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Abstract: Power consumption of large servers and disks has become a popular research topic as this issue is
umnportant from both techmcal and environmental perspectives. The performance of the disk systems are greatly
affected by extreme power consumption. A majority of the research in disk power management has concentrated
on the behavior of the disk during periods of idleness. The main focus is on when the disk should be put to
idleness to reduce power consumption without affecting the performance. Due to the increasing requirements
of current and forthcoming data-intensive computer applications, there has been a chief alteration m the disk
subsystemn which now comprises of more disks with lugher storage capacities and lgher rotational speeds.
Thus, disk power management has become a vital issue as it consumes very high power. This study proposes
and evaluates an efficient compiler-directed disk power management technique which utilizes disk access
schemes for reducing energy consumption This study uses a novel approach called LMFNN in which the
Fuzzy Neural Network 1s tramed using Modified Levenberg Marquardt Learning algorithm. The proposed
scheme analyzes the various disk access techniques and selects the suitable algorithm which would provide
better overall performance of the disks. The experimental evaluation using a diverse set of workloads indicates
that the proposed LMFNN approach provides better power consumption than the conventional approaches.
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INTRODUCTION

Disk Power Management (DPM) 1s a vital issue mn
modermn computer systems. For several Battery-Oriented
Mobile Systems, hard drives utilize a considerable
segment of energy. It 1s the fact that disk systems make
up almost 27% of the total energy consumption in a data
center (Garrett, 2007). Thus, reducing disk power
consumption 1s vital for both mobile computers and
eriterprise servers.

Large scale datacenters have to maintain thousands
of rotating disks for fast online access of stored datasets
(Gurumurthi et al., 2003). As the cost of the disks are
getting reduced in terms of dollars per gigabyte, the
forecast 1s that the energy costs for operating and cooling
these rotating disks will ultimately outstrip the cost of the
disks and the connected hardware required to control
them.

Since, data mntensive applications require fast and
reliable access to online data resources, the percentage of
power consumption by disk storage systems will continue
to mcrease. This in tum necessitates the exploitation of
power humgry faster (high RPM) and larger capacity
disks. Thus, reducing power consumption is becoming a
vital issue for high-end cluster/server based systems.

Especially, recent researches Bohrer et al. (2002) and
Elnozahy et al (2003) shows a huge segment of the
system maintenance budget 1s spent in cooling because
of the excessive power consumption of such systems.
Moreover, high power consumption which requires
sophisticated power generation and transmission
technologies is known to be harmful to the environment.
Therefore recent years have observed several efforts on
minimizing energy consumption of disks (Chase et af.,
2001; Chase and Doyle, 2001).

Numerous energy saving techniques for Disk Based
Storage Systems have been proposed by various
researchers (Trani et al., 2005, Weddle et al., 2007). A
majority of these approaches revolve around the concept
of spinning down the disks from their usual igh energy
mode (idle mode) into a lower energy mode (standby
mode) after they experience a period of inactivity whose
length exceeds a certan breakeven time (also called
idleness threshold). The reason for this 1s that typical
disks consume about one tenth of the power in standby
mode as compared with their power consumption in idle
model.

Majority of the present disks provide diverse power
modes of operation such as active and idle. Active mode
occurs when the disk is servicing a request and idle mode
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when it is spinning and not serving a request and one or
more low power modes that use less energy than idle.
Various researchers have taken up the chance of spinmuing
down the disk during periods of idleness or serving the
requests at lower rotational speeds when performance is
not a problem. Disk idle periods are considered as a
vital factor in those power consumption techniques
(Douglis ef al., 1994, 1995).

Most of the traditional techniques are reactive in
manner and thus cannot provide efficient results in all the
scenarios. The conventional disk power management
techmques fail to estimate the disk idleness accurately
(Elnozahy et al., 2002; Li et al., 1994). The selection of the
appropriate disk access scheduling algorithm has not
been effectively taken into consideration for the disk
power management.

Disk access techniques greatly influence the
power consumption of the disks. Focusing on large
disk-mtensive scientific applications with regular data
access patterns, this study proposes and experimentally
evaluates a compiler-based approach to disk power
management. The proposed approach exposes disk layout
mnformation to the compiler, allowing it to derive the disk
access patterr, 1.e., the order in which parallel disks are
accessed. The idea is to restructure an application code
such that disk reuse is maximized, i.e., the application
accesses as many data elements as possible from a set of
disks before moving to the next set.

