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Abstract: This study introduces a new parameter free meta-heuristic optimization algorithm, African Wild Dog
Algorithm (AWDA) to solve engineering optimization problems. Meta-heuristic algorithms imitate natural
phenomena, e.g., physical annealing in simulated annealing, human memory in a tabu search and evolution in
evolutionary algorithms. AWDA mimics the communal hunting behavior of African wild dogs. As the currently
available metaheuristic optimization algorithms require a set of algorithmic parameters to be tuned to yield
optimal performance, AWDA does not require any parameter except pack size and termmation criterion. The
AWDA, code was tested in several benchmark engineering optimization problems taken from literature. The
optimization results indicate that AWDA may yield better solutions than other Meta-heuristic algorithms.
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INTRODUCTION

In last few decades, many new meta-heuristic
algorithms have been developed and used in engineering
optimization. This meta-heuristic algorithms do not have
limitations i using resources, (e.g., music mspired
harmony search (Geem et al., 2001). However, nature is
the principal source of inspiration. Biologically-inspired
algorithms are one of the mamn categories of the
algorithms.  More
specifically, these algorithms are based on the selection

nature-inspired  meta-heuristic
of the fittest in biological systems which have evolved by
natural selection over millions of years (Yang, 2011).
Various bio-mspired optimization algorithms have been
presented in literature. The most popular methods are
Genetic Algorithm (GA) (Goldberg, 1989), Particle Swarm
Optimization (PSO) (Eberhart and Kennedy, 1995), Ant
Colony Optimization (ACO) (Dorigo et af., 1996) and Tabu
Search (TS) (Glover, 1977). Moreover, Bat Algorithm (BA)
(Yang, 2010), Cuckoo Search (CS) (Gandomi et al., 2011),
Firefly Algorithm (FA) (Yang, 2009), Glowworm Swarm
Optimization (G30) (Krishnanand and Ghose, 2006) and
Hunting Search (HuS) (Oftadeh et l., 2010) are some of
the new bio-inspired algorithms. Besides bio-inspired
algorithms, there are the nature-inspired algorithms that
mimic physical phenomena such as Simulated Annealing

(SA) (Kirkpatricl, 1984), Big Bang-Big Crunch (BB-BC)
(Erol and Eksin, 2006) and Charged Systemn Search (CSS)
(Kaveh and Talatahari, 2010).

All the mentioned meta-heuristic optimization
algorithms require a set of algorithmic parameters to be
tuned to yield optimal performance. The number of
parameters has a major mpact on the practical
applicability of optimization algorithms. A good algorithm
would consist of a small number of problem-specific
parameters. In thiz study,
meta-heuristic optimization algorithm, African Wild Dog
Algorithm (AWDA) is introduced to solve engineering
optimization problems. The AWD algorithm is based on

a new parameter free

the commumal hunting behaviour of African wild dogs.
Preliminary studies indicate that AWDA may be superior
over GA, HS and other mathematical optimization
methods.

AFRICAN WILD DOG
META-HEURISTIC ALGORITHM

Meta-heuristic algorithms imitate natural phenomena,
e.g., physical amealing mn simulated annealing, human
memory in a tabu search and evolution in evolutionary
algorithms. A new wild dog meta-heuristic algorithm is
conceptualized using the communal hunting behavior of
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African wild dogs. African wild dogs live in packs of upto
20 adults and their dependent young. Communal hunting
15 one of the most conspicuous aspects of the behavior of
soclal carmivores. The studies of camivore ecology
suggested that communal hunting might favour sociality,
either by mncreasing the size of prey that could be killed or
by improving hunting success (Creel and Creel, 1995).
Coordination between the members of an African wild dog
pack is seen throughout a hunt. At several stages, the
effectiveness appears to depend on the number of
cooperating hunters. This communal hunting behavior is
similar to the optimization process which results in finding
a global solution as determined by an objective function.
The location of each dog compared to the prey determines
its chance of catching the prey. Sumilarly, the objective
function value 1s determmned by the set of values
assigned to each decision variable. The new wild dog
meta-heuristic algorithm 1s developed based on a model of
cooperative hunting of ammals when searching for food.

In continuous optimization problems, the evaluation
of a solution is carried out by putting values of decision
variables into the objective function or fitness function.
This calculates the function value which includes cost,
efficiency and/or error.

