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Abstract: This study investigates the global chaos synchromization of identical hyperchaotic Wang Systems,
identical hyperchactic Pang Systems and non-identical hyperchactic Wang and hyperchaotic Pang Systems
via Adaptive Control Method. Hyperchaotic Pang System and hyperchaotic Wang System are recently
discovered hyperchaotic systems. Adaptive Control Method 15 deployed in this study for the general case
when the system parameters are unknown. Sufficient conditions for global chaos synchronization of identical
hyperchaotic Pang Systems, identical hyperchactic Wang Systems and non-identical hyperchactic Pang and
Wang Systems are derived via Adaptive Control Theory and Lyapunov Stability Theory. Since, the Lyapunov
exponents are not required for these calculations, the Adaptive Control Method 1s very convenient for the
global chaos synchronization of the hyperchaotic systems discussed n this study. Numerical simulations are
presented to validate and demonstrate the effectiveness of the proposed synchronization schemes.
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INTRODUCTION

Chaotic Systems are dynamical systems that are
highly sensitive to imtial conditions. The sensitive nature
of chaotic systems is commonly called as the butterfly
effect (Alligood et al., 1997). Since, chaos phenomenon in
weather models was first observed by Lorenz (1963) a
large number of chaos phenomena and chaos behaviour
have been discovered m physical, social, economical,
biological and electrical systems.

A Hyperchaotic System 1s usually characterized as a
chaotic system with more than one positive Lyapunov
exponent implying that the dynamics expand in more than
one direction giving rise to thicker and more complex
chaotic dynamics. The first Hyperchaotic System was
discovered by Rossler (1979). Chaos 1s an interesting
nonlinear phenomenon and has been extensively studied
in the last two decades (Alligood et al., 1997; Lorenz,
1963; Rossler, 1979, Pecora and Carroll, 1990, Fabiny and
Wiesenfield, 1991; Niu et af., 2002; Blasius ef al., 1999,
Kocarev and Parlitz, 1995; Boccaletti et al., 1997; Tao,
1999; Ott et al., 1990, Ho and Hung, 2002; Huang et al.,
2004; Chen, 2005; Sundarapandian and Suresh, 2011,
Sundarapandian and Kartlukeyan, 2011; Lu et af., 2004;
Sundarapandian, 2011a-h; Zhao and Lu, 2008; Park and

Kwon, 2003; Tan ef ai., 2003; Vincent, 2008, Slotine and
Sastry, 1983; Utkin, 1993; Sundarapandian and
Sivaperumal, 2011; Pang and Liu, 2011; Wang and Liu,
2006; Hahn, 1967).

Synchronization of chaotic systems is a phenomenon
which may occur when two or more chaotic oscillators are
coupled or when a chaotic oscillator drives another
chaotic oscillator. Because of the butterfly effect which
causes the exponential divergence of the trajectories of
two identical Chaotic Systems started with nearly the
same 1mtial conditions, synclromizing two Chaotic
Systems 1s seemingly a very challenging problem.

Pecora and Carroll (1990) deployed control
techniques to synchronize two identical Chaotic Systems
and showed that it was possible for some chaotic systems
to be completely synchronized. From then on, chaos
synchronization has been widely explored in a variety of
fields including physical systems (Fabiny and
Wiesenfield, 1991), chemical systems (Niu ef af., 2002),
ecological systems (Blasws ef al, 1999),
communications  (Kocarev  and  Parlitz,
Boccaletti et al., 1997; Tao, 1999), etc.

In most of the chaos synchromzation approaches,
the master-slave or drive-response formalism is used.
If a particular chaotic system is called the Master or
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Drive System and another Chaotic System is called
the Slave or Response System then the idea of the
synchronization 1s to use the output of the Master System
to control the Slave System so that the output of the
Slave System tracks the output of the Master System
asymptotically.