This approach uses the Fuzzy Neural Networks
(FNNs) for selecting the suitable disk access scheduling
algonthm. Neural fuzzy networks are the realizations of
the functionality of fuzzy systems using neural networks
(Nauck et al., 1997). Fuzzy Neural Networks (FNNs) have
been extensively used to deal with the problems such as
classification, identification, control, pattern recognition,
etc. (Wang ef al., 1997). A fuzzy system comprises of a
group of fuzzy if-then rules. The main goal of a neural
fuzzy network is its capability to model a problem domain
through a Linguistic Model rather than Complex
Mathematical Models. The Linguistic Model 1s basically
a fuzzy rule base comprising of a group of IF-THEN fuzzy
rules that are highly instinctive and easily understandable
by the human users. Moreover, the black-box nature of
the neural network paradigm 1s resolved as the
connectionist framework of a neural fuzzy network
fundamentally defines the IF-THEN fuzzy rules.
Moreover, a neural fuzzy network can self alter the
parameter of the fuzzy rules through neural network based
learning approaches.

This study proposes compiler-directed disk power
management technique which can accurately selects the
appropriate disk access techmque which in turn provides
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better power consumption. This technique focuses on
developing an accurate and computationally efficient
power consumption models for disk-based systems using
the compiler directed energy optimization techmque which
saves disk power by using the Fuzzy Neural Network
(FNN) to select the most appropriate disk scheduling
algonthm and provides effective disk power management.

LITERATURE SURVEY

Enhancing security and reducing power utilization are
essential for large-scale data storage organizations. Even
though numerous studies have been concentrated on
data protection and energy efficiency, the majority of the
available techmques have concentrated on just one of
these two metrics. Yin et al. (2010) presented a novel
technique to incorporate power optimization with security
services to boost the security of energy efficient large
scale storage organizations. In this approach, the dynamic
speed control for power management procedure 1s used or
DRPM to preserve energy in protected storage systems.
The researcher had given two manners of incorporating
privacy services with the dynamic disk speed control
method. The first method-security aggressive in nature 1s
mostly concentrated on the enhancement of storage
system security with less importance on energy
preservation. The second method provides advanced
precedence to energy preservation as different to the
security optimization. The experimental outcome shows
that the energy-aggressive method offers better energy
savings than the Security-Aggressive Method. On the
other hand, the superiority of security realized by the
Security-Aggressive Method is advanced than that of the
Energy-Aggressive Method. Furthermore, the observed
result shows that energy savings vielded by the two
methods turm out to be more distinet when the data size 1s
larger. The result demonstrates that the response time of
the Security-Aggressive Method is more responsive to
data size than that of the Energy-Aggressive Method.

Significant performance, ligh reliability and
energy-proficient storage systems are very vital for mobile
data-intensive applications such as remote surgery and
mobile data center. Mobile disk-array-based storage
systems are more liable to disk malfunctions than with
traditional stationary storage systems. This is mainly
because of their complicated application environments.
Moreover, mobile disk-array-based storage has very
inadequate power supply. Hence, data reconstruction
techniques which are carried out in the existence of disk
malfunctions for mobile storage systems must be
performance-driven, reliability-aware and energy-efficient.
Existing reconstruction approaches cannot accomplish
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the three objectives concurrently as they mostly
overlooked the mformation that mobile disks have
much superior failure rates than stationary disks. In
addition, they generally disregard energy-saving. In
this  study, Xie and Wang (2008) proposed a novel
reconstruction approach, called Multi-level Caching-
based Reconstruction Optimization (MICRO) which can
be used to RAID-structured mobile storage systems to
obviously cut down reconstruction times and user
response  times while saving energy. MICRO
collaboratively uses storage cache and disk array
controller cache to lessen the number of physical disk
accesses produced by reconstruction. The simulation
results reveal that MICRO technique lessens
reconstruction times on average 20.22 and 9.34% when
compared with the approaches like DOR and PRO.
Moreover, 1t saves energy no <304 and 13%,
respectively.