Compared to communal hunting in a continuous
optimization problem each wild dog 1s replaced with a
solution of the problem. It should be noted that communal
hunting of ammals and the meta-heuristic algorithm have
a primary difference. In communal hunting of wild dogs,
dogs can see the prey or sense the smell of the prey and
determine 1its location. In contrast, in optimization
problems researchers have no indication of the optimum
solution/point. In communal hunting of ammals however,
the solution (prey) 1s dynamic and the dogs (based on the
current location of the prey) must coordinate their
position. In optimization problems instead, the optimum
solution is static and does not change its position during
the search process. In fact, both real and artificial group
hunting have thewr own difficulties. To resemble this
dynamics of the hunting process in the algorithm, each
dog move towards other dog based their favorable
position (fitness). The procedure of the AWD algorithm
consists of the following steps:

Step 1:
parameters of the algorithm

Step 2: Randomly initialize the wild dog pack
Step 3: Evaluate the fitness of all wild dogs

Step 4: Coordinated movement of wild dog pack

Specify the optimization problem and

Step 5. Repeat steps 3 and 4 until the termination
criterion 1s satisfied
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Step 1: Initialize the optimization problem and algorithm
parameters. First, the optimization problem is specified as
follows:

Minimize:

fixystxe, i=1,2,....,N (1
Where:
f (x)= The objective function

X The set of each design variable (x;)

X; = The set of the possible range of values for each
design variable (continuous design variables) that
is X< X<

The number of design variables

The number of wild dogs and termination criterion
(maximum number of iterations) are also specified in this
step. No other parameters are required to solve the
optimization problem in wild dog algorithm.

Step 2: Randomly initialize the wild dog pack. Based on
the number of wild dogs, the hunting pack matrix is filled
with randomly generated solution vectors.

Step 3: Evaluate the fitness of all dogs. The values of
objective function are computed and the fitness values of
wild dogs are evaluated The wild dogs are ranked
according to their fitness values.

Step 4: Coordinated movement of wild dogs. In step 4,
each dog 1 will move to a new position X, towards
another dog j having ligher fitness value based on
probability:

X pew = Xtrandx(x-x)xcx(a/b) (2)
Where:
rand = Vector of size N having random values varying
from 0 to 1
c = Step reduction coefficient = 1-(Tteration
number/max iterations)
a = Mean euclidian distance of all dogs
b = Buclidian distance between dog 1 and ;

Step 5: Repeat steps 3 and 4 until the termination criterion
1s satisfied. In step 5, the computations are terminated
when the termination criterion 1s satisfied. If not, steps 3
and 4 are then repeated. The termination criterion has
been defined as the maximum number of iterations.

To further elaborate on the wild dog meta-heuristic
algorithm, the following unconstrained
minimization problem with two design variables
(Goldstein and Price, 1971 ):

consider
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£x) = {1+ (x,+x, 1) (19-14x, +3%,"-14x, +6 x,X, +3%,° )} x
{30+H2x, - 3%, ) (18-32x, +12x, +48x,-36x,%, +27x,° )}
3

This function 1s an eighth-order polynomial mn two
variables that 1s well behaved near each mnimum value.
The function has four local minima, one of which 1s
global as follows: (1.2, 0.8) = 840.0, f{1.8, 0.2) =84.0,
f(0.6, 0.4) = 30.0 and (0, 1.0) = 3.0 (global minimum)
(Goldstein and Price, 1971).

The AWD was initially structured with randomly
generated solution vectors within the bounds prescribed
for this example (i.e., -5.0 to 5.0) as shown in Fig. 1 and
objective function values are evaluated. As the problem
1s a minimization problem, the fitness values are calculated
as the mverse of objective function value so that the wild
dog with least objective fimetion value will get lugher
fitness value. These were sorted according to the fitness
value (step 3).

In step 4, each dog 1 will move to a newposition x;,,,.,
towards another dog | having higher fitness value
(favorable position to catch the prey) based on
probability. For example a wild dog having rank 4 will

move towards any of the wild dog having rank <4 (i.e, 1,
2 or 3). Therefore, a wild dog having rank 1 in a particular
iteration will not move n next iteration by this way the
best solution 18 preserved to next iterations. The
probability of dog i moving towards dog j is given by:

pj- 2L (4)
ZF

Where:

F; = Fitness of dog ;

ZF = Sum of fitness of all dogs having fitness value

higher than fitness of dog 1

For example the probability of movement of wild dog
ranked 4 towards wild dog ranked 1 is more than the
probability of movement towards wild dog ranked 2. This
ensures the balance between exploration and exploitation
behaviour of algorithm.

