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Abstract: The need to secure sensitive data and computer systems from intruders while allowing ease of access
for authenticates users 1s one of the main problems in computer security. Traditionally, passwords have been
the usual method for controlling access to computer systems but this approach has many inherent flaws.
Keystroke dynamics is a relatively new method of biometric identification and provides a comparatively
inexpensive and low profile method of hardening the normal login and password process. This study presents
the feature subset selection n Keystroke dynamics for identity verification and it reports the results of
experimenting Ant Colony Optimization (ACO) technique on keystroke duration, latency and digraph for feature
subset selection. Here, the Ant Colony Optimization is used to reduce the redundant feature values and
minimize the search space. Optimum feahure subset is obtained using leystrolce duration values when compared
with the other two feature values.
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INTRODUCTION

Access to computer systems is usually controlled by
user accounts with usernames and passwords. Such
scheme has little security (Hu ef af., 2008; Pavaday and
Soyjaudah, 2007) if the information falls to wrong hands.
Key cards or Biometric Systems (Kapezynski et al., 2006;
Boechat ef al., 2007; Jamn ef af., 2003; Blackburmn ef ai.,
2007) for example fingerprints (Hong and Jain, 1998) 1s
being used now-a-days to improve the security.

Biometric Methods measure biological and
physiological characteristics to uniquely identify
individuals. The main drawback of most biometric
methods 1s that they are expensive to mmplement because
most of them require specialized hardware to strengthen
security. But they require quite expensive additional
hardware. On the other hand keystroke dynamics
(Monrose and Rubin, 2000} consist of many advantages
like:

* It can be used without any additional hardware
*  Inexpemnsive
¢ Hardening the security

Keystroke dynamics has many applications in the
computer security arena. One area where the use of a
static approach to keystroke dynamics may be particularly
interesting is in restricting source level access to the
master server hosting a Kerberos (Azevedo ef al., 2007)
kev database. Any user accessing the server 1s prompted
to type a few words or a pass phrase in conjunction with
his/her username and password. Access 1s granted if
his/her typing pattern matches within a reasonable
threshold of the claimed identity. This safeguard 1s
effective as there is usually no remote access allowed to
the server and the only entry point is via console login.
Alternatively, dynamic or continuous momtoring of the
interaction of users while accessmg highly restricted
documents or executing tasks in environments where the
user must be alert at all times (for example air traffic
control) 1s a ideal scenario for the application of a
keystroke authentication system. Keystroke dynamics
may be used to detect uncharacteristic typing rhythm
(brought on by drowsiness, fatigue, etc.) in the user and
notify third parties. Keystroke dynamics mclude several
different measurements (Teh ef al., 2007, Shepherd, 1995)
such as:
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Duration of a keystroke or key hold time
Latency of keystrokes or inter-keystroke times
Typing error

Force keystrokes, etc.

Keystroke analysis (Leberknight et a., 2008) is of two
kinds Static and Dynamic. Static keysttoke analysis
essentially means that the analysis 1s performed on typing
samples produced using the same predetermined text for
all the individuals under observation. Dynamic keystroke
analysis implies a continuous or periodic monitoring of
1ssued keystrokes and 1s mtended to be performed during
a log in session, after the authentication phase has
passed. There are two phases namely Extraction phase
and Verification phase as in Fig. 1. During the feature
extraction phase (Boechat et al., 2007, Leberknight et al.,
2008, Gaines et al., 1980; Young and Hammon, 1989) user
keystroke features from one’s name or password are
captured, processed and stored in a reference file as
prototypes for future use by system m subsequent
authentication operations. During the verification phase
(Bleha and Obaidat, 1991; Daw-Tung, 1997) user
keystroke features are captured, processed m order to
render an authentication decision based on the outcome
of a classification process of the newly presented feature
to the pre-stored prototypes (reference templates)
(Hocquet et al., 2005; Yu and Cho, 2004). It would be
necessary for the user to type his/her name or password
a number of times in order for the system to be able to
extract the relevant features that uniquely represent the
user. However, the task of typing one’s name or password
over and over is both tiring and tedious in the feature
extraction phase which could lead users to alter their
normal typing pattern. Thus, most systems based on
biometrics are required to researchers with a summarized
set of mformation from which to extract knowledge. In
order to reduce this problem, researchers could eliminate
some features of the original dataset, selecting only the
best ones n terms of class cohesion.