To maintain the huge storage necessities, consumer
electronics for video playback are progressively more
being outfitted with Hard Disk Drives (HDD) that use a
considerable amount of energy. A video player possibly
will prefetch several frames to provide a chance to disk to
go to standby mode however, this might cause playback
to be unclear or blocked if appropriate power mode
transitions are not built-in. Go and Song (2008) provided
the design, implementation and estimation of a data
prefetching method for energy-aware video data retrieval
for Portable Media Players (PMP). A difficulty 1s
formulated when the prefetching is used for Variable Bit
Rate (VBR) streams to diminish disk energy utilization and
then developed a novel energy-aware data retrieval
scheme that prefetches video data in a quick way in order
to raise the period in which disk reside in standby mode
while promising the real-time service. This method is
implemented in the legacy video player known as Mplayer
that is characteristically used for Linux-based consumer
machines. Experimental observation shows that 1t saves
energy to the extent that 51% compared with traditional
methods.

DISK ACCESS PATTERN EXTRACTION

The proposed approach uses compiler driven
approach for power optimization. The basic necessity for
utilizing a compiler in reducing disk power consumption
15 to identify the way i which the parallel disks are
accessed at a high level. The compiler needs the data
access pattern of the application code being optimized
and disk layout information for the array data as shown in
Fig. laandb.

The first of these can be attained by examining the
application source code. For the second parameter
required, the disk layout information is exposed to the
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Fig. 1: a) Determining disk access pattemn. b) Striping an
array over four disks

compiler. Thus, the compiler will be aware of how array
data are striped across the parallel disks and thus can
optimize the source code.

File striping 1s a method that partitions a large data
into small segments and stores these segments on
separate disks in a round-robin fashion. This facilitates
multiple processes to access various segments of the data
concurrently without much disk disputation. In this
research, a disk layout of an array is represented using a
triplet of the form:

(starting_disl, stripe_factor, stripe_size)

Tt is observed that various existing file systems and
T/O libraries for high-performance computing offer APTs to
deliver the disk layout information when the file is created.
For instance, in the Parallel Virtual File System (PVFS)
(Ross et al., 2002), the default striping parameters can be
altered by setting base (the first I/O node to be used),
peount (stripe factor) and ssize (stripe size) fields of the
pvfs filestat structure.

Then, the stripmg mformation given by the user
through this pvfs filestat structure is passed to the
pvfs open() call’s parameter. When building a file from
within the application, this layout data can be made
accessible to the compiler and moreover the compiler uses
this information in conjunction with the data access
pattern it extracts to determine the disk access pattern
(Son et al., 2007).
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Tt is to be noted that each data array operated by the
application 1s stored in a separate file in the /'O System.
As each file can have a distinct triplet, each array can
have a distinct disk layout than the others. Thus, the disk
access techniques become very vital in optimizing the
disk access. Therefore, a novel technique that chooses
the best disk access technique through neural networks
1s proposed in this approach.

Proposed approach: The patterns in which the disk 1s
accessed play a vital role in the energy optimization.
Scheduling algorithms help m identifying the way in
which the disk is accessed. The proposed approach
focuses on selecting the most suitable scheduling
algorithm in relation to the system’s load because
operating systems usually use the same scheduling
algorithm irrespective of this. To carry out this selection,
the approach proposes the use of artificial neural
networks.

Disk seek algorithms: The most commonly used
strategies for disk scheduling for operating systems are
the following.

FCFS planning (First Come, First Served): In this type of
algorithm the first to arrive 1s the first to be served, so a
request cannot be displaced by the arrival of a new one.
There 13 no reordering of the queue of requests, the
positional relationship between the waiting requests is
ignored and although it offers a small vanance, it is
detrimental to requests situated at the end of the queue.

SSF planning (Shortest Seek First): In order to lessen
the movements of the access method, the disk arm moves
to the request nearest to its actual position. It does not
consider the order in which requests turn up in the queue,
facilitating the central tracks of the disk. This causes the
average response time for moderate loads of thus
approach lower than that of the FCF approach.

Even though this approach carry out well in most
cases (it reduces arm movement), it can construct the
manition of certain requests as they are delayed by the
advent of new ones that need less arm movement. In order
to eradicate the issue of mamtion and to make the
approach more deterministic a modification of the SSF
algorithm 1s proposed in which requests are dealt in
closed batches. Therefore, a set of requests served in
its entirety before another is concentrated and the
predictability of the approach is increased considering the
average response time of the diverse requests.