The probability of finding the global optimum,
x = (0, 1.0) increased with mumber of iterations as
shown in Table 1. Finally after 100 iterations, the
AWD algerithm found a near optimal solution, x' =
(0.0000004603, -0.9999988730) that had a fimction value of
-3.0000000005,

X2

(Z=>> Contours of objective function
O Initial population
& After first iteration
+  After 10 iterations
After 25 iterations

Fig. 1: Goldstem and Price function
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Table 1: Optimal results for the Goldstein and Price fimction using AWD algorithm

Tnitial population

Subsequent population

Ranks X Xy f 60 X Xy )

1 3.0457 0.5117 2742496 -0.9855 -0.9787 1924.18
2 0.4412 2.2868 35200532 -1.0067 -1.0126 2198.14
3 -1.7890 -3.3990 5858768.27 2.5523 0.3587 3781.08
4 2.6751 -4.4039 7465082.34 0.9223 1.4050 13398.81
5 -4.2176 2.0928 15602843.16 3.0457 0.5117 2742496
6 -2.7150 -4.2160 28313944.61 2.2807 -0.5376 37900.20
7 1.6706 -4.3750 35417169.16 -1.5778 0.9445 39134.69
8 2.0144 4.0687 52665654.96 4.1948 2.0811 47990.78
9 -0.4570 4.5173 54783069.01 3.5865 0.3660 309396.15
10 -1.0777 -4.8557 219459536.88 -1.1139 -3.6076 15947610.43
Ranks After 10 iterations e After 25 iterationg--------=-=nn=au-m---
1 -0.0861 -0.8249 1836 0.0026 -1.0028 3.00691
2 -0.1471 -0.8130 19.45 0.0061 -1.009¢ 3.06296
3 -0.0579 -0.7868 28.53 0.0191 -1.0022 310579
4 -0.0572 -0.7782 31.19 -0.0277 -1.0114 3.18607
5 -0.1191 -0.7551 32.68 -0.0205 -0.9860 324184
6 -0.1326 -0.7410 3531 0.0281 -1.0106 332859
7 -0.0507 -0.7668 3549 0.0333 -1.0139 349577
8 -0.0435 -0.7580 3930 -0.0210 -1.0648 4.99130
9 0.0844 -0.7692 40.70 0.0035 -0.9200 5.83806
10 04776 -0.3689 461.59 -0.0436 -1.2898 206.52392
L T e —— After 50 iterationg-—------------—-—mmuoen After 100 iterationg-—-—-----==-e—-—me—muuun
1 -0.000019914 -0.99997699 3.000000428 0.0000004603 -0.9999988730 3.0000000005
2 0.000608971 -0.99997886 3.000090882 0.0000011637 -0.9999980683 3.0000000015
3 -0.000548237 -0.99983554 3.000106826 0.0000007009 -1.0000024265 3.0000000030
4 0.000453312 -0.99874510 3.000608473 0.0000047518 -1.0000013500 3.0000000079
5 0.000748549 -0.99871193 3.000648939 -0.0000055388 -0.9999973037 3.0000000141
6 -0.000402966 -1.00155%969 3.000957749 0.0000021460 -1.0000080373 3.0000000328
7 0.001972044 -0.99997555 3.000970620 -0.0000167632 -0.9999724029 3.0000004997
8 -0.001595440 -0.99937854 3.001019959 -0.0000754692 -1.0000005937 3.0000014257
9 -0.005752862 -1.02202721 3.198261225 -0.000791 6424 -1.0025625947 3.0025640002
10 0.002818328 -0.97390961 3.276559392 0.0005466802 -0.9951328958 3.0096822616

EXAMPLES . ! O
The computational procedures described above have R
R

been implemented in a MATLAB computer program on a
pentium 42.4 GHz computer. In this study, three standard
engineering optimization benchmark examples from the
literature are presented to demonstrate the efficiency and
robustness of the proposed AWD meta-heuristic

algorithm.

