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Abstract: In this study, researchers present an investigation of enhancing the capability of the Big Bang-Big
Crunch (BB-BC) metaheuristic to strike a balance between diversity and quality of the search. The BB-BC 15
tested on three post-enrolment course timetabling problems. The BB-BC 1s derived from one of the evolution
theories of the umverse in physics and astronomy. The BB-BC theory mvolves two phases (big bang and big
crunch). The big bang phase generates a population of random initial solutions whilst the big crunch phase
shrinks those solutions to a single elite solution presented by a centre of mass. The investigation focuses on
finding the significance of incorporating an elite pool and controlling the search diversity via the Euclidean
distance. Both strategies provide a balanced search of diverse and good quality population. This is achieved
by a dynamic changing of the population size, the utilization of elite solutions and a probabilistic selection
procedure to generate a diverse collection of promising elite solutions. The investigation is conducted in three
stages, first researchers apply the original BB-BC with an iterated local search; second researchers apply the
BB-BC with an elite pool and an iterated local search without considering the Euclidean distance and third
researchers apply the BB-BC with an elite pool and a simple descent heuristic with utiizing the Euclidean
distance. It 1s found that by mcorporating an elite pool without using the Euclidean distance, the BB-BC
performs better than the original BB-BC. However, utilizing both elite pool and Euclidean distance have a
greater impact on the BB-BC. The third version of BB-BC performs better than both previous versions.
Experiments showed that the third version produces high quality solutions and outperforms some approaches
reported in the literature.
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INTRODUCTION

The umversity course tunetabling problem 1s
considered as an NP-hard problem (Even et al., 1976)
which is difficult to solve for optimality. During the last
decade, various metaheuristics have been applied to solve
cowrse timetabling problem (Lewis, 2008). Blum and
Roli (2008) classified metaheuristics into two classes:
population-based and local
Some commoen population-based methods applied to the
problem are the ant colony optimization (Socha, 2003;
Rossi-Doria et al., 2003; Mayer ef al, 2008), memetic
algorithm (Turabieh ef al., 2009, Jat and Yang, 2011) and
hybrid evolutionary algorithm (Abdullah et af., 2010a).

search metaheuristics.

Mainly, the population-based metaheuristics are
intensively investigated where the population-based
metaheuristics are utilized due to their capability of search
space exploration and can be easily combined with local
search methods to enhance the solution exploitation
process (Talbi, 2002). Whilst, some common local
search methods applied to the problem are tabu
search (Rossi-Doria et al., 2003), simulated annealing
(Rossi-Doria et al., 2003) and iterated local search
(Rossi-Dona et al., 2003). The local search metaheuristics
are utilized due to their capability of solution space
exploitation.

The strength of population-based methods 1s
certainly based on the capability of recombining solutions
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to obtain new ones (Blum and Roli, 2008). In
population-based algorithms such as the Big Bang-Big
Crunch (BB-BC), elite solutions recombination 1is
performed implicitly (which are move and swap of
assignments in a solution representing information
exchange between generations of a good quality solution)
(Blum and Roli, 2008). The unplicit recombmation enables
the search process to perform a guided sampling of the
search space (Blum and Roli, 2008). This recombination
technique can effectively find promising areas of the
search space (Blum and Roli, 2008).

However, a population-based metaheuristic i1s
considered weak in intensifying the search for higher
quality solutions. Hence, in order to enhance the
mtensification process, a specialized metaheuristics in
exploiting the solution space (e.g., lill climbing) 1s usually
hybridized with the population-based metaheuristics.
Many studies have recommended the hybridization
between a population-based metaheuristic and other local
search metaheunistics such as Talba (2002, 2009)
and Qu et al. (2009). Local search metaheuristics are able
to overcome the weakness (in the population-based) of
exploiting the solution space (further enhancement of a
solution’s quality). In addition, the utilization of an
explicit memory (e.g., elite pool), controlling the search
diversity and a dynamic manipulation of the population
size are also recommended for a better performance of
hybrid metaheuristics (Talbi, 2002; Greistorfer, 2000). A
good performance is presented by maintaining a balance
between diversification and intensification of the search.
Therefore, researchers have chosen the BB-BC for the
mvestigational study since, it has a dynamic population
size manipulation and a diversity control strategies. The
BB-BC lacks only the utilization of a memory (Erol and
Eksin, 2006; Jaradat and Ayob, 2010).