SCAN planning: The Scan or Elavator approach has
been the fundamental of most implemented planning
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approaches. The main approach of this technique is
displacing the disk arm to serve all the requests it
identifies in its path, only changing direction when there
are no requests 1n the prevailing direction. Thus, the outer
tracks are more visited, so reducing one of the main issues
of the (original) SSF algorithm.

This technique has given rise to different
modifications among which the n-steps scan stands out.
In this scenario, only the requests which are identified
when starting a run are served. The requests which arrive
during a run are grouped together and ordered to be
served on the return run.

A second modification has been the C-Scan (Circular
Search) algorithin. This approach moves the disk arm from
the outer cylinder to the interior. On finalizing the run, it
leaps to the request nearest the outer cylinder and
imtiates again. The third modification has been the
Eschenbach approach. This algorithm moves the disk arm
like in the C-Scan but the requests are served according
to the arrival time of the sector to the head, 1.e., it takes
1nto account rotational delay or latency. In the case of two
requests transferring sector positions mside a cylinder, it
only serves one in the prevailing arm movement.

Selection of disk seek algorithms using fuzzy neural
networks trained using Modified Levenberg Marquardt
algorithm: Each disk scheduling approach generates a
various number of jumps of the access mechanism, their
appropriateness 15 based on the characteristics of the
input/output requests (load) submitted to the system. The
jumps show the number of cylinders through which the
disk arm passes stopping
input/output request. These access approach jumps
creates delays in the transfer of mformation, taking up
most of the time of an input/output operation. As a result,
the selection of the most suitable seek algorithm for each
array of input/output requests 1s essential to globally
enhance the performance of the system.

Thus, the performance of the system can be
enhanced by using the Fuzzy Neural Network (FNN) to
select the most suitable seek algorithm for the load of the
systermn.

In this study, novel Fuzzy Neural Networks (FNNs)
combining with Modified Levenberg Marquardt learning
mechanism called Modified LM based Fuzzy Neural
Networks (LMFNN) are proposed for effective selection
of the most appropriate seek algorithm.

The TMFNN integrate the ability of reducing the error
oscillations and converging to deswed outputs of
Modified Levenberg Marquardt algorithm i1 high
dimensional data spaces and the efficient human-like
reasoning of FNN 1 handling uncertainty information.

without to serve an



Int. J. Soft Comput., 7 (6): 283-293, 2012

FNN architecture: The proposed SVFNN is a four-layered
FNN that 15 comprised of the input, membership function,
fuzzy rules and output layers as shown in Fig. 2. Layer 1
accepts input variables whose nodes represent input
linguistic variables.

Layer 2 is to compute the membership values whose
nodes denote the terms of the relevant linguistic
variables. Fuzzy rules are denoted by the nodes at
Layer 3. The links before Layer 3 denote the preconditions
of fuzzy rules and the links after Layer 3 denote the effects
of fuzzy rules.

Layer 4 is the output layer. This four-layered network
recognizes the following form of fuzzy rules:

RuleR; Ifx, is Ay and .. x is A andx, is A;, THEN
yisd,j=1,2 ., N. Where, A; represent the fuzzy
sets of the input variables x,1=1, 2, ..., M and d, are
the consequent parameter of y

For the sumplicity of analysis, a fuzzy rule 0 1s added
as:

Rule 0: IF x, 18 A and xy 18 Ay, THEN y 18 d,.
Where, Ay, denotes a universal fuzzy set whose
fuzzy degree is 1 for any input valuex;, i=1,2, .., M
and d, represents the resulting parameter of y m the
fuzzy rule 0. O™ and a® are defined as the output and
input variables of a node in layer P, respectively

The signal propagation and the fundamental
functions in each layer are illustrated as follows.

Layer 1 (Input layer): No calculation is done in this layer.
Each node in this layer which is equivalent to one input

variable, only transmits input values to the next layer
directly. That is:

Layer 4

Layer 3

Layer 2

Layer 1

Xl Xl X_;

Fig. 2: Structure of the four-layered Fuzzy Neural Networlk
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0" =al =x (1)

1

where, x,1=1, 2, ..., M are the mput vaniables of the FINN.