Since, the semmal research by Pecora and Carroll
(1990), a variety of impressive approaches have been
proposed for the synchronization of chaotic systems
such as the OGY Method (Ott et al, 1990), Active
Control Method (Ho and Hung, 2002; Huang et al., 2004,
Chen, 2005, Sundarapendian and Suresh, 2011,
Sundarapandian and Karthikeyan, 2011), Adaptive
Control Method (Lu et al, 2004; Sundarapandian,
2011f, e, b, a, g) Sampled-Data Feedback Synchronization
Method (Zhao and Lu, 2008), Tine-Delay Feedback
Method (Park and Kwon, 2003), Backstepping Method
(Tan et al., 2003; Vincent, 2008), Sliding Mode Control
Method (Slotine and Sastry, 1983, Utkin, 1993;
Sundarapendian and Sivaperumal, 2011; Sundarapandian,
20114, ¢, h), etc.

In this study, researchers investigate the global
chaos  synchronization
systems, viz., identical hyperchaotic Pang System
(Pang and Liu, 2011), identical hyperchaotic Wang
Systems (Wang and TLiu, 2006) and Non-identical
hyperchaotic Pang and hyperchaotic Wang Systems.
Researchers consider the general case when the
parameters of the Hyperchaotic Systems are unknown.

of uncertain hyperchaotic

SYSTEMS DESCRIPTION

The hyperchaotic Pang System (Pang and Liw, 2011)
1s described by the dynamics:

X, =CX, XX, t X, (1)
X, =—bx, + XX,
X, = —d{x, +x,)

Where:

x,-X, = The state variables

a-d = Positive, constant parameters of the system

The 4D system Eq. 1 is hyperchaotic when the
parameter values are taken as:

a=36,b=3,¢c=20andd=2
The state orbits of the hyperchaotic Pang Chaotic

System Eq. 1 are shown in Fig. 1. The hyperchaotic Wang
System (Wang and Liu, 2006) 13 described by:
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Fig. 2: State orbits of the Hyperchaotic Wang System

X, =ox, —x)

X, =f%, - xx; +x, 2
X, =YX, + &%/
—8x

5(4 1
where, x,-x, are the state variables and «, P, v, 8 and ¢ are
positive constant parameters of the system. The 4D
system Eq. 2 13 hyperchaotic when the parameter values

are taken as:
a=10,p=40,v=250=106ande=4

The state orbits of the hyperchaotic Wang Chaotic
System Eq. 2 are shown in Fig. 2.

ADAPTIVE SYNCHRONIZATION OF IDENTICAL
HYPERCHAOTIC PANG SYSTEMS

Theoretical results: In this study, researchers deploy
adaptive control to achieve new results for the global
chaos synchromzation of identical hyperchaotic Pang
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Systems (Pang and Liu, 2011) where the parameters of the
Master and Slave Systems are unknown. As the Master
System, we consider the hyperchaotic Pang dynamics

described by:
X =alx, —x,)
X, =CX; — XX, T X, 3)
X, = —bx, + X%,
x, = —d{x, +x,)

Where:
X,-X, = The state variables
a-d = Unknown, real and constant parameters of the

system

As the Slave System, researchers comnsider the
controlled hyperchaotic Pang dynamics described by:

vy =aly, —y)+uy,
V.=, —YiYs YT, )
y; =-by, +y,v, +u,
Y4 = 7d(Y1 + YZ) +u,
Where:
vi-v, = The state variables
u-u, = The nonlinear controllers to be designed

The chaos synchronization error is defined by:

& =YX (1 = 1_4) (5)
The error dynamics is easily obtained as:

e —afe, —¢e)+1,
&, =ce, te —y Yy, XX T, (6)
e, = —be, + ¥y, —XX; T u,

e, =—die te,)tu,
Let us now define the adaptive control functions:

w,(t)=-ale, —e,)—k.e,
u, (t) :76'32 - Yy, — XX — ke (7)
u, () =be, ~y,y, +x,x, ~kse,

u,(t)=die, +e,)-k,e,

where, a-d are estimates of a-d, respectively and k
(1 = 1-4) are positive constants. Substituting Eq. 7 mto
Eq. 6, the error dynamics simplifies to:

é =(a—aye, —e) ke

e, =(c—Cle, —k,e,

e, = —(b-ble, ~ke,

e, =—(d—die +e,) ke,

(&)

Let us now define the parameter estimation errors as:
¢,=a4,¢,=b-b,e =c Gande,=dd @)

Substituting Eq. 9 into Eq. 8, researchers obtain the
error dynamics as:

¢ =e, (e, —e) ke,
e, =ee, —kpe, (10)
éa =-¢,0, ke,

e, =—¢,(e +te,)-k,e,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. We consider the quadratic Lyapunov function
defined by:

V(elzezaejae4zea>eb:e::ed)

(11)

1 2 2 2 2 2 2 2 2
:E(el+ez+ea+e4+ea+eb+ec+ed)

which is a positive definite function on R*. We also note

that:
6 -4 ¢ =-b & --Cande, ——d 12

e =

Differentiating Eq. 11 along the trajectories of Eq. 10
and using Eq. 12, we obtain:

V=-ke —k,e! ~kel kel +
ea[el(ez*el)*é}e{*ei*b} (13)

ec[eg —E}L 6{—64(61 + ez)—a}

In view of Eg. 13 the estimated parameters are
updated by the following law:

d=gle, —e)tk,e,

—el + ke, (14)

LT
I

c=¢l+k.e,
d=-e,(e +e)tke,

where, k,-k, are positive constants. Substituting Eq. 14
into Eq. 13, we obtain:

2 3

V:—klef—k ei—k ei—k4ej— (15)
ksei 71{665 7k7ei 7kxeil
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which is a negative definite function on R’. Thus, by
Lyapunov Stability Theory (Hahn, 1967), it is immediate
1-4) and the
decay

that the synchronization error e (1

parameter estimation error e-e, to  zero
exponentially with time. Hence, we have proved the

following result.

Theorem 1: The identical hyperchactic Pang Systems
Eq. 3 and 4 with unknown parameters are globally and
exponentially synchromized via the adaptive control law
(Eq. 7) where the update law for the parameter estimates
18 given by BEq. 14 and k 1 =1, 2,...,
constants.

Also, the parameter a(t), by, &) and dft) estimates
exponentially converge to the original values of the
parameters a-d, respectively as t-ee.

8) are positive

Numerical results: For the numerical simulations,
the fourthorder Runge-Kutta Method with tiume-step
h = 107" is used to sclve the hyperchaotic systems
Eq. 3 and 4 with the adaptive control law Eq. 14 and the
parameter update law Eq. 14 using MATLAB. Researchers
take:

k=4fori1=1, 2,

For the hyperchaotic Pang Systems Eq. 3 and 4, the
parameter values are taken as:

a=36,b=3,¢=20,d=2

Suppose that the imtial values of the parameter
estimates are:

A(0)=12, bOY=4, &0) =2, d(0)=21

The initial values of the Master System Eq. 3 are
taken as:
x,(0)=12, x,(0)=18, x,(0)=35, x,(0)=6

The initial values of the Slave System Hq. 4 are taken
as:

¥ (O) =20, ¥a (0) =5, Y (O) =16, Y4 (0) =22

Figure 3 shows the global chaos synchronization
of the identical hyperchactic Pang Systems Eq. 3
and 4. Figure 4 shows that the estimated values of
the parameters, viz., a(t), bt), &t) and d(t) and converge
exponentially to the system parameters:

a=36,b=3,¢=20andd =2 as t-«

31

407

ZO-M\/\/—
o044,
-20 ) L T T T T T T T 1

401

204 x,
O-M\/
Y2

'20 T T T T T T T 1

-20 T T T
1.5

T T
2.0 25 30 3.5 4.0

Time (sec)

Fig. 3: Complete synchronization of Hyperchaotic Pang
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Fig. 4: Parameter estimates a(t), b(t), &(t) and d(t)

ADAPTIVE SYNCHRONIZATION OF IDENTICAL
HYPERCHAOTIC WANG SYSTEMS

Theoretical results: Tn this study, we deploy adaptive
control to achieve new results for the global chaos
synchronization of identical hyperchaotic Wang Systems
(Wang and Liu, 2006) where the parameters of the Master
and Slave Systems are unknown. As the Master System,
we consider the hyperchaotic Wang dynamics described
by:
X =X, —X;)

X, =Px, —xx, T X, 16)

L 2
X, = —YX, T €%,

X, = —0x%,

where, X,-X, are the state variables and &, P, v, 6 and ¢ are
unknown, real and constant parameters of the system. As
the System, the controlled
hyperchaotic Wang dynamics described by:

Slave we consider
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v, =y, —y, )ty

Y. =By —yiys vt
Vi = VYt EY12 +u;

¥y =0y, +u,

(an

Where:

Yi7¥a
-1,

= The state variables
= The nonlinear controllers to be designed

The chaos synchromzation error 1s defined by:

& =Y %
€ =Y, X
8 7Y, X,

G =Y, — Xy

(18)

The error dynamics is easily obtained as:

e =afe;, —e)tu,
&, =Pe +e —yy, +xX; + 1, (19)

- 1 2
&, = —Ye, T ely; — %/ )+ u,

e, = —de, +u,

Let us now define the adaptive control functions:

u,(t)=-a(e, —¢,) ke,

u,(t)y= f["?)el —e, tyy, %X, ke,
u, (0 =T, ~(yF ~ %))~ ke,
u,(t)= éel -k,e,

(20)

where, &, B, %, & and & are estimates of o, B, v, d and €,

respectively and k; (1 = 1-4) are positive constants.
Substituting Eq. 20 mto Eq. 19, the error dynamics
simplifies to:

e =(0—GXe, —e) ke

e, = (B— e, —k,e,

(21)
éj = _(Y - i’)ej + (S - é)(Yf - X12 ) - kjej
&, = (8-8e ke,
Let us now define the parameter estimation errors as:
em:a_&: eﬁ:B_Ba ey:'\{_’?: (22)
e, =8-8ande =g—¢

Substituting Eq. 22 into Eq. 21, we obtain the error
dynamics as:

32

e =e (e, —¢)-ke
e, =g, —kpe, (23)
- 2 2

€; = €,8; + ey —x7) ke,

e, = ¢ —k,e,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. We consider the quadratic Lyapunov function

defined by:

V(€,,8,.€5.8,,€,:€3,€,:5,8,)
(24)

2

17, 2 2 2 2 2 2 2
:E(BI +e2+ej+e4+em+e5+ey+e5+e£)

which is a positive definite function on R’. We also note
that:

Go= G, i =P ¢, =T é=bandé =& 2

Differentiating Eq. 24 along the trajectories of
Eq. 23 and wsing Eq. 25, we obtain:

V=-ke ke ke’ kpe’te, [el(e2 —e) ,&J+
e [ele2 —[AS}L e{—ei —ﬂ+ e{—ele4 —S}+ (26)
.oyl —xD-¢

In view of Eg. 26 the estimated parameters are
updated by the following law:

ét:el(e2 —e)tk.e,
B

. 2
v=—e;+ ke,

—ee, + kﬁe[3

(27)
S= —ee, + ke,

&= ej(yf —Xf)+ ke,

where, k, (i = 5,...., 9) are positive constants. Substituting
Eq. 27 into Eq. 26, we obtain:

r_ 2 z2 2 z z
V=-ke —k,e ke, “ke —ke,

2 2 2 2
kﬁeB - kTeY —k,e; — kel

(28)

which is a negative definite function on R’. Thus, by
Lyapunov Stability Theory (Hahn, 1967), it is immediate
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that the synchronization error ¢; (i = 1-4) and the parameter
estimation error ¢,, ¢, ¢, ¢ and e, decay to zero
exponentially with time. Hence, we have proved the

following result.

Theorem 2: The identical hyperchaotic Wang Systems
Eq. 16 and 17 with unknown parameters are globally
and exponentially synchronized via the adaptive control
law Eq. 20 where the update law for the parameter
estimates is given by Eq. 27 and k (i=1, 2,
positive constants. Also, the parameter estimates
and & (t). B (1), ¥ (£, 3 (1) and (1) exponentially converge
to the original values of the parameters «, B, vy, & and €,
respectively as t-ee.