Extraction |

| Training

Store it
nto
database

Verification

Re-enter
password

Fig. 1: Keystroke dynamics analysis framework
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Feature subset selection (Yang and Honavar, 1998;
Tohn and Kohavi, 1994) is applied to high dimensional
data prior to classification. Feature subset selection is
essentially an optimization problem which mvolves
searching the space of possible features to identify one
that 1s optimum or near-optimal with respect to certain
performance measures since, the aim is to obtain any
subset that minimizes a particular measure (classification
error for instance) (Shiv Subramaniam et al., 2007
Singhi and Liu, 2006). In order to reduce the complexity
and to increase the performance of the classifier the
redundant and wrelevant features are reduced from the
original feature set. Many feature subset selection
(Karnan et al, 2006) approaches 13 proposed in the
previous studies.

Related work: Yu and Cho (2003, 2004) propose a
GA-SVM based wrapper approach for feature subset
selection in which GA is employed to implement a
randomized search and SVM, an excellent novelty
detector with fast learning speed is employed as a base
learner. The degree of dwersity and quality are
guaranteed and thus they gave result in an improved
model performance and stability. Sung and Cho (2006)
propose one step approach similar to that of Genetic
Ensemble Feature Selection (GEFS) yet with a more direct
diversity term in the fitness function and SVM as base
classifier and similar to that of Yu and Cho (2003) yet with
a diversity term and no more post processing step. In
particular, so called uniqueness term 1s used in a fitness
function, measuring how unique each classifier is from
others in terms of the features used. To adapt SVM
researchers use Gaussian kernel. GA was used to filter the
data and to carry out a selection of characteristics. It
reports an average FAR of 15.78% with mimimum FAR of
5.3% and maximum FAR of 20.38% for raw data with noise.
Azevedo et al. (2007) and Azevedo and Cavalcanti (2007)
designed a hybrid system based on Support Vector
Machines (SVM) and Stochastic Optimization
Techmques. Standard Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) variation was used and
produced a good result for the tasks of feature selection.
Standard GA and PSO variation was used and produced
a good result for the tasks of feature selection and
personal identification with an FAR of 0.81% and TPR of
0.76% (Boechat et al., 2007) used weighted probability
measure by selecting N features of the features vector
with the minors of standard deviation, eliminating the
features less significant. They obtained optimum result
using 90% of the features with 3.83% FRR and 0% FAR.

FEATURE EXTRACTION

To capture a keystroke, it would be necessary for
users to type their password number of times. The system
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Fig. 2: Measurement of duration, latency and duration

would set about capturing these features using three
methods regarding the time (msec) that a particular user
maintains the key pressed (duration time) and the time
elapsed between releasing one key and pressing the next
(latency time) and the combmation of the above 1s called
digraph. The data was collected from 11 participants with
different passwords. Each participant was asked to
type his/her password 10 times. The mean and standard
deviation values were measured as shown in Table 1.

The raw data file recorded by the application
measures the duration, latency and digraph timing
information in microseconds (psec) for the entered
password. Upon pressing submit, a raw-data text file is
generated. During the creation of the raw data file, the
mean (p) and standard deviation (o) (Monrose ef al., 1999,
Bergadan et al., 2002, Kaman et al., 2006) of each feature
(1) of the pattern set (x) are calculated for N samples in
agreement with the following equations:

Mean (1) = (NI x [i] L

Standard deviation (0,) = (UN-DS" [x [ilu[i] @

For instance, for the password ANT the timing
mformation for duration 1s 205, 250, 235 msec. Figure 2
shows the measurement of duration, latency and digraph
of keystrokes of the password ANT.

FEATURE SUBSET SELECTIONS

Several samples are typed by user for n number of
times. During the verification phase, it takes more time to
verify all the n number of features. Reducing this time
complexity researchers are using feature subset selection
methods. In feature subset selection (Yu and Cho, 2004,
2003) method, researchers extract the optimized features
from the n number of features. It is essentially an
optimization problem which involves searching the space
of possible features to identify one that 1s optimum.
Various ways to perform feature subset selection has
been studied earlier. Here, researchers propose Ant
Colony Optimization to select the feature subset.
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Feature subset
selection (to reduce the
classification error)

Identify the minimum optimum features to create
closest boundary, fix the threshold value and discard
the features which is having the higher distance from

the maximum boundary

¥

Use Ant Colony Optimized (ACO) algorithm to find
the subset of the features

i

Extracting the features from the user sample and find
the fitness value of each features

!