In this research, researchers focus on presenting the
preliminary investigation of the previous research
(Jaradat and Ayob, 2010) conducted to tackle the
post-enrolment course timetabling problem (w.r.t. Socha’s
benchmark datasets). This research mamly aims at
illustrating impact of incorporating an elite pool in the
BB-BC and the utilization of the Euclidean distance to
provide a
mtensification of the search. Researchers conclude the
performance and consistency of the hybrid BB-BC by
testing it on the post-enrolment course timetabling
problems.

balance between diversification and

MATERIALS AND METHODS

Description of the problem: Post-enrolment course
timetabling problems mainly comprise of assigmng a set

of courses, students and lecturers to a specific and fixed
number of timeslots and rooms in a week while satisfying
some constraints (Petrovie and Burke, 2004). In this
research, researchers test the BB-BC on the benchmark
post-enrolment course timetabling instances of three
benchmarlk datasets. They are:

»  Metaheuristics Network (TTComp 1in 2003) including
Socha’s instances (Socha et al., 2002): the original
formulation of the problem containing 12 instances

» TTComp in 2003 announced by Metaheuristics
Network (TTComp m 2003): the original formulation
of the problem containing 20 instances

o ITC2007 (Track2) (Lewis et al, 2007) a full
formulation of the problem 1s mtroduced containing
24 instances considering timeslots availability and
precedence and allowing a number of unscheduled
courses (aka distance to feasibility)

These benchmark datasets consider only student’s
preferences. These instances were generated by the
Metaheuristic Network (TTComp in 2003). The benchmark
problems are formulated as follows:

* A set of N courses needs to be scheduled into 5
working days a week of 9 timeslots each day where
T = 45 timeslots

*» A set of R rooms 1s given where each room has a
mumber of F features that include their capacities and
other facilities

» A number of M students will attend the course. Each
student attends a number of courses with a given
size of each room involved

There are two types of constraints: hard and soft. In
order to produce a feasible timetable, all of the hard
constraints must be satisfied whereas the violation of the
soft constraints must be minimized in order to produce a
good quality timetable. Each violation of soft constraints
will incur a penalty cost where lower penalty values
indicate good quality solutions. A feasible timetable is
one in which all courses have been assigned to timeslots
and rooms and all hard constraints are satisfied. The hard
constraints are:

+ HI: No student attends more than one course at the
same time

» H2: The room is big enough for all the attending
students and satisfies all the features required by the
course

» H3: Only one course 15 scheduled in each room at
any timeslot
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+ H4: Events are only assigned to timeslots that are
pre-defined as available for those events (applicable
only to TTC2007-Track?2)

*  H5 Where specified, events are scheduled to occur
in the correct order in the weelk (applicable only to
ITC2007-Track2)

Then, a quality of timetable 1s measured by penalising
equally each violation of the following soft constraint (i.e.,
penalty cost = 1 for each violation). The soft constraints
are:

+  S1: A student should not has a class in the last slot
of the day

s 32: A student should not has more than two classes
consecutively

¢+ 53 A student should not has a single class on a day

The objective function value of a timetable for each
student 1s simply calculated as the summation of the hard
and soft constraints violations (Rossi-Doria et al., 2003).
However, researchers deal only with feasible solutions in
the approach. More information about the instances and
the problem formulation can be found by Cesclua ef al.
(2011). This study will investigate a population-based
metaheuristic to manage a balance between diversification
and intensification of the search in order to improve
the quality of the timetable. A number of selective
comparisons will be made between the results produced
i this study and the state-of-the-art reported in the
literature.

The Big Bang-Big Crunch metaheuristic: There are
many other approaches inspired by nature that have not
been applied in course timetabling problem such as Big
Bang-Big Crunch (BB-BC). The BB-BC has been applied
to some combinatorial optimization problems. For example,
Erol and Eksin (2006) applied the original BB-BC on truss
optimization problem and compared it against GA and an
mnproved GA called Combat-GA (CGA). They showed
that the BB-BC had outperformed the CGA in most of the
test functions mstances mn terms of quality and speed. In
another research, Kaveh and Talatahari (2009) compared
the BB-BC against Particle Swarm Optimization (PSO),
Harmony Search (HS) and Ant Colony Optimization
(ACO) over the size optunization of space trusses. They
showed that the performance of the BB-BC demonstrates
superiority over PSO, HS and ACO in computational time
and quality of solutions. Lately, the BB-BC was applied to
a number of optimization problems such as: target tracking
for underwater vehicle detection and tracking (Genc and
Hocaoglu, 2008) and engineening optimization (Kripka and
Kripka, 2008).

