International Journal of Soft Computing 8 (5): 352-355, 2013

ISSN: 1816-9503
© Medwell Journals, 2013

Parameter Based Kalman Filter Training in Neural Network
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Abstract: Neural Networks (NNs) have been employed in many applications in recent vears. A neural network

is an interconnection of a number of artificial neurons that simulate a biological brain system. Tt has the ability

to approximate nonlinear functions and can achieve higher degree of fault tolerance. NNs have been

successfully mtroduced into power electronics circuits where a NN replaced a large and memory demanding

look-up table to generate the switching angles. The neural network controllers for engine idle speed and
Air/Fuel (A/F) ratio control produce signals that affect the operation of the engine while the neural network
models are used to describe various aspects of engine operation as a function of measurable engine outputs.
This study ains to study the behavior of the parameter based kalman filtering in neural network.
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INTRODUCTION

The proposed Neural Network (NN) controller has
5-3-1 structure (five inputs, three nodes in the hidden
layer and one output node). The nodes on the hidden
layer have sigmoid transfer function and the output node
has a linear transfer function. This structure of Neural
Network controller 1s the result of repeated trials (Fig. 1).

At a very basic level, the role of the A/F controller 1s
to supply fuel to the engine such that it matches the
amount of air pumped into the engine via the throttle and
idle speed by pass valve. This 1s accomplished with an
electronic feedback control system that utilizes a heated
exhaust gas oxygen sensor whose role is to indicate
whether the engine-outexhaust 1s rich (i.e., too much fuel)
or lean (too much air) (Rumelhart ef al., 1986) (Fig. 2).

Depending on the measured state of the exhaust
gases as well as engine operating conditions such as
engine speed and load, the A/F control 1s changed so as
to drive the system toward stoichiometry. Since, the
HEGO sensor 1s largely considered to be a binary sensor
(1.e., 1t produces ligh/low voltage levels for rich/lean
operations, respectively) and since there are time-varying
transport delays, the closed-loop A/F control strategy
often takes the form of a jump/ramp strategy which
effectively causes the HEGO output to oscillate between
the two voltage levels (Singhal and Wu, 1989).
Researchers have demonstrated that an open-loop
recurrent neural network controller can be trained to
provide a correction signal to the closed-loop A/F control
n the face of transient conditions (1.e., dynamic changes
m engine speed and load), thereby eliminating large
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Fig. 1: Structure of neural network controller (5-3-1)

deviations from stoichiometry (Feldkamp and Puskorius,
1994b). This 1s accomplished by using an auxiliary
Universal EGO (UEGQ) sensor which provides a
continuous measure of A/F ratio (as opposed to the
rich/lean indication provided by the HEGO) during the
in-vehicle training process. Deviations of measured A/F
ratio from stoichiometric A/F ratio provide the error signal
for the EKF training process however, the measured A/F
ratio 18 not used as an nput and since the A/F control
does not have a major effect on engine operating
conditions when operated near stoichiometry then this
can be viewed as a problem of training an open-loop
controller (Puskorius and Feldkamp, 1991). Nevertheless,
researchers use recurrent network controllers to provide
the capability of representing the condition-dependent
dynamics associated with the operation of the engine
system under A/F control and must take care to properly
compute derivatives.
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Fig. 2: Neural network representation for automatic engine control

TRAINING THE NEURAL NETWORK
CONTROLLER

Increasing levels of pollutants i the atmosphere
observed despite the imposition of stricter emission
standards and technological improvements in emissions
control systems have led to models being developed to
predict emissions inventories (Puskorius and Feldkamp,
1993). These are typically based on the emissions levels
that are mandated by the government for a particular
driving schedule and a given model year. It has been
found that the emissions mventories based on these
mandated levels do not accurately reflect those that are
actually found to exist. That is actual emission rates
depend heavily upon driving patterns (Puskorius et al.,
1996) and real-world driving patterns are not
comprehensively represented by the mandated driving
schedules.

To better assess the emissions that occur in practice
and to predict emissions mventories, experiments have
been conducted using mstrumented vehicles that are
driven in actual traffic (Williams and Zipser, 1989).
Unfortunately, such vehicles are costly and are difficult to
operate and maintain. The recurrent neural networks can
be trained to estimate nstantaneous engine-out emissions
from a small number of easily measured engine variables
(Puskorius and Feldkamp, 1994). Under the assumption of
a properly operating fuel control system and catalytic
converter, this leads to estimates of tail pipe emissions as
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Fig. 3: Graph showing the accurate estimation of emission
levels during the training of NN

well. This capability then allows one to estimate the
sensitivity of emissions to dniving style (e.g., aggressive
versus conservative). Once trained, the network requires
only information already available to the power train
processor (Werbos, 1990). Because of engine dynamics,
the use of recurrent networks tramed by KF Methods to
enable accurate estimation of instantaneous emissions
levels (Puskorius and Feldkamp, 1997) (Fig. 3).

SIMULATION RESULTS
Researchers have simulated the proposed NN

controller using MATLAB which has accurate models of
switching components and diodes. The weights and
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Fig. 5: Neural network voltage and current waveforms for
non-linear load

biases from MATLAB simulations are put into the
Simulink Model. The steady-state and transient responses
of the proposed NN Controlled Method is investigated
(Feldkamp and Puskorius, 1994a, b) (Fig. 4 and 5).

SUMMARY OF SIMULATION RESULTS

Decoupling should be used when computation 1s a
concern (e.g., for on-line applications). Node and layer
decoupling are the two most appropriate choices.
Otherwise, researchers recommend the use of global KF,
regardless of network architecture as it should be
expected to find better solutions than any of the
decoupled versions of full
second-order information.

Effectively, two parameter values need to be
chosen for training of networks with KF Methods.
The approximate error covariance maftrices are always
mutialized with diagonal value of 100 and 1,000 for weights
correspending to nonlinear and linear nodes, respectively.

because of the wuse
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Then, the user of these methods must set values for
the learning rate and process-noise term according to
characteristics of the traming problem.

Traming of recurrent networks, either as supervised
training tasks or for controller training can often be
improved by multistreaming. The choice of the number of
streams 1s dictated by problem characteristics.

Matrix mversions can be avoided by use of
sequential KF update procedures. In the case of
decoupling, the order in which outputs are processed can
affect training performance in detail. That outputs be
processed mn random order when these methods are used.

Square-root filtering can be employed to insure
computational stability for the error covariance update
equation. However, the use of square-root filtering with
artificial process noise for covariance updates results in
a substantial increase in computational complexity. The
nonzero artificial process noise benefits training, by
providing a mechamsm to escape poor local mimima and
a mechamsm that maintains stable covariance updates
when using the Riccati update equation.

The KF procedures can be modified to allow for
alternative cost functions (e.g., entropic cost functions)
and for weight constraints to be mmposed during tramning
which thereby allow networks to be deployed in
fixed-point arithmetic.

CONCLUSION

A simulation study of the conventional and neural
based controller was done. The Analogue Neural Network
controller i1s designed and its performance has been
validated using PSPICE. Based on the results, the
following conclusions can be made.

The KF procedures derived on the basis of a
first-order linearization of the nonlinear system this may
provide a limitation in the form of large errors in the
weight estimates and covariance matrix, since the
second-order mformation 1s effectively developed by
taking outer products of the gradients.

The KF is used to provide a more accurate means of
developing the required second-order information without
increasing the computational complexity.
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