Assign the fitness value into Lmin and comparing with |

Gmin. Initially Gmin = Lmin

¥
If Lmin <= Gmin, Assign Gmin = Lmin. Finally the I

optimized features are stored into Gmin

I

e
The optimized features are final subset of the original
features. The subset values are input of the
classification algorithm

-
]
~
Authenticating features matching with the template
is used for classification algorithm
N

Fig. 3: Ant Colony Optimization for subset selection

Ant Colony Optimization (ACO): Ant algorithms
(Dorigo et al., 1991 ; Dorigo and Gambardella, 1997) was
first proposed by Dorigo and colleagues (Boechat et af.,
2007) as a multi-agent approach to difficult combinatorial
optimization problems such as the Traveling Salesman
Problem (TSP) and the Quadratic Assignment Problem
(QAP). There are currently various activities in the
scientific community to extend and apply ant-based
algorithms to many different discrete optimization
problems. The ACO heuristic (Dorigo et al., 1991, Liand
Xu, 2003) has been mspired by the observation on real ant
colony’s foraging behavior and on that ants can often
find the shortest path between food source and their
nest. Ant individuals transmitted information through the
volatile chemical substances which ants left in his passing
path and also known as the pheromone and then reach
the purpose of finding the best way to search food
sources. An ant encountering a previously laid trail can
detect the dense of pheromone trail. It decides with high
probability to follow a shortest path and reinforce that
trail with its own pheromone. The large amount of
pheromone is on the particular path, the large probability
1s that an ant selects that path and the paths pheromone
trail will become denser (Fig. 3).
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At last, the ant colony collectively marlks the shortest
path which has the largest pheromone amount. Such
simple indirect communication way among ants embodies
actually a kind of collective leaning mechanism. The Ant
Colony Optimization (Fig. 4) algorithm 1s as follows:

ACO calculation: Mean and standard deviation were
measwred for duration, latency and digraph for each

sample. Ant Colony algorithm is used for selecting the
optimum feature for each participant and the selected
features are considered for classification. For instance, for
the password ANT the calculated values using duration,
latency and standard deviation as features and the result
after applying ACO algorithm to 1t 18 displayed
from Table 1-9. Considering the following Duration (D),
Latency (I.) and Digraph (Di) values from user’s keystroke

Step 1: Get the feature values a[x] from duration/latency/digraph of keystrokes.
Step 2: Calculate the fitness function f[x] by the following equation for every a[x]

f[x] =1/(1+a[x])
Step 3: Initialize the following

Step 5: Thefollowing isrepeated for NI times

Thew= (1-r)* Toa+ r * Toforg[x],
where Thew and Toq arethe new and old pheromone value of the feature
3: Obtain Lmin min (g [x]) where Lministhelocal minimum
4: Check if Lmin Gmin then assign Gmin=Lmin
5: Else no change in Gmin value where Gmin isthe Global minimum.

where a isarate of pheromone evaporation parameter
8. Finally, the Gmin valueis stored as optimum value

NI = 5 (Number of iterations)

NA = 2 (Number of Ants)

To = 0.001 (Initial pheromone value for every a[x])

r = 0.9 (Rate of pheromone evaporation parameter for every a[x])

value

Step 4: Store thefltnessfuncnon valuesin Swhere S={F[x], To, flag} where flag column mentions whether the feature isselected by the ant or not.

1: A random feature value g [x] ina[x] is selected for each ant with the criteriathat the particular feature value should not have been selected previously.
2: Selected feature value's, pheromone value is updated by the following:

6: Select the best feature g [y] whose solution is equal to the Local minimum value at the end of the last iteration.
7: The selected g [y]-s pheromone valueis globally updated by the following equation:

Thew? = (1-a)* Toig+ @ * DT, for g[y]

Fig. 4: The Ant Colony Optimization Algorithm

Table 1: Before feature subset selection using duration for mean and standard deviation

Fitness value

Local minimum

Pheromone update

Global minimum

Mean 8D Mean SD Mean 8D Mean SD Mean SD
230 12.9 0.00432 0.76394 0.00414 0.04670 0.06100 0.06100 0.00414 0.046707
240 20.4 0.00414 0.04670 0.00414 0.03286 0.06759 0.06759 0.00414 0.032862
170 29.4 0.00584 0.03286 0.00523 0.03286 0.06759 0.06759 0.00414 0.032862
190 8.16 0.00523 0.10917 0.00438 0.03096 0.06759 0.06759 0.00414 0.030960
227 31.3 0.00438 0.03096 0.00369 0.03041 0.06759 0.06759 0.00369 0.030414
270 31.8 0.00369 0.03041 0.00369 0.02144 0.06759 0.06759 0.00369 0.021441
195 45.6 0.00510 0.02144 0.00398 0.02144 0.06759 0.06759 0.00369 0.021441
250 16.3 0.00398 0.05773 0.00398 0.05773 0.06759 0.06759 0.00369 0.021441
220 4.08 0.00452 0.19681 0.00452 0.12391 0.06759 0.06759 0.00369 0.021441
200 7.07 0.00497 0.12391 0.00432 0.07639 0.06759 0.06759 0.00369 0.021441
Table 2: After feature subset selection using duration-mean