98

The BB-BC algorithm is based on one of the theories
of the umiverse evolution mn physics and astronomy,
describing how the universe was created, evolved and
how would end. The BB-BC Theory involves two phases:
big bang and big crunch. The big bang phase is a set of
procedures of energy dissipation in nature term of
disordering and randomness. The big crunch phase 1s a
procedure that randomly distributes particles and draws
them into an order.

The big bang and big crunch phases represent large
search space exploration and best solution exploitation,
respectively. The big bang phase (energy dissipation)
randomly generates an mitial population of feasible
solutions (similar to the GA in respect to generating a
random 1mtial population).

Populations produced by the big bang phase will be
gradually reduced in the big crunch phase. This aims to
reduce computational time and to gain quick convergence
while mamtaiming a diversity of solutions. The cost
function value of a solution in the population represents
a mass. The best solution is represented as the centre of
mass (Erol and Eksin, 2006). The centre of mass will attract
other solutions. This 1s because the solutions with greater
mass (in the case smaller penalty cost) are potentially
much closer to the centre of the search space (universe)
or to the point where the big crunch will converge.

Specifically, the BB-BC researchs with a population
of variable size (e.g., stellar objects) (Genc and Hocaoglu,
2008). Tt can maintain the diversity of the search, in which
it may avoid being trapped in a local optimum and can
converge in a reasonable speed (Kripka and Kripka, 2008).
Tt is like memetic algorithms except it does not involve
solutions combination (e.g., crossover) and the mutation
is represented by solution’s perturbations. The pseudo
code of the BB-BC 1s illustrated in Fig. 1.

Researchers have chosen the BB-BC due to: less
parameterized structure, the ability to distribute the search

Repeat
Big Bang phase (solutions construction):
Generate population and measure the Euclidean distances among the
pepulation’s selutions
Big Crunch phase (Locals Search move):
Find centre of mass
Improve centre of mass
successive Big Bang phase:
Generate new limited population around the centre of mass found
in previous iterations using normal distribution;
{fto transfer the centre of mass to another region
Decrease the variance of the normal distribution with iteration count
Until (StoppingCriterion); //maximum number of iterations is reached

Fig. 1. The pseudo code of the original BB-BC (Erol and
Eksin, 2006)
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over a various number of selutions instead of one and the
capability of quick convergence even n the existence
of multiple local mimima (Genc and Hocaoglu, 2008).
Hopefully this enables the search to rapidly find good
quality solutions i different regions in the search space.
Generally, the (finalized version) BB-BC algorithm differs
from the ongimal BB-BC algorithm (Erol and Eksin, 2006)
in terms of representing exploration and exploitation
phases (solution construction and improvement). That is,
researchers exploit a collection of elite solutions to
generate new promising population in successive Big
Bang phases where the elite collection contains good
quality solutions whereas the original BB-BC rebuilds new
solutions from scratch to generate new generation.
Researchers employ vanable neighbourhood structures
and simple descent heuristic (as a local search) whilst
Erol and Eksin (2006) examined solution neighbours either
using greedy descent or steepest descent. Researchers
simply use the quality of the generated solutions and the
minimum Euclidean distance to represent the centre of
mass (i.e., the best quality solution) and maximum,
mimmum cost values of solutions in the elite pool
(containing local optima solutions) to determine the
boundaries (allowable space) of the
population. Whereas, the original BB-BC calculates

successive
solutions’ positions (represented by the FEuclidean
distances and the standard deviation of the population
distribution) relatively to the centre of mass in the search
space and the magnitude of gravitational attraction that
affects the population to converge toward the centre of
mass 1n the Buclidean space (Erol and Eksin, 2006).
Originally, the search space boundary is determined by
the summation of the Euclidean distances of all solutions
i the population. However, researchers also consider
measuring the Euclidean distance of the whole population
to efficiently control the production of new solutions
within a preferable quality limits to converge toward good
quality solutions.