Layer 2 (Membership function layer): Each node in this
layer 15 @& membership function that 1s equivalent to one
linguistic label of one of the nput variables n Layer 1. On
the other hand, the membership value which indicates the
degree to which an input value belongs to a fuzzy set is
computed i Layer 2:

(2)

(2) _ 000 g @0
() 7u1J (a1 )

where, v/ =(.) 13 a membership fimction ! = (): R~[0, 1],
i=1,2, .., M j=1,2, ..., N With the use of Gaussian
membership function, the operation performed in this
layer 1s:

(g
@) - = (3)
O=e ¥
Where:
m; = The center (or mean)
0o, = The width (or variance) of the Gaussian

membership fimetion of the jth term of the ith
input variable x;

Layer 3 (Rule layer): A node in this layer denotes one

fuzzy logic rule and carry out precondition matching of a
rule. AND operation is used for each Layer 2 node:

i
o =] [a®
i=1

_ oDy G ITID, G

4

where, D, = diag[l/o,, ..., 1/0], m= [m, my, .., m]"
X = [Xy, X3, X3, ..., %) 15 the FNN input vector of FNN. The
output of a Layer 3 node denotes the firing strength of the
equivalent fuzzy rule.

Layer 4 (Output layer): The single node O in this layer
15 labeled with X which calculates the overall output and
can be computed as:

0
09=Yd xa +d, (5)

i=

where, the connecting weight d, is the output action
strength of the Layer 4 output associated with the
Layer 3 rule and the scalar d, is a bias. Thus the fuzzy
neural network mapping can be rewritten in the
following mput-output form:
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M
0W=%d xa" +d,
= (6)
M
d

1

uf]) +d,

i
=1

=T
Construction of fuzzy rules: Suppose that there are n
requests: R,,..., R,. The processing time p, are deterministic
and the deadlines are d,. But a certain delay 1s tolerable up
to a Late date d’ beyond which the request will be
canceled because the customer will resort to other
services. As completion time of job J; passes between due
date d, and late date d’, the satisfaction of request
decreases until it vamshes at the latter. Figure 3 shows a
fuzzy deadline and its associated membership function.

The greater the delay, the lower the satisfaction. In
this research, preemptions for the requests aren’t admitted
and the object i1s to find optimal assignment of the
priorities using classical ordering of fuzzy sets.

Let C, denote completion time of job J, and the
membership function S; (C)) denoted degree of satisfaction
1s assoclated with each request and its deadline which 1s
defined as follows:

1 C, <d
1-(C; -4, .

8.(C)- (El*l'd ‘)) 4.<C,<d, 7
0 4, <¢C

i

If complete time C, 15 before due date d,, there is
maximum degree of satisfaction that is one. When
complete time delays beyond d,’, level of satisfaction will
decrease to zero. Generally, C, is in the interval (d, d."),
and u (C), degree of satisfaction with respect to C,
belongs to (0, 1). Let the feasible schedule denoted by T].
Then, mimmurm degree of satisfaction with schedule [ ] is:

S, =min{S (C, [»|i=12,...n} (8)

S.(C)

v

d, da’

Fig. 3: Membership function of fuzzy deadline
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Under the above setting, consider the following
problem P:

Maximize §_ = min {5, (cl(H))\ i=1,2,...n}
Subject to S, (C,(] [ >0

©)

That is to get an optimal schedule [ | which maximizes
the minimum satisfaction with respect to fuzzy deadlines
of jobs. Now, let t = S,;,. Obviously O<t<l. Then, the
inequalities:

C <d-+(tyeande =d'-d,for1<i<n {10

must hold. Next, employ the five rules to solve above
problem P.

Rule 1: If t>0 then each optimal disk schedule satisfies
inequality.

Rule 2: If t = 0 then for each disk schedule, there exists
request R, such that:

d 1t <C, (11)

For each 0<t<1, let D{t) be modified deadlines for
completion of requests:

D ()= d.+(1-t)e , for1 <i < n (12)

Rule 3: Only those disk schedules are feasible whose
modified deadlines D, (t) (1<i<n) satisfy following
inequality for some t (O<t< 1):

C <Dt (13)

If no such feasible schedule exits then every disk
schedule 15 optimal and the maximum of the mimmum
degree of satisfaction is zero.