Fitness value Local minimum Pheromone update Global minimum
Mean SD Mean SD Mean SD Mean 8D Mean SD
270 31.8 0.00369 0.03041 0.00369 0.02144 0.06759 0.06759 0.00369 0.021441
250 16.3 0.00398 0.05773 0.00398 0.05773 0.06759 0.06759 0.00369 0.021441
240 20.4 0.00414 0.04670 0.00414 0.03286 0.06759 0.06759 0.00414 0.032862
230 12.9 0.00432 0.76394 0.00414 0.04670 0.06100 0.06100 0.00414 0.046707
220 4.08 0.00452 0.19681 0.00452 0.12391 0.06759 0.06759 0.00369 0.021441
Table 3: After feature subset selection using duration standard deviation

Fitness value Local minimum Pheromone update Global minimum
Mean SD Mean 8D Mean SD Mean SD Mean SD
195 45.6 0.00510 0.02144 0.00398 0.02144 0.06759 0.06759 0.00369 0.021441
270 31.8 0.00369 0.03041 0.00369 0.02144 0.06759 0.06759 0.00369 0.021441
227 31.3 0.00438 0.03096 0.00369 0.03041 0.06759 0.06759 0.00369 0.030414
170 29.4 0.00584 0.03286 0.00523 0.03286 0.06759 0.06759 0.00414 0.032862
240 20.4 0.00414 0.04670 0.00414 0.03286 0.06759 0.06759 0.00414 0.032862
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Table 4: Before Feature subset selection using Latency for mean and standard deviation

Fitness value Local minimum

Pheromone update

Global minimum

Mean SD Mean SD Mean SD Mean SD Mean SD

250 30.00 0.00398 0.03225 0.00398 0.03225 0.06100 0.06100 0.00398 0.03225
230 5.00 0.00433 0.16666 0.00432 0.09091 0.06759 0.06759 0.00398 0.03225
200 10.00 0.00497 0.09091 0.00362 0.01176 0.06759 0.06759 0.00369 0.01176
275 84.03 0.00362 0.01176 0.00362 0.01176 0.06759 0.06759 0.00362 0.01176
220 20.00 000452 0.04762 0.00452 0.04761 0.06759 0.06759 0.00362 0.01176
195 15.00 0.00510 0.06250 0.00473 0.06250 0.06759 0.06759 0.00362 0.01176
210 10.00 0.00473 0.09091 0.00452 0.09091 0.06759 0.06759 0.00362 0.01176
220 10.00 000452 0.09091 0.00369 0.02439 0.06759 0.06759 0.00362 0.01176
270 40.00 0.00369 0.02439 0.00369 0.02439 0.067359 0.06759 0.00362 0.01176

Table 5: Feature subset selection using latency -mean

Fitness value Local minimum

Pheromone update

Global minimum

Mean SD Mean 3D Mean SD Mean 3D

275 84.03 0.00362 0.01176 0.00362 0.01176 0.06759 0.06759 0.00362 0.01176
270 40.00 0.00369 0.02439 0.00369 0.02439 0.06759 0.06759 0.00362 0.01176
250 30.00 0.00398 0.03225 0.00398 0.03225 0.06100 0.06100 0.00398 0.03225
230 5.00 0.00433 0.16666 0.00432 0.09091 0.06759 0.06759 0.00398 0.03225
220 10.00 0.00452 0.09091 0.00369 0.02439 0.06759 0.06759 0.00362 0.01176

Table 6: Feature subset selection using latency-standard deviation

Fitness value Local minimum

Pheromone update

Global minimum

Mean 8D Mean SD Mean SD Mean 8D Mean 8D

275 81.03 0.00362 0.01176 0.00362 0.01176 0.06759 0.06759 0.00362 0.01176
270 40,00 0.00369 0.02439 0.00369 0.02439 0.06759 0.06759 0.00362 0.01176
250 30.00 0.00398 0.03225 0.00398 0.03225 0.06100 0.06100 0.00398 0.03225
220 20.00 0.00452 0.04762 0.00452 0.04761 0.06759 0.06759 0.00362 0.01176
220 10.00 0.00152 0.09091 0.00369 0.02439 0.06759 0.06759 0.00362 0.01176

Table 7: Before feature subset selection using digraph for mean and standard deviation