The new offsprings for the successive iteration Big
Bang phase (and in Big Crunch phase) are normally
distributed around the centre of mass (C,) (Erol and Eksin,
2006) (Eq. 1)

Cr = to 1)
Where:
C™ = The new generated solution 1
0 = A standard deviation of a normal distribution

The standard deviation decreases as the iterations
elapse according to the following formula (Eq. 2) as in
(Erol and Eksin, 2006):
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o= o C . -C ) , OE <1 (2)
k k

Where:

T = A random number between [0,1]

o = A reduction rate of the size of the search
space

Chwand C . = The upper and lower limits of the elite
pool

k = The number of Big Bang phase iterations

Therefore, the new offspring is generated based on
(Eq. 1) within the upper and lower bounds. The offsprings
are generated by performing some perturbations to the
solutions n the elite pool. The lower and upper liumits
are necessary to control the solutions distribution. In
this research, researchers eliminate r by fixing
value to 1, since it has shown no significant impact
on the population reduction process in the preliminary
experiments.

At the end of the Big Crunch phase (i.e., when a
population size is reduced to one solution) a new
generation 1s generated from the elite pool of the previous
generations with the same population size (as mn the first
generation) and starting with the previous centre of mass.
That is, the algorithm regenerates a new population from
the elite pool (by performing shakings to the solution),
bounded by the maximum and mimimum of the solutions’
cost values of the previous generation (e.g., bounded
using Eq. 1).

In order to include possible good quality solutions,
researchers allow an extended lower limit. That 1s, all
improved solutions are allowed (although they are not
within the boundary) and the upper limit is restricted so as
to limit accepting worse solution. The pseudo code of the
hybrid BB-BC algorithm 1s shown in Fig. 2.

its

ig Bang phase (solutions construction):
Step 1: Generate population N, (construct solutions
from scratch for the first generation
or else generate new population N from the ¢lite pool)
and measure Euclidean distances among solutions
in the population.
Rieg Crunch phase (Local Search move):
peat
Step2: Generate some neighbours N, for all solutions in the
population and replace the parent with its best offspring
C*™ for each solution C; in the population.
Step 3: Find the centre of mass C,
Step 4: Apply local search to the centre of mass,
Step 5: Update the elite pool and the best found solution C,...
Step 6: Eliminate some poor quality solutions,
[Until population size is reduced 1o a single solution.

Step T: Return to step 1 if stopping criterion is not met.
Step 8: Return the best found solution.

Fig. 2: The pseudo code of the hybrid BB-BC for course
timetabling problem (Jaradat and Ayob, 2010)
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The hybrid BB-BC begins with the construction
phase (Big Bang) that constructs a population of N,
feasible solutions C; from scratch (step 1) for the first
generation. This phase can also be referred to as the
diversification phase. Researchers use a largest
degree ordering heuristic with a repair procedure
(Landa-Silva and Obit, 2008; Shaker and Abdullah,
2010) to rectify infeasible solutions. Whilst w.r.t. the
ITC-2007 instances, researchers use the same ordering
(construction) heuristic to satisfy the 4th and 5th hard
constraints (where those two hard constraints are much
more complicated) but researchers try to leave few
unscheduled courses as much as possible. In which once
a roorm 1s not available in a certain timeslot for a certain
course, researchers randomly select a new timeslot
(Cambazard et al., 2012, Ceschia ef ai., 2011). For the
successive Big Bang phase, researchers generate new
population from the elite pool (without including the
elite solutions themselves in the new population) by
performing shaking to solutions in the pool bounded by
the upper and lower cost values of solutions in the elite
pool.

In the same step (step 1), the Euclidean distances
among solutions in the population are measured to
establish a diversity control over the search as well as
estimating the attractiveness of an elite solution. Tn which
the search diversity might be limited to some extent
depending on the differences between solutions’
quality values. For example, a difference between two
solutions (C, and C,,) 15 presented by the (distance d)
difference between the fitness values of those solutions
(d (¢, C,) = f{(C)-f(C,))). That is, the greater the
difference between C; and C,, |, the greater the probability
of solutions to surround each other (gathered mn one
cluster) in the next iteration. This is considered in order
not to diversify the search too much thus converging
toward good quality solution (s) effectively and
efficiently. In the research, researchers chose the best
quality solution with the minimum Euclidean distance, as
the centre of mass. A solution with the greater maximum
distance 1s considered as the most diverse solution.
Where this solution might has a completely different
structure and fitness cost from the elite solutions. The
Euclidean distances among solutions in the population
(Eq. 3) and the distances between solutions in the
population and selutions in the elite pool (Eq. 4) are
calculated as follows (Erol and Eksin, 2006; Brownlee,

