150 4 0.305 FIS60125 2 0.256
FI835100 13 0.414 FI860150 2 0.231
FI835125 8 0.359 FIS65100 3 0.231
FI835150 4 0.281 FIS65125 2 0.250
FI840100 11 0.359 FI870100 3 0.296
FI840125 6 0.297 FIS70125 2 0.228
FI840150 4 0.255 FIS75100 2 0.251
FIS45100 8 0.420 FIS75125 2 0.252
FIS45125 4 0.289 FIS80100 3 0.278
FIS45150 3 0.258 FIS80125 2 0.212

80



Int. J. Soft Comput., 6 (3): 75-84, 2011

Table 3: Number of mfs and statistical indices value in selected trained ANFIS models during testing

FIS’s name No. of mfs R CE AARE NMBE NRMSE Overall index
FIS20125 26 0.720 0.387 0.856 -12.948 132170 0.729
FIS25100 32 0.783 0.520 0.974 -17.470 116.947 0.935
FIS25125 12 0.714 0.388 0.828 -21.065 132115 0.707
FIS25150 6 0.856 0.699 0.733 -24.985 92.655 1.659
FIS30100 19 0.685 -0.054 0.922 -10.582 173.345 0.245
Table 4: Parameters values of each rule for FIS25150 model
Rule number (R;)
Parameters Ry R, R; R, Rs Rs
P 0.26850 0.84940 0.71200 0.09407 0.30370 0.07005
q 0.10670 -0.03653 0.21460 0.53950 0.25310 0.01347
r 0.09951 0.14530 0.00118 0.07349 0.08870 -0.12340
8 0.05382 -0.08029 0.10730 0.04987 -0.00712 0.19980
k 0.17010 0.21630 0.06256 0.10480 0.03099 0.13880
1 -0.04967 0.11730 -0.03665 -0.06978 0.01103 -0.04006
g 0.10760 -0.11850 -0.04445 0.01002 -0.03788 0.12900
h 0.98250 0.06110 0.04976 0.26530 0.09612 0.11810
i -0.0709% 0.03009 0.07283 0.14960 0.13360 0.00707
d 0.19550 -0.09805 -0.12370 0.05067 0.20240 0.45130
mstance, FIS30125 13 given to a fuzzy mference system 2507 —a— MPF-train
that is obtained by subtractive clustering method with 2001 —— MF-test
influence range 0.3 and squash factor 1.25. - :(5)8_
. . . X a

The different fuzzy inference systems were trained by = sol
hybrid method and all performance indices were = 0 . : : : ,
computed. Validation data was considered to avoid over 50 FISgl2s [FIS25100 FISZS = 183100
training. The higher values of overall index, belonged.to -100- FIS' name
models with more rules (Table 2). Most of the models with
<4 rules give similar performance indices. The more Fig. 2. MF% index for selected models during training

complex models which consist of more rules caused
higher number of model parameters and in most cases
over traimng.

Therefore, to adjust this problem, the five best
models based on overall index value were selected and
tested with the test data set. The selected models were
FIS20125, F1525100, FIS25125, FIS25150 and FIS30100.
The results are shown in Table 3. The overall index results
during testing show that the best performance and
generalization has been obtained with the FIS25150 model
with a reasonable difference against the other 4 models.
The values of NMBE show that all models have some
under prediction.

The minimum values of NRMSE and AARE indices
and maximum values of R and CE show the superiority
FI525150 clearly. Comparison of the ability of models to
predicting peak mflows is shown in Fig. 2 using the MF%
mndex. This figure reveals that the least value of error in
capturing the peak inflows comes from the FIS25150
model. Figure 3 shows that the FIS25150 could keep its
persistency with the testing data just like with the
traiming data. Finally the FIS25150 was selected as the
best model. This FIS constructed with 9 inputs and one
output. Each input has 6 Gaussian membership functions
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and testing