Fitness value Local minimum

Pheromone update

Global minimum

Mean SD Mean SD Mean SD Mean SD Mean SD

240 12.200 0.00831 0.07552 0.00831 0.07552 0.06100 0.06100 0.00831 0.07550
235 5470 0.00847 0.15456 0.00847 0.047708 0.06090 0.06759 0.00831 0.04708
185 20.200 0.01082 0.047708 0.00885 0.047708 0.06090 0.06759 0.00831 0.04708
232.5 17.700 0.00885 0.05336 0.00885 0.04739 0.06090 0.06759 0.00831 0.04708
223.5 20,100 0.00891 0.04739 0.00879 0.04739 0.06090 0.06759 0.00831 0.04708
232.5 12.600 0.00879 0.07331 0.0087% 0.07331 0.06090 0.0675% 0.00831 0.04708
202.5 T7.740 0.00984 0.11441 0.00860 0.07127 0.06090 0.06759 0.00831 0.04708
235 13.000 0.00850 0.07127 0.00821 0.75458 0.06090 0.06759 0.00821 0.04708
235 17.300 0.00821 0.05458 0.00497 0.75458 0.06090 0.06759 0.00497 0.04708
200 10.488 0.00497 0.08704 0.00497 0.07552 0.06090 0.06759 0.00497 0.04708

Table 8: Feature subset selection using digraph-mean

Fitness value Local minimum

Pheromone up date

Global minimum

Mean SD Mean SD Mean SD Mean SD Mean SD

200 10,488 0.00497 0.08704 0.00497 0.07552 0.06090 0.06759 0.00497 0.047708
235 17.300 0.00821 0.05458 0.00497 0.75458 0.06090 0.06759 0.00497 0.04708
240 12.200 0.00831 0.07552 0.00831 0.07552 0.06100 0.06100 0.00831 0.07550
235 5470 0.00847 0.154356 0.00847 0.047708 0.06090 0.06759 0.00831 0.047708
235 13.000 0.00850 0.07127 0.00821 0.75458 0.06090 0.06759 0.00821 0.04708

Table 9: Feature subset selection using digraph-standard deviation

Fitness value TLocal minimum

Pheromone update

Global minimum

Mean SD Mean SD Mean SD Mean SD Mean SD

185 20.2 0.01082 0.01708 0.00885 0.047708 0.06090 0.06759 0.00831 0.047708
240 122 0.00831 0.07552 0.00831 0.07552 0.06100 0.06100 0.00831 0.07550
223.5 20.1 0.00891 0.04739 0.00879 0.04739 0.06090 0.06759 0.00831 0.04708
235 17.3 0.00821 0.05458 0.00497 0.75458 0.06090 0.06759 0.00197 0.047708
232.5 17.7 0.00885 0.05336 0.00885 0.04739 0.06090 0.06759 0.00831 0.04708
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profile: D ((A, 2400, (N, 215), (T, 235)), L ((AN, 275), (NT,
235)) and D1 ((A, 515), (N, 470), (T, 235). The mean of
duration, latency and digraph are computed as shown in
Table 1-9. Computation of duration for each letter of the
password ANT and calculation of mean, fitness value,
local mimmum, pheromone update and global mimmum 1s
as follows: for instance if the duration = {A-240, N-215,
T-235}.

Calculation of fitness value for duration:

Mean (1) = (IN) 3" x [i]
=240 +215+235/3
Therefore:
M =230=a[x]
Fimess value f[x] = /1 +a [x]
fx] = 1/1+ 230
=0.00432

Stenderd Deviation (o) = (UN-)S ™" | x [i] - 1 [i]

= \[(230-240)2 +(230:215F +(230-235)° 12
(g)=129=a[x]
Fitness value f[x] = 1/1+12.9
= 076394

Calculation of local minimum for duration: Tnitially the
fitness value a [x] 13 directly assigned to Local minimum
(Lmin) for the first value (i.e., a[1]). Then, the next fitness
value a [x] (1.e,, a [2]) 15 compared with the previous value
already calculated. The minimum is found in them and is
replaced with the Local mimimum value. For example:

For mean value a [1] = 0.00432
Assigna[1] = Lmin

Lmin = 0.00432

After finding the next value a [2] = 0.00414

Check whether a [1] less then or equal to the value a
[2]. If the condition 1s true, assign Lmin = a [1]. Otherwise,
Lmin= a [2]; here, in thisexample if (0.00432<=0.00414).
Lmin = 0.00414. For standard deviation, similarly:

a[l]=0.76394
Assign a [1] = Lmin
Lmin = 0.76394
The second value a [2] = 0.04670

Check the condition, a [1] less then or equal to the
value a [2]. Here, n this example, if (0.76394<0.04670);
Lmin = 0.04670.

Calculation of global minimum for duration: Global
minimum (Gmin) is assigned Lmin value initially (i.e.,
Lmin = Gmm). Next the value in the Gmin 1s compared with
Lmin, to find the minimum amongst them. For example,
for mean, Lmin = 0.00414; initially, Gmin = Lmin, i.e.,
Gmin = 0.00414; for next feature value, condition should
be satisfied for Gmin, 1.e. (Gmin <= Lmin).