2011):
’ il
dmm (Cl ’CHI) = 2(C1 _C1+1 )2 (3)
1=1
where, ie N {C,C,,...C}
“4)

dmm(p,q):JZ(pi -q. )
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where, d.;, (p, q) is the distance between each solution (p)
in the population and each solution (q) currently in the
elite pool (best quality solutions C,,, including one or
more centre of mass C)). For example, a distance
between two solutions is expressed as (f(p,)-f(p,)) where
the fitness value (quality) of a solution 13 subtracted from
the other and the distance between a solution and a
centre of mass 1s caleulated as (f (p)-f (g)) (Brownlee,
2011). Simply, the Euclidean distance examines the square
root of differences between solutions. According to
Brownlee (2011) in the nature inspired algorithms, the
diversity of the population or the density estimator of the
solution space can be measured using the sum of the
Euclidean distances between a solution and all other
solutions in the population as a measurement of how
much that mdividual contributes to the diversity. A
solution with a minimum distance from the elite solution
will have greater attractiveness toward that elite solution
(centre of mass).

The hybrnid BB-BC records the diversity of the
population over time where it is calculated as Eq. 3 the
minimum average distance of a solution from all other
solutions in the population (aka the average distance from
all mdividuals, Bui et al., 2007). Whlst with respect
to Eq. 4, it is calculated as the minimum distance between
a solution in the population and the centre of mass
(aka the distance from the best individual of the
population, Bui et al., 2007). This may avoids getting
trapped in local optima (Bui et al., 2007).

Then, in step 2, researchers employ the Big Crunch
phase (improvement) where first researchers generate
some neighbours of all solutions i the population
including the centre of mass by performing simple
perturbations. This phase can also be referred to as the
intensification phase (or a local search move). Each
solution (parent) is replaced with the best offspring in
order to have better quality solutions in the successive
population while mamtaining diversity of the search. This
is done to avoid premature convergence of the search.
That 15 a diversity of the search 1s maintamed by the
keeping some of the poor quality solutions where some
poor quality solutions are eliminated from the population
that exceeded the upper boundary. The whole cycle of the
BB-BC presents the balance between diversity and quality
of the search where the big crunch phase (solution space
exploitation) shrinks the population gradually mto one
elite solution whilst the big bang (search space
exploration) generates a whole new population of diverse
solutions generated from those solutions in the elite pool.

In step 3, researchers determine the centre of mass C,
based on the best solution cost value found (C,_,) and the
minimum average distance from the rest of the population.
The centre of mass is further improved by applying a
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simple descent heuristic for a predefined number of
non-improvement iterations (step 4). An elite pool
(collection) 15 created/updated m step 5 where the best
solutions (centre of mass) of the previous generations are
stored in the elite pool and exploited as reference
solutions for the Big Bang phase in successive iterations.
In this research, researchers use a fixed size of elite pool
where m the first iteration; some good solutions were
selected to be included in the pool. At each iteration, the
elite pool is updated by replacing the worst solution cost
in the current centre of mass and solutions. Based on
Eq. 1 the search gradually converged to a single solution
by reducing the size of the population (step 6). This is
done by eliminating poor quality solutions around the
centre of mass. The Big Crunch phase 1s repeated
until the population size 1s reduced to a single solution
(singularity).

A new Big Bang phase is commenced when the
population size 1s reduced mto a single solution m big
crunch phase (step 7) by returning to the first step where
anew population is generated from the elite pool. That is,
by including the elite solutions in the new population and
generating some neighbours from them to form the new
population (rather than generating new solutions from
scratch as by Hrol and Elksin (2006). Researchers include
all centre of mass solutions (in the elite pool) in the new
population only when the elite pool 18 fully occupied.
That 1s, to preserve a higher degree of diversity in order
to prevent premature convergence. Whilst in early big
bangs (where the elite pool is not full yet of centre of
mass solutions taken from previous big bangs),
researchers exclude any centre of mass (in the elite pool)
from being included in the new population. The hybrid
BB-BC algorithm’s search processes are repeated until the
stopping criterion is met which is in the research either the
maximum number of iterations 1s reached or the best
quality solution is found. Finally, the BB-BC returns the
best found solution (step 8).