Pressure vessel design: The cylindrical pressure vessel
capped at both ends by hemispherical heads (Fig. 2)
must be designed for mmimum cost (Sandgren, 1990).
The compressed air tank has a working pressure of
3000 psi and a minimum volume of 750 ft* and must
be designed according to the ASME code on boilers
and pressure vessels. The total cost results from a
combination of welding, material and forming costs. The
thickness of the cylindrical skin (Ts), the thickness of
the spherical head (Th), the mner Radius (R) and the
length of the cylindrical segment of the vessel (L)
were included as optimization variables. Thicknesses
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Fig. 2: Schematic of pressure vessel

can only take discrete values which are integer
multiples of 00625 mch and R and L have
continuous values of 40<R<80 and 20<L<60 inch.,
respectively. The optinization problem can be stated
as follows:

Minimize:

f(Ts, Th, R, L) =0.6224T RL+1.7781T,R*+
3.1661T, L+19.84T,* R

(5)
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Constraints are set i accordance with the ASME
design codes; g, represents the constraint on the
minimum volume of 750 ft’. The constraints are stated

as follows:
g =-T,+0.0193R <0 (6)
g,=-T, +0.00954R < 0 (7
g3:—nR?L,rgnRF+750x127SSC) (8)
g, =L-240<0 )
g, =11-T, <0 (10
g, =0.60-T, <0 (11)

This problem was earlier analyzed using GA (Wu and
Chow, 1995) and HS (Lee and Geem, 2005). Optimization
results are shown in Table 2. With 25 wild dogs, AWDA
found the global optimum of 7198.008 withun 25,000
function evaluations (i.e., 1000 optimization iterations).
Table 2 compares the results obtained by AWDA with
those reported i the literature.

Sandgren achieved the optimal values of $7980.894
using the Branch and Bound Method. Wu and Chow
obtained the minimum cost of $7207.494 using the
GA-based approach. The best solution obtained by HS
algorithm was $7207.494. The AWD algorithm achieves a
design with a best solution vector of (1.125, 0.625, 58.2901
and 43.6928) and a minimum cost of $7198.008 without
violating any constraint. The results obtained using the
AWD algorithms were better optimized than earlier
solutions.

Minimization of weight of spring: The problem
weight (%)
tension/compression spring subject to comstramts on

consists of minimizing the of a

shear stress, surge frequency and minimum deflection as
shown in Fig. 3.

Table 2: Optimal results for the pressure vessel design

The design variables are the mean coil diameter
D (= x,); the wire diameter d(= x,) and the number of
active coils N (=x,). The problem can be stated as:

Minimize:
£ ()= (5, + 2)%,x, 12)
Subject to:
3
g =1-—25 < (13)
! 71785x%,
2
g - 4%, - XX, + 1 1<0 (14)
12566(%,%; - %) 5108x]
g, =1- M <0 (1 5)
X;XB
:X2+X1_1S0 (16)

4

1.5

Belegundu solved this problem using eight different
mathematical optimization techmiques (Belegundu, 1982).
Arora also solved this problem using a numerical
optimization technique called constraint correction at
constant cost (Arora, 1989). This problem was also
analyzed using GA-Based Method (Coello, 2000a) and
improved harmony search algorithm (Mahdavi et af.,
2007). After 30,000 function evaluations the best solution
1s obtamed at x = (0.0516558; (:3559185; 11.33603%)

Fig. 3: Welded beam structure

Optimal design variables (x)  Branch and Bound Method

and objective function value (Sandgren, 1990) GA (Wu and Chow,1995) HS (Lee and Geemn, 2005) Present study
T, 1.125 1.1250 1.1250 1.1250
Ty 0.625 0.6250 0.6250 0.6250
R 48.970 581978 58.2789 5193.5186
L 106.720 44.2930 43.7549 180.1496
Cost 7980.894 7207.4940 7198.4330 71980080
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Table 3: Optimal results for the minimization of weight of spring