Numerical results: For the numerical simulations, the
fourth order Runge-Kutta Method with time-step h = 107°
is used to solve the hyperchaotic systems Eq. 16 and 17
with the adaptive control law Eq. 20 and the parameter
update law HEq. 27 using MATLAB. We take:

k=4fori=1,2,..,

For the hyperchaotic Wang Systems Eq. 16 and 17,
the parameter values are taken as:

w=10,p=40,v=2556=106¢e=4

Suppose that the initial values of the parameter
estimates are:

G(0)=5, B(O)=10, 7(O)=7, 3(0)=14, £(0)=9

The mitial values of the Master System Eq. 16 are
taken as:
% (0)=21,%,(0)=7.x,(0) = 16, %, (0) = 18

The iutial values of the Slave System Eg. 17
are taken as:

¥i(0) =4, y,(0)=25,y,(0)= 30, y,(0) = 11

Figure 5 shows the global chaos synchronization of
the identical hyperchaotic Wang Systems Eq. 16 and 17.
Figure 6 shows that the estimated values of the
parameters, & (t),p (1),% (1),3 () and & (1) viz., converge
exponentially to the system parameters:

w=10,p=40,y=2508=10.6ande=4as tc

33

401
204,
0+

50 X,
ke
y-t
'50 T T T T T T 1
0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)
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ADAPTIVE SYNCHRONIZATION OF
HYPERCHAOTIC PANG AND HYPERCHAOTIC
WANG SYSTEMS

Theoretical results: Tn this study, we discuss the global
chaos synchromzation of non-identical hyperchaotic
Pang system (Pang and Liu, 2011) and hyperchaotic
Wang system (Wang and Liu, 2006) where the parameters
of the master and slave systems are unknown. As the
master system, we consider the hyperchaotic Pang
System described by:

X =alx, —x,)

X, =CX, — X,X; T X, (29)
%X, =-bx, + X%,
X, =—d(x, +x,)

Where:

x,-X, = The state variables

a-d = Unknown, real and constant parameters of the

system
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As the Slave System, we consider the controlled
hyperchaotic Wang dynamics described by:

Y1 :a(YZ 7Y1)+u1

Vi =By vy vy, tu, (30)
Y= 1yt EY12 T,
Y4 = 78Y1 +u,

where, y,-y, are the state variables, «, P, v, 8 and £ are
unknown, real and constant parameters of the system and
u-u, are the nonlinear controllers to be designed. The
synchronization error is defined by:

=Y %
G =¥z T X (31)
G =YX,
€ =Y Xy

The error dynamics is easily obtained as:

g =y, -y, )—alX, —x )+,
¢, = BY1 TOX;Te Ty Y, PXX T,

(32)
e, =—vy,+bx, eyl —x,x, +u,
e, =0y, +d(x, +x,)+1,
Let us now define the adaptive control functions:
u, (t=—0a(y, - y)+alx, -x,)-ke
u, (D=—Py, +ox, —e, +yy, “xX, ~kpe, (33)

u, () =%y, —bx, - éYf X%, ke,

u, (0)=38y, —dix, +x,)-k,e,
where, 4,0, 8d & %8 and # are estimates of a, b, c,
d, &, P, v, 0 and £, respectively and k; (i = 1-4) are positive

constants. Substituting Eq. 33 into Eq. 32, the error
dynamics simplifies to:

e ={0— &)(YZ -y)—{a 75)(){2 -x ) ke,

e, =B~ B)}H 7(076))? —k.e, (34)
e, =—(y— '\A’)Y3 +(b-b)x; +i{e- é)Yf ke,
é,=—(8-8)y, +(d-d)x,+x,)-k,e,

Let us now define the parameter estimation errors as:

Substituting Eq. 35 into Eq. 34, we obtain the
error dynamics as:

e =e,(y, ~y)—eix, —x) ke,
&, =CpY1 —6X, —kge, (36)

L z
€ =78, Y; TeX; T ey, kaes

e, =—&y, te,(x +X,) -ke,

We consider the quadratic Lyapunov function
defined by:
/e +el+el+el+el+el+el+

2 2
2l eltelte

(37)

2 2 2
stel e, tel

which is a positive definite function on R". We also note
that:

e,——4, & —-b, & =& & ——d (38)

&= 0, e = —f e =7, & =—b e ——¢

Differentiating Fg. 37 along the trajectories of
Eq. 36 and wsing Eq. 38, we obtain:

V=-ke ~k,el ke’ ket ea[fel (X, —%,) féJ+

e, | X, —b}— e, [—ezx2 —("-:}— e, {e,l(x1 +X2)—cﬂl}+

=

e [el(y2 -v,) —&]+ eL{ezy1 —B}— ey[—ejy3 —ﬂ-#—

2

S| &) 7é:|+es[63Y12 7é}

(39)
In view of Eq. 39 the estimated parameters are
updated by the following law:

a=—e(x,—x)t+ke,, d=¢ly,—v,)+ke,

T

&= —e,%x, tkie_, (40)

=ex; tkge, B=ey + kerB
Y=-ey;tk 1€y

d=e,(x, +x,0t ke, =—ey +k,e,
A 2
e=ey ke,

where, k (1= 5, ..., 13) are positive constants. Substituting
Eq. 40 mto Eq. 39, we obtain:

e 2 3 2 H 2 2
V=-ke -k —ke; —ke; —ke —-ke, —

2 2 2 2 2 2 2
ke —kyey —kyey, 71{1063 7klley —kpe; — kel

(41)
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which is a negative definite function on R". Thus, by
Lyapunov Stability Theory (Hahn, 1967), it is immediate
that the synchromzation error ¢ (1 =1, 2,3, 4) and all
the
exponentially with time. Hence, we have proved the
following result.

parameter estimation errors decay to zero

Theorem 3: The non-identical hyperchaotic Pang System
Eq. 29 and hyperchaotic Wang System Eq. 30 with
unknown parameters are globally and exponentially
synchronized via the adaptive control law Eq. 33 where
the update law for the parameter estimates 1s given by
Eq 40andk (1=1, 2, ..., 13) are positive constants. Also,
the parameter &(t),b(t), (), d(t), &(t), P(t). (), &(t) and 2(t)
estimates exponentially converge to the origmal values
of the parameters a, b, ¢, d, «, P, v, § and e,
respectively as t-ee.

Numerical results: For the numerical simulations, the
fourth order Runge-Kutta Method with time-step h = 10~°
is used to solve the hyperchaotic systems HEq. 29 and 30
with the adaptive control law Eq. 33 and the parameter
update law Eg. 40 wing MATLAB. We take k = 4
fori=1,23,..,13.

For the hyperchaotic Pang and hyperchaotic
Wang Systems, the parameters of the systems are
chosen so that the systems are hyperchaotic.

Suppose that the initial values of the parameter
estimates are:

4(0y=2, b(0) =5, &0)=10, d(0)=12
&(0)=7, BI0Y=9, 7(0)=15, 8(0) =22, &(0) =25

The initial values of the Master System Eq. 29
are taken as:

%, (0)=27, %,(0) =11, %, (0) = 28, x, (0) = 6

The initial values of the slave system Eq. 30 are taken
as:

¥i(0) =10, y,(0) = 26, y,(0) = 9, ,(0) = 30

Figure 7 shows the global chaos synchronization of
hyperchaotic Pang and hyperchactic Wang systems.
Figure 8 shows that the estimated values of the
parameters, viz., a(t),b(t),&(t),d(t), &), (), ¥, 5y and
2(t) converge exponentially to the system parameters
a=36,b=3,¢=20,d=2,¢=10,p=40,v=25,8=10.6
and & = 4, respectively as t-ee.

35
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Fig. 7: Complete synchronization of hyperchactic Pang
and Wang Systems
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Fig. 8: Parameter estimates a(t),b(t),&(t), d(1),&(), (1) and
¥{t)

CONCLUSION

In this study, we have derived new results for the
adaptive synchronization of identical hyperchactic Pang
Systems in 201 1, identical hyperchaotic Wang Systems in
2006 and Non-identical hyperchaotic Pang and
hyperchaotic Wang Systems with unknown parameters.
The adaptive synchromization results derived m this
study are established using Lyapunov Stability Theory.
Since, the Lyapunov exponents are not required for these
calculations, the Adaptive Control Method is a very
effective and convement for achieving global chaos
synchromization for the uncertain Hyperchaotic Systems
discussed in this study.

Numerical simulations are given to illustrate
the effectiveness of the adaptive synchronization
schemes derived in this study for the global chaos
synchromization of identical and non-identical
uncertain hyperchaotic Pang and hyperchaotic Wang
Systems.
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