Next, Lmin consist of next mmimum value. According
to this example next minimum value is same value. This
value 1s compared with Gmin if the value 13 less then or
equal to the Lmin then, Gmin = 0.00414. For Standard
Deviation, Lmm = 0.04670; mitially, Gmm = Lmin;, Gmin =
0.04670;, Next Lmin = 0.03286; compare with Gmin values,
1.e. (Gmm <= Lmin). Finally, Gmin = 0.03286.

Calculation pheromone update for duration:

Toewt (1-p) x Tyy +pxTytc
Where:
T.w = New pheromone rate
T,s = Old pheromone rate
T, = Initial pheromone value and
¢ = Constant value

Imtially, T,,,=0.001, T, =0.001, ¢ = 0.06. For example
for mean, first local pheromone is updated as:

T, =(1-0.9)x 0.001 + 0.9 x 0.001 +0.06
=0.1 % 0.001 +0.0009 + 0.06
=0.06100

T, value change due to the previous T, value,
i1e, T, = 006100, For standard deviation,
pheromone updated as:

local

T, =(1-0.9)x 0.001 + 0.9x0.001 +0.06
=0.1x0.001 +0.0009 + 0.06
=0.06100

Similarly, the values for the latency and digraph are
calculated as earlier. Mean and standard deviation 1s used
to extract the features from the Keystroke duration,
latency and digraph From the extracted features the
optimized features are selected using the Ant Colony
Optimization Algorithm to reduce the searching space.

CLASSIFICATION USING
BACKPROPAGATION NEURAL NETWORK

Neural networks are simplified models of the
biological nervous system which 13 a computing,
performed like a human brain. A Neural network has a



Int. J. Soft Comput., 7 (4): 169-180, 2012

Input layer Hiddenn layer Output layer

Fig. 5: Neural network architecture

parallel distributed architecture with a large number of
nodes and connections as shown in Fig. 5. Each
comnection points from one node to another and
associated with weights. The backpropagation neural
network is a network of simple processing elements
worlking together to produce a complex output. The back
propagation paradigm (Obaidat and Macchairolo, 1991)
has been tested in various applications such as bond
rating, mortgage application evaluation, protein structure
determination, signal processing and handwritten digit
recogmition (Rumelhart ef af., 1987, Hecht-Nielsen, 1990;
Obaidat and Macchairolo, 1991). It can learn difficult
patterns such as those found in typing style and can
recognize these patterns even if they are variations of the
ones 1t itially learned.

The backpropagation neural network uses a training
set composed of input vectors and a desired output (the
desired output 1s usually a vector instead of a single
value). The backpropagation neural network has many
processing element. These elements or nodes are
arranged into layers: input, middle and output. The output
from a backpropagation neural networlk is computed
using a procedure known as the forward pass:

The input layers propagate a particular input value
component to each node in the hidden layer

Hidden layers compute output values which become
mputs to the output layer

The output layers compute the network output for
the particular input values

The forward pass produces an output vector for a
given input vector based on the current state of the
network weights. Since, the network weights are initialized
to random values, it 1s unlikely that reasonable outputs
will result before traimmng. The weights are adjusted to
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reduce the error by propagating the output error
backwards through the networle. This process is where
the backpropagation neural network gets its name and 1s
known as the backward pass:

Compute error values from the output layer. This can
be computed because the desired output 1s known
Compute the error for the middle layer nodes. This 1s
done by attributing a portion of the error at each
output layer node to the middle layer nodes which
feed that output node. The amount of error due to
each middle layer node depends on the size of the
weight assigned to the connection between the two
nodes

Adjust the weight values to improve network
performance

Compute overall error to test network performance

The training set i1s repeatedly presented to the
network and the weight values are adjusted until the
overall error is below a predetermined tolerance. The Back
Propagation Algorithm can be implemented in two
different modes: online mode and batch mode. In the
online mode the error function 1s calculated after the
presentation of each input timing vector and the error
signal is propagated back through the networls, modifying
the weights before the presentation of the next timing
vector. This error fimetion 15 usually the Mean Square
Error (MSE) of the difference between the desired and the
actual responses of the network over all the output units.
Then, the new weights remain fixed and a new timing
vector 1s presented to the network and this process
continues until all the timing vectors have been presented
to the network. The presentation of all the timing vectors
is usually called one epoch or a single iteration. In
practice many epochs are needed before the error
becomes acceptably small. In the batch mode the error
signal is calculated for each input timing vector and the
weights are modified every time the mput timing vector 1s
been presented. Ther, the error function is calculated as
the sum of the individual MSE for each timing vector and
the weights are accordingly modified (all in a single step
for all the timing vectors) before the next iteration. In the
forward pass outputs are computed and m the backward
pass weights are updated or corrected based on the
errors. The development of the Back Propagation
Algorithm 15 a landmark in neural networks in that it
provides a computationally efficient method for the
training of multi-layer perceptrons.