Optimal design variables Numerical optimization —Mathematical optimization Improved harmony
(x) and objective function technique techniques GA-Based Method search algorithm
value (f (x)) (Arora, 1989) (Belegundu, 1982) (Coello, 2000a) (Mahadavi et af., 2007) Present study
X 0.0533%96 0.050000 0.051989 0.05115438 0.05165583
X, 0.399180 0.315900 0.363965 0.34987116 035591847
X3 9.185400 14.250000 10.890522 12.07643210 11.33603852
fix) 0.012730 0.012833 0.012681 0.01267060 0.01266531
3 Subject to:
» » g =tx)-1 =<0 (18)
<+ —_—> D
g, () =0Xx)-6,, <0 (19)
A|X: g, (x)=x,-x, <0 (20)
: : : : =8(x,)-8,, =0 ey
Fig. 4: Tension/compression spring 8100 =8, )- By
with corresponding function wvalue equal to fi(x) = g;(x)=P-P{x)=0 (22)
0.0126653. No constraints are active for this solution.
Table 3 shows the best solution of this problem obtained 0.125 < x (23)
using the AWD algorithm and compares the AWDA 1
results with solutions reported by other researchers. It 1s (24)
apparent from the Table 2 that the result obtained using 0.1=x,,x,=10
AWDA algorithm is better than those reported earlier in
the literature. 0.20.1=x, =5 (25)
Where:
Welded beam design problem: The welded beam structure 26)
shown in Fig. 4 13 a practical design probl.em that has 'l:(x)="(t')2 L2 ()
been often used as a benchmark for testing different
optimization methods. This includes mathematical
optimization algorithms (Ragsdell and Phillips, 1976) such T = P (27
as APPROX (Griffith and Stewart’s successive linear VIxX,
approximation), DAVID (Davidon-Fletcher-Powell with a
penalty function), SIMPLEX (Simplex Method with a . MR (28)
penalty function) and RANDOM (Richardson’s Random v T
Method) algorithms. GA-based methods (Deb, 1991, 2000,
Coello, 2000a, b), Harmony Search Method (Lee and % 29
Geem, 2005) and improved harmony search algorithm M P(L"';} (29)
(Mahdavi et al., 2007) were other methods used to solve
this problem.
The objective 1s to find the mimmum fabricating cost R = ﬁJ{Xl +X, J (30)
of the welded beam subject to constraints on shear 4 2
stress T, bending stress 0, buckling load P, end deflection
d and side constraint. There are four design variables: 2
_ _ _ _ : _ J_ 5 [E T (31
h(=x),1(=x), t(=x;) and b (= x,). The mathematical I= 2x%, TJF 2
formulation of the objective function f (x) which 1s the
total fabricating cost mainly comprised of the set-up,
welding labor and material costs is as follows: 6(x) = 6PL; (32)
X X;
Minimize:
[x)=1.10471x;x, +0.04811x x, (14.0+x,) %,
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Table 4: Optimal results for the welded beam design

Optimal design variables ()

Objective function

Methods h 1 t b value f(X)
GA-Based Method (Coello, 2000a) N/A N/A N/A N/A 1.8245
GA-Based Method (Coello, 2000b) 0.2088 3.4205 8.9975 0.21 1.7483
GA-Based Method (Deb, 2000) N/A N/A N/A N/A 2.38
GA-Based Methods (Deb, 1991) 0.2489 0.173 8.1789 0.2533 2.4328
APPROX (Ragstell and Phillips, 1976) 0.2444 4.2189 8.2915 0.2444 2.3815
DAVID (Ragstell and Phillips, 1976) 0.2434 6.2552 8.2915 0.2444 2.3841
RANDOM (Ragstell and Phillips, 1976) 0.4575 4.7313 5.0853 0.60 4.1185
SIMPLEX (Ragstell and Phillips, 1976) 0.2792 5.6256 7.7512 0.2796 2.5307
Harmony Search Method (Lee and Geemn, 2005) 0.2442 6.2231 8.2915 0.2443 2.3807
Improved harmony search algorithm (Mahdavi et ., 2007) 0.20573 3.47049 9.03662 0.20573 1.7248s
Present study 0.20572% 3.4704889 9.036624 0.2057296 1.7248522
s D13E’X2Xﬁ 6 <« IE 4 Coello, C.A., 2000b. Use of a self-adaptive penalty
Po(x)= % 1-;.'{@ (34 approach for engineering optimization problems.
Comput. Ind., 41: 113-127.
Where: Creel, 5. and N.M. Creel, 1995. Communal hunting and
P = 60001b pack size in African wild dogs, Lycaon pictus. Amm.
L = 14mch Behav., 50: 1325-1339.
3, = 0.25inch. Deb, K., 1991. Optimal design of a welded beam via
E = 30x10°psi genetic algorithms. ATAA T, 29: 2013-2015.
G = 12x10°psi Deb. K., 2000. An efficient constraint handling method for
T = 13,600 psi genetic algorithms. Comput. Methods Applied Mech.
0. = 30,000 psi Eng., 186: 311-338.

The AWDA obtained optimum result after 150,000
function evaluations. The results are tabulated in Table 4.
AWDA 15 better than the reported results except
unproved harmony search algorithm.

CONCLUSION

This study mtroduced a new meta-heuristic
optimization algorithm, AWDA to solve engineering
optimization problems. The African wild dog algorithm
mimics the communal hunting behavior of African wild
dogs. The AWDA, code was tested in several benchmark
optimization problems taken from literature. The
optimization results indicate that AWDA is efficient than
other metaheuristic algorithms such as GA and HS.
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