Rule 4: For each fixed value of t, the optimal assignment
of priorities exists if and only if the priorities induced by
ordering the requests in the non-decreasing order of D, (t)
Since, the modified deadlines change
accordingly with t, researchers have to determine the
values:

are feasible.

1

S

1

1

_e]

(14)

t; =1+ , for somei,j,1#]
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Rank all the quantities t;(0<t;<1) in increasing order
and create the interval [t t,,,] (k=0,..., k). All of these
mtervals follow such rule.

Rule 5: For any t in the interval [t,, t,,,], the requests must
have same priorities. If t passes from interval [t t.,,] to
mterval [t.,, t.,], the requests must change the priorities.

Above rules suggest the following procedure for
finding an optimal disk schedule. First, find all points of
intersection t; of D, and D satisfying O<t;<1, then sort
them and employ a binary search for finding the maximum
among them for which a feasible schedule exits according
Rule 4. If no feasible schedule exits then every disk
schedule is optimal. The algorithm returns the resulting
schedule ] as a permutation, i.e., [] returns the index.
11(1) of the request in the ith for each 1< 12n.

Algorithm
Step 1: Find all O<t<1 such that t = (¢—e+d,-d ¥(e—¢,), for
some 1#]. Let 7 be an optimal schedule.

Step 2: Let T be a set of such t. Add 1 to T. Sort all items
m T m decreasing order such that t = 1 1s first one.
Choose the mitial t from T,

Step 3: Find schedule S according to the non-decreasing
order of D, (). If C, (8)<D, (t) for all 1 <1< n, then -5, stop;
else go to Step 4.

Step 4: Select next t from T. Go to Step 3.

Learning algorithm: FNN is trained using the Modified
Levenberg Marquardt Method algorithm (Suratgar et al.,
2005). In the FNN algonithm, the performance index F (w)
to be minimized is defined as the sum of squared errors
between the target outputs and the network’s sumulated
outputs:
F(w)=¢e'e (15
Where:
w = [wl, w2, .., wN] consists of all weights of the
network
= The error vector comprising the error for all the
traiming examples

[~

When training with the LM Method, the increment of

weights Aw can be obtained as follows:

Aw = [ITT+pd] ' T"e (16)

Where:
I

il

The Tacobian matrix
The learning rate which 1s to be updated using the
B depending on the outcome
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Tn particular, p is multiplied by decay rate p (0<p<1)
whenever F (w) decreases whereas p 1s divided by
whenever F (w) increases in a new step. The standard LM
training process can be illustrated in the following
pseudo-codes:

Initialize the weights and parameter p (p = 0.01 1s
appropriate)

Compute the sum of the squared errors over all
mputs F (w)

Solve (2) to obtamn the increment of weights Aw
Recomputed the sum of squared errors F (w)

Using w + Aw as the trial w and judge. If trial F (w)<F
{(w) in Step 2 THEN:

W= w+AwW (17)
n=p.B(B=0.1) (18)
Go back to Step 2
ELSE:
_H a9
“7
B
Go back to step 4
END IF

Modification of the LM Method: Considenng performance
index is F (w) = e"e using the Newton Method researchers
have as:

W, =W_-Alg, (20)
A, = VIFW,_,, 2D
_H (22)
e
g, =VFwW)|, ., (23)
[Ew =)
Wi ; 24)
AN e (w)
,ZEizlei {w). awj
The gradient can write as:
VF (x)=217e (w) (25)

Where:
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de,, de, de,,
ow, ow, | ow,
de, oe, de,,
Iw)= ow, ow, | dw, (26)
aeKP anl anl
ow, ow,  ow,

T (w) 1s called the Jacobian matrix. Next, researchers
want to find the Hessian matrix. The k, j elements of the
Hessian matrix yvields as:

[V’E(w)],,= aa;(;"vs (27)
k i

& |0 de,
[VE(w,, =23 gv(vw) caé\ng)

9%, (w)

dw, 0w,

+e(w)

(28)
The Hessian matrix can then be expressed as follows:

VIF (w) = 20T (W), T (W)+S (W) (29)
Where:

S(W) :zNje, (w). Ve, (w) (30)