Backpropagation neural network learning rule: Imtially,
the mputs and outputs of the feature subset selection
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algorithms are normalized with respect to their
maximum values as shown m Fig. 2. In neural
networks (Haider ef af., 2000; Brown and Rogers, 1993) it
lies between zeros to one. These normalized values are
assigned to the input neurons. The number of hidden
neurons is greater then or equal to the number of input
neurons. And there is only one output neuron. Initial
welghts are assigned randomly. The output from the each
hidden neuron 1s calculated using the sigmoid function:

8, =1/(1+e™)

Where:
A=1
x = Ew,l, where w, i1s the weight assigned between

input and lidden layer and I 1s the input valu

The output from the output layer 1s calculated using
the sigmoid function:

S, =11 +e™)

Where:
A=1
x = Zw, 0O, where w, 1s the weight assigned between

hidden and output layer and O, 1s the output value
from hidden neurons
S, = Subtracted from the desired output
Using this error (e) value, the updation of weight 1s
performed as:
Delta=e x 8, % (1-5,)

The weights assigned between input and hidden
layer and hidden and output layer are updated as:

W,, = W, + (nxdeltax5 )
W, =W, + (nxdeltax1,)

Where:
n = The learning rate
I = The input values

Agam calculate the output from hidden and output
neurons. Then, check the error (e) value and update the
weights. After several iterations when the difference
between the calculated output and the desired output is
less then the threshold value, the iteration is stopped
(Fig. 6).

Experimental results: Assign the subset selection values
as input to the back propagation neural network. For, e.g.,
if the subset values are 270, 250, 240, 230, 220 msec. Let T,
be input of input, O; be output of input, T, be input of
hidden, O, be output of hidden, I, be Input of output, O,
be output of cutput. After applying the BPNN leaming
the following calculations are done.

Forward pass

Input of input: Input of input and output of input layers is
f (x); Input f (x) = (0.00369, 0.00398, 0.00414, 0.00432,
0.00452).

Input of hidden: Assign weights randomly between input
to hidden layers as:

W, = (-0.7696789, 0.547986, -0.07547, 0.427683, 0.907837...)

Assume five weights for each single node. Multiply
each output of mput into weight that assigned randomly.
Such as:

randomly between-0.5 to 0.5.

Step 9: Update the weights using this deltavalue.
Step 10: Who=Wpo + (n” delta” Sy)

Fig. 6: BPNN learming algorithm

Step 1: ACO feature subset selection algorithm values are considered as input.

Step 2: These feature values are normalized between 0 and 1 and assigned to input neurons
Step 3: Represents the weights to the link of input nodes to hidden nodes connection, hidden nodes to output nodes. Initial weights are assigned

Step 4: Input to hidden neuron (I;) multiply with weight wip, initially assigned.
Step 5: The output from each hidden neuron (Oy) is calculated using sigmoid function
S =1(1+e')where | =landx= S;winl;

wherewin isthe weight assigned between input and hidden layer and k; isthe input value.
Step 6: Theinput to the output layer (o) isfind using multiply by weight w n, with output of hidden Op
Step 7: The output from the output layer (Oo) is cal culated using the sigmoid function:

S,=1/(1+e')where | =1landx= SwhoOn
wherew o isthe weight assigned i between hidden and output layer and Oy is the output value from hidden neurons

Step 8: S, is subtracted from the desired output. Using thiserror (€) value, the weight changeiscalculated as: delta=e” S, * (1-Sy)

Step 11: Wih =Win + (n” delta” I;) wherenisthelearning rate, | istheinput values.

Step 12: Perform Steps 5-10 with the updated weightstill the target output is equal to the desired output.
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L, = OxW,
I, =0.00369:x-0.7696789 = -0.002840115141

Qutput of hidden: Compute sigmoid function as:

S =11 +e™)
Where:
A=1
x = w0

S :1/(1+e-(-ﬂ 0028401 15141+-0 002022068 34+2 784843 e-4+0 001 5751502+ 0 00334991853))
1

8,=0.5000860924038992

Weight between hidden to output: Assign the weights
randomly between hidden to output layer as:

W, = (-0.982075, 0.6894, -0.04521, -0.0879, -0.09341)

Tnput of output layer: Multiply the weight between hidden
and output layer (W,,) and the output of ludden layer:

Io = Sl x Whu
I, =0.5000860924038992 = (-0.982075)
I, =-0.4912688993669402

QOutput of output layer: Sigmoid function of output layer
1s calculated as follows:

0, = 1l +e™)

Where:
A=1
X = Z;1\"’Vht|C)h

_ -(-0.4912688+0.344282+-0.0226156+-0.044055+-0.0465606)
0, = 1l+e )

O, =0.435310

Error signal: Compute the error signal using the formula
as Error = (T,-0,Y where T, is target output and is
assigned -0.1 and O, is output of output and is assigned
-0.435310:

Error = (T,- QY
Error = (0.1- 0.435310%
Error = (.1124328894755997

Backward pass: Weights are adjusted to achieve the
target output and reduce the error value:

D =(T,-0, )0, )(1-0,)
D ={0.1-0.435310) (0.435310) (1-0.435310)
D = -0.08242429601970899
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Output to hidden weight:

Y = S1xD

Y = [0. 50008 0.49939 x -0.082424296
0.50023 0.50119 0.49841]

Y =[-0.041218741953536 -0.04116219888646
-0.04123151770956 -0.04131089230660
-0.04108480246268]

[Aw] =[Aw]" +n[y][Assume n = 0.6]

[Aw] =0

[Aw] = 0.6 [-0.041218741953 -0.041162 19888646

-0.04123151770956 -0.0413108923066
-0.0410848024626]
[AW] = [-0.024731546 -0.024697349
-0.024738941 -0.024786546
-0.02465088]

Hidden to input weight: The adjusted weight between
hidden to mput:

[e] = [w][D]
= (-0.9820) (-0.08242429601970899)
= 0.08094065869135422

Similarly the remaining four weights are multiplied by
the error Difference value (D):

[D¥] = [e][ O, [1-0, ]
= [0.08094065869135422] [0.50008] [1-0.50008]
=0.02023516415481834

[x] = [5,][D*]

=[0.5000 0.49939 x 0.02023516415481834
0.50023 0.50119 0.4984]

[Av] = afAv] +n[x]

[x] = [0.01011758207740917
0.01010523862727473
0.01012223616516478
0.0101416619227534
0.01008520581476146]

[AV] = 0.6 % [0.01011758207740917
0.01010523862727473
0.01012223616516478
0.0101416619227534
0.01008520581476146]

[Av] =[7.467458159e-5 -5.2419426329e-5

3.4376054¢-6 -1.57123260¢-4
7.102493535e-6]



Int. J. Soft Comput., 7 (4): 169-180, 2012

8-
Variation in classification error per population
size with ACO duration (mean and SD)
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Fig. 7: Classification errorl

Similarly, twenty five weights are calculated and old
weights of wnput to hidden layer are replaced. After
training the user typing pattem, fix the threshold values
for each trained user. Again the users are asked to verify
by giving the user name and password. After the
verification of user name and password, the typing
pattern 1s verified through the comparison of desired
output with fixed threshold value. If the error value is
<0.001 then the user is considered as valid user otherwise
mvalid user. FAR and FRR rate is calculated using the
following equations:

FAR = FA/N x No. of user’s

Where:

FAR = False Acceptance Rate

FR = Number of incidence for False Acceptance
N = Total number of samples

FRR = FR/N x No. of user’s
Where:
FRR = False Rejection Rate
FR = Number of incidence for False Rejection
N = Total number of samples

Receiver Operating Characteristics (ROC): ROC
analysis provides tools to select possibly optimal models
and to discard suboptimal ones independently from (and
prior to specifying) the cost context or the class
distribution. ROC analysis is related in a direct and natural
way to cost/benefit analysis of diagnostic decision
making.
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Variation in classification error per population size with
ACO Latency (mean and SD)
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N
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Fig. 8: Classification error2

7 Variation in classification error per population size with
ACO digraph (mean and SD)

—e— Mean (Lat)
—a— SD (Lat)

Classification error (%)

O T T T
10 40 70 100

Sample size

Fig. 9: Classification error3

Figure 6- 9 shows the ROC curves for comparison
of mean and standard deviation (duration, latency and
digraph) of classification performance. The error rate
reduced ones the population size increased. The following
figure shows the emror rates of various users for the
different number of sample collections.

CONCLUSION

Features are extracted from 10 users and each user
wants to type 50 samples. Using that samples mean and
standard deviation is calculated for duration, latency and
digraph. subsets of features are selected Ant Colony

Optimization Algorithm. The features are classified
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using Backpropagation Algorithm using Jack-Knife
Method. ACO using duration mean provide the best
performance comparng with latency and digraph. The
classification error was 0.167%.
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