—&— Eper-train

0.8 —— Eper-test
A A
0.3
P 1
2 02
&3] FIS2125  FIS25100 FIS25125 FIS25150 \ FIS3100
-0.7

FIS' name

Fig. 3: E-per ndex for selected models during traimng and
testing

and there are 6 rules. The output has also 6 member
The parameters of rules for FIS25150
{consequent parameters) are shown i Table 4. The
FI525150 was applied to the training and testing data and
the results are shown in Fig. 4 and 5. The model simulates
the base flows in testing as well as traimng but it 1s not
able to capture peak inflows well. The peak inflows

functions.

under-prediction 1s seen m training data but in testing it
is apparently under and over predicting peak values.

To evaluate the impacts of the choosing different
membership functions on the simulated results, the
sensitivity analysis was carried out. For construction of
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Fig. 4: Simulations of training inflow data by FIS25150 model
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Fig. 5: Simulations of testing inflow data by FIS25150 model

the
Gaussian membership function was used. For the final
selected model, FIS25150, the FIS was built by Combined
Guaussian, Generalized Bell and Difference Sigmoidal
membership functions of the Fuzzy Toolbox of MATLAB.
The equivalent ANFIS models were tramed and tested
with the AFNIS editor. The best result in training was
obtained by the Gaussian membership function and its

fuzzy inference systems in all ANFIS models,

overall mdex was reascnably more than the others (Fig. 6).
Figure 7 shows that using Gaussian membership function
lead to lesser value of under-prediction of peak flows and
higher persistency of model in training period. The best
ANN model to forecast inflow to reservoir of Sembrong
dam was obtained from the same data and model
inputs. Tts structure was 9-13-1 with maximum overall
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Fig. 6: Overall index for FIS25150 model with different
types of membership functions

performances and best value of R and CE. Figure 8
shows this model’s architecture. The statistic measures
for selected ANN and ANFIS models for validation and
testing data are shown in Fig. 9 and 10. With validation all
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Fig. 9: Statistics measures of final ANFIS and ANN
models in validation

performance indices of selected ANFIS model were worse
than ANN model. The differences between indices were
obviously lugh m this phase. Figure 9 and 10 show the
superiority of the selected ANN model to the ANFIS
model. The selected ANFIS model has only six rules and
it seems that these linear rules are not sufficient to cover
the entire complex relationships between rainfall and
discharge. It 1s noted that in these catchments, there are
many water paths behaving like inflows
channels mto reservoirs. In other words, the density of
overland drainage system is high. Apart from this, the soil

small
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Fig. 10: Statistics measures of final ANFIS and ANN
models m testing

antecedent moisture content and the tropical rainfall
patterns increases the complexity and non-linearity of
reservolr inflow forecasting. However, it may be noted
that the ANFIS simplifies the model building process.

CONCLUSION

The potential of a particular neuro-fuzzy model,
Adaptive Neuwro-Fuzzy Inference System (ANFIS) for
forecasting the daily reservoir inflow was investigated for
the Sembrong dam catchment in Malaysia. Daily reservoir
inflow was computed using a water balance equation.
Average daily rainfall across the catchment was obtained
by constructing Theissen polygons. The appropriate
model mputs for modeling the next day daily reservoir
wnflow were extracted usmng auto-correlation, cross-
correlation and partial auto-correlation functions. The
historical data was divided into three independent sets for
traiming, verifymg and testing the constructed models.
Data transformation to normality reduced the skewness of
different data sets.

Different fuzzy inference systems were constructed
by subtractive clustering methods and they were tramed
with hybrid leaming algorithm. The models were
evaluated for an mdependent data set by a wide range of
performance indices. Tn general, simulation results of best
selected model showed good generalization for base flows
and medium peaks.

However, the ANFIS model was not able to capture
peak flows. A comparison was made between the simulate
results provided by the ANFIS model and the Artificial
Neural Networks (ANNs) developed model using same
data for study area. The final ANN model performed
better comparing to the selected ANFIS model.
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