In this research, employ three
neighbourhood structures at random to the whole
population including centre of mass C, (i.e., in step 1 and
3). At every iteration, researchers generate five feasible
neighbours for each solution n N, and the best
neighbthe is chosen to replace its parent solution for
the next generation N, Researchers employ three
neighbourhood structures from Socha (2003) which they
are: move a randomly selected course to a random feasible
room and timeslot, swap timeslots and rooms of two
randomly selected courses and swap all courses of two
randomly selected timeslots and rooms.

A simple descent heuristic local search 15 employed
(as a sigmficant mtensification mechanism) m order to

researchers
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improve the quality of solutions by exploring their
neighbourhoods without sacrificing the diversity of the
search. A simple exploration of some neighbourhoods of
a solution (e.g., simple shaking such as move a course
1nto a random and feasible timeslot) 15 employed in the big
crunich phase as it may be sufficient enough to escape the
local optima.

RESULTS AND DISCUSSION

In this research, researchers tested three versions of
the BB-BC on three benchmark datasets (i.e., Socha,
TTComp in 2003 and [TC2007-Track2). Researchers run
each BB-BC Version 25 times on each instance for a
relaxed running time (which 1s the number of iterations)
under the same conditions (e.g., munber of iterations,
local search, neighbourhood structures). The experiments
are performed on Intel Pentium Core2 Duo 2.16 GHz
processor, 2 GB RAM and implemented in Java NetBeans
IDE V 6.9. Parameters shown in Table 1 are determined
experimentally (e.g., elite pool size) and based on the
literature (e.g., Blitism). For example, the BB-BC follows
the typical population size as of the genetic algorithms.

In the experiments, researchers first implemented the
original BB-BC algorithm (V1) as by Erol and Eksin (2006)
to identify its limitation such as:

How researchers may utilize the Euclidean distance
measurement n controlling the diversity of the
search properly

How researchers may update the search process and
manipulate the population cardinality properly (e.g.,
what kind of solutions researchers need to keep or
discard)

How to utilize the rapid convergence of the algorithm

Then, researchers implement a slightly modified
version of the original one (V2). The medifications of V2
are: ignorng the use of the Euclidean distance and
gradually reducing the population size very slightly by
eliminating only one poor (the very worst) quality
solution. Finally, researchers overcome the limitations of
the algorithm in V2 by:

Table 1: Parameters settings used by the BB-BC algorithms

Parameters Description

Nieep Population size = 100 (feasible solutions)

k Number of iterations = 100,000

k,, Number of non-improvernent iteration = 30

o Reduction rate = 0.8

Elite_pool Elite pool size = 10

N, Number of neighbours created in each generation =5
Elitism Last population solution is forced to be always the best
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¢ Utilizing the Euclidean distance measurement

* A vanable population reduction rate

* A local search routine (1.e., simple descent heuristic)

¢+ Utilizing a memory of elite solutions in the
subsequent implementation (V3)

The best results obtained by the three versions are
illustrated in Table 2 (w.r.t. Socha datasets) as V1-V3,
respectively which are also compared to the best known
results obtamed by other methodologies (mcluding
population-based) applied to the same mstances. The
results reported in the table are all feasible. The
differences between the three versions are as follows:

V1: It has no elite pool. This makes it unable to establish
a reliable and sufficient exchanging of the search
experience among the Big Bang and Big Crunch phases.
It has also the reduction rate of 10% of the population size
which 1s also not sufficient enough to a better search
convergence. By Erol and Eksin (2006), the reduction rate
equals to 1 which is not suitable to the problem’s nature
where the convergence will be incredibly fast without a
significant solution’s improvement. The diversity of the
search and the centre of the mass are measured by
of the whole
population along with the quality. This is appeared to be
hard to estimate its effects on the search in meamngful

calculating the Euclidean distances

heuristic information. Tt employs an iterated local search.

V2: It has an elite pool. It has no Euclidean distances
measurement, instead, the qualty of solutions 1s
considered. The reduction rate of the population size is
performed by elimmating the very worst quality solution
from the population at every iteration It employs an
iterated local search.

V3: Tt has an elite pool. Tt has Fuclidean distances
measurement. The reduction rate of the population size is

Table 2: Results of the BB-BC algorithms applied to Socha’s instances

performed by eliminating poor quality solutions around
the centre of mass from the population at every iteration.
It employs a simple descent heuristic.