If S(w) is small, Hessian matrix is approximated as:
VF (w) = 20T (W). 1 (W) (3D

Using Eq. 12 and Eq. 4 Gauss-Newton Method is
obtained as:

W, =W -[207(w, ). T (w )] 720 (w e (w, )]

(32)
=W, [THw, ) Tw T T (w, e (w, )]

The advantage of Gauss-Newton is that it does not
require calculation of second derivatives. There is a
problem the Gauss-Newton Method is the matrix H = I'J
may not be invertible. This can be overcome by using the
following modification. Hessian matrix can be written as:

G=H+ul (33)

Suppose that the eigen values and eigenvectors of H
are {A, A,..., Atand {z,. z, ...z} Then

Gz, —[H+pul],
= Hz +pz,
=Nz Huz
=(x Tz,

(34)

Therefore, the eigenvectors of G are the same as the
eigenvectors of H and the eigenvalues of G are (4+1). The
matrix G is positive definite by ncreasing p until (A+p)=>0
for all i therefore the matrix will be invertible. This leads to
Levenberg-Marquardt algorithm:

k

w, = w, [T (w, ) TGw,) + pI ™ T (w e (w, )] 33)
Aw, =w, [T (w, ) T Cw Il T ow, e (w, )] (36)

As knowr, learming parameter, p 1s illustrator of steps
of actual output movement to desired output. In the
standard T.M Method, p is a constant number. This study
modifies LM Method using p as:

L=0.01e"e (37)

where, e is a k»1 matrix therefore e'e is a 1x1, therefore
[7J+ul] is invertible. Therefore if actual output is far
than desired output or similarly, errors are large so, it
converges to desired output with large steps. Likewise,
when measurement of error i1s small then, actual output
approaches to desired output with soft steps. Therefore
error oscillation reduces greatly.

Thus, the most suitable disk access technique is
obtained by uwsing FNN. And moreover, the disk access
patterns are also obtained.

PROACTIVE DISK POWER MANAGEMENT

Thus, disk access patterns are obtained from the
above mentioned technique. Then, the compiler can insert
clear disk power management calls (instructions) in
suitable places in the source code. The principle of these
instructionsdiffers depending on the original disk
capabilities (for instance, TPM versus DRPM). For TPM
disks, spm_up() and spin_down() calls are used. The
format of the spin_down() call is given as follows:

Spin_down (d,)

where, d; 1s the disk ID. As a disk access pattern
predictsboth idle and active times, this datacan be utilized
topreactivate disks that have been spun down by a
spm_down() call. In order toobtam the suitable point in
the code to start spimning up the disk, spin-up time
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(delay) of the disk is considered (that is the time taken for
the disk to reach its full speed where it can perform
read/write activity). Hspecially, the number of loop
iterations before which the spin-up to be inserted is

computed as:
o]

where, Q,, denotes the preactivation distance (in terms of
loop iterations), T, represents the expected spin-up

T

su

s+ T,

(38)

time (n cycles), T, denotes the overhead mcurred by a
spin_up call and s denotes the number of cycles in the
shortest path through the loop body. It 15 to be observed
that T, is typically much larger than s. The format of the
call that 13 used to preactivate (spin up) a disk is given as
follows:

Spin up (d)

where as before, d, is the disk ID. Tt is to be observed that
if preactivation 1s not used, a TPM disk 1s automatically
spun up when an access (request) comes but in this
case, the associated spin-up delay is fully incurred. The
purpose of disk preactivation 1s to elimmate this
performance penalty.

EXPERIMENTAL RESULTS

Setup: This disk power simulator similar to DiskSim
(Bucy and Ganger, 2003) is determined by externally
provided disk /O request traces which are constructed
by the trace generator. The disk energy consumption
comprises of all the energy consumptions in both active
and 1dle periods, considering all the states of disks during
the whole execution. Also, the performance numbers
mnclude all conflicts n accessing the parallel disk system.

The performance of the proposed approach is
compared with the approaches such as TPM, DRPM and
BPN with modified LM (BPN with ML.M) based Power
Management System for each benchmark code n this
experimental suite (Table 1).

The performance evaluation of the proposed
approach 1s compared with the techniques like Traditional
Power Management Systems, DRPM and BPN with
modified LM based Power Management System. The
energy saving comparison for various power loads are
evaluated and compared.

Figure 4 shows the comparison of the proposed
approach with the existing approaches such as TPM,
DRPM and BPN with MLM. It 1s observed from the
graph that for different work load applied to the power
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Table 1: Benchmarks and their characteristics

Benchmarks Data size (GB)
168.wupwise 88.6
171.swim 64.7
172.mgrid 75.5
173.applu 100.6
o TPM @ DRPM & BPN with MLM
90+ B LMFNN power management
80+
g 704
g
g 504
& 404
o
5 30
204
104
0 = - T > T g T =
Q Q \ Q \
>Q E,)Q \QQ é"% V\Q
o o S R P

Workload configuration

Fig. 4: Comparison of energy savings for exponential and
Pareto Methods
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Fig. 5: Impact of stripe size on energy consumption

management techniques, the energy saving obtained by
the proposed approach 15 very high when compared with
TPM and DRPM.

The normalized energy consumptions with the
different stripe sizes are shown in Fig. 5. It 1s obvious that
the energy savings brought by the approaches such as
TPM, DRPM and BPN with MLM increase as the stripe
size increases. There is not much of idleness when the
stripe size 1s very small (16 kbyte). Actually, the disk
idleness in this case becomes so little that even code
restructuring cannot take much gain of it. Additional disk
requests can be serviced by a single stripe. When the
stripe size 13 increased which means that the stripe-level
data reuse also improves. Tt is observed that the proposed
LMFNN disk management scheme generates the best
savings of about 0.65% with 256 kbyte stripe size.
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The normalized energy values under various stripe
factors are shown in Fig. 6. Figure 6 clearly shows that
when the number of disks 1s increased, disk idleness
mcreases and as a result, the compiler approaches show
a better behavior. When the mumber of disks 1s very high
for instance 32, the disk idleness attains a very high level.
From the Fig. 7, proposed LMFNN disk management
scheme is observed to obtain less energy consumption
for all the stripe factors.

Figure 7 indicates the impact of starting disk on the
energy consumption. To perform this set of experiments,
a random integer number is constructed (for each array in
the mgrid benchmark) between 1 and 8 to choose the disk
from which the array 1s striped. Figure 7 shows the results
for five such experiments. It 1s observed from the graph
that the proposed LMFNN disk management scheme
consumes less energy when compared with the
approaches like TPM, DRPM and BPN with MLM power
management approaches.

Figure 5-7 shows the impact of the stripe size, stripe
factor and starting disk on energy consumption. Tt is

1.6+
1.4

—e— TPM

0.4 —a— DRPM

—&— BPN with MLM
024 =< LMFNN

Normalized energy consumption (%)
o
s

0-0 T T T T 1
2 4 8 16 32

Stripe factor
Fig. 6: Impact of stripe factor on energy consumption
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Normalized energy consumption (%)
(=}
i

0.6
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0.2
0.0- T T T T
1 2 3 4 5
Layout

Fig. 7: Impact of starting disk on energy consumption
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observed that the proposed LMFNN  disk management
approach has better energy consumption in all the three
cases. Thus, the proposed LMFNN disk management
approach out performs the other three approaches in
terms of energy consumption.

CONCLUSION

Disk power management has been considered as one
of the key ways of saving energy in disks that process
data-intensive applications. The earlier researches mainly
focused approaches such as spinning-down a disk or
rotating disks at a lower speed to save disk energy. A
majority of these approaches do not focus on 1dle periods
and the selection of appropriate disk access scheduling
algorithm.

This study presents a profile-driven technique to
diminish the energy consumption. This technique uses an
efficient neural network approach for selecting suitable
disk access techniques. Fuzzy Neural Networle (FINN)
approach 1s used m tlus approach for choosing the
appropriate disk access techniques. FNN is trained using
the modified Levenberg-Marquardt learning algorithm.
This novel approach is called LMFNN as FNN is trained
using Modified Levenberg-Marquardt. The experiment
results reveal with this approach greatly reduces energy
consumption of original applications significantly. The
best energy savings are obtained by LMFNN scheme
that selects a suitable disk access technique. The
proposed LMENN approach outperforms the disk power
management techniques such as TPM, DRPM and BPN
with modified LM.
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