Table 2 demonstrates that V3 has the best
performance and consistency in obtaining good quality
solutions in most of the runs. This is indicated by
maintaimng a balance between diversity and quality of the
search through the interaction between solutions i the
elite pool; the Euclidean distance; the variable population
reduction rate; re-initiate a new population and the local
search routine. Hence, researchers may conclude that by
incorporating an elite pool mto the BB-BC has played a
major role m enhancing the intensification and the
diversification of the search (indicated by better results
best of V2 and V3 than V1). In addition, the Euclidean
distance measurement has also an impact on the
intensification process where in V2 the best results are
not significantly better than those of V1 and are
outperformed by V3.

In comparison, the results are far from the best
known results shown in Table 3 but it has outperform
some approaches reported in the table for many instances.
Researchers might be unable to outperform the best
known results because of the local search routine (simple
descent heuristic) or the way researchers explore the
neighbours around the elite solution (s) is not sufficient
enough for a sigmficant solution improvement. Also, it
might be due to the computational time which however
was not a significant factor in solving the problem as
reported in the literature, since, many researchers were
concerned with obtaming a high quality tiunetable
regardless of time. Perhaps, since the BB-BC has the
advantage of a rapid convergence (Erol and Eksin, 2006),
the population size has to be much larger than the size
researchers conducted in order to explore much more
possibilities of promising regions in the search space and
exploit those regions more intensively.

The results also proved that the hybrid BB-BC
algorithm (V3) can consistently produce good quality

Vi V2 V3
Tnstances Best 5D Median Worst. Best SD Median  Worst Best 3D Median  Worst
Smalll 0 1.30 1 1 0 0.89 0 2 0 1.30 2 4
Small 2 0 1.20 1 2 0 0.89 0 2 0 1.11 1 4
Small 3 0 1.80 2 8 0 0.84 1 2 0 1.80 2 7
Small 4 0 1.10 1 2 0 0.45 0 1 0 0.70 1 2
Small 5 0 0.74 1 2 0 0.45 0 1 0 0.70 1 2
Mediuml 133 16.40 159 276 110 3.94 114 120 99 7.20 108 124
Medium?2 128 14.10 142 238 108 8.52 115 128 102 9.72 116 134
Mediumn3 184 15.80 260 314 160 16.36 169 198 158 19.52 183 219
Mediumd 119 15.60 135 201 102 14.61 119 140 86 11.01 106 129
Mediumn5 108 14.20 122 193 76 16.63 95 121 79 12.24 97 120
Large 786 65.50 828 865 785 62.73 830 935 768 45.96 837 922

SD: The Standard Deviation of 25 runs
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Table 3: Results of V3 compared to similar approaches applied to Socha’s instances

Population-based approaches Other approaches
Instances  BB-BC (V3) MMAS GASD EMGD EGSGA TMA FSI HBMO RRM DSA SA
Smalll 0 1.0 2 0 0 0 0 0 0 0 0
Small 2 0 3.0 4 0 0 0 0 0 0 0 0
Small 3 0 1.0 2 0 0 0 0 0 0 0 0
Small 4 0 1.0 0 0 0 0 0 0 0 0 0
Small 5 0 0.0 4 0 0 0 0 0 0 0 0
Mediuml 99 195.0 254 96 139 50 45 75 117 93 9
Medium2 102 184.0 285 96 92 70 40 88 108 98 15
Medium3 158 248.0 251 135 122 102 61 129 135 149 36
Medium4 86 164.5 321 79 98 32 35 74 75 103 12
Mediums5 79 219.5 276 87 116 61 49 1 160 98 3
Large 768 851.5 1027 683 615 653 407 523 589 680 208

MMAS: Max-Min Ant System (Socha et ., 2002), results shown are the average values; GASD: Hybrid of Genetic Algorithm and Steepest Descent
(Abdullah and Turabieh, 2008); GSGA: Extended Guided Search Genetic Algorithm (Jat and Yang, 2011); EMGD: Hybrid of Electromagnetic-like Mechanism
with force decay rate Great Deluge (Turabieh ef af., 2009); TSMA: Incorporation of Tabu Search into Memetic Algorithm (Turabieh and Abdullah, 2009);
FSI: Fish 8warm Intelligence (Turabieh et af., 2010); HBMO: Honey Bee-Mating Optimization (Sabar et al., 2011); RRM: Controlling rmulti algorithms
(Simulated Annealing, Great deluge, Hill Climbing) using Round Robin (Shaker and Abdullah, 2010); DSA: Dual Simulated Annealing (Abdullah et a.,
2010b); the best known results are recently obtained by a Simulated Annealing approach (Ceschia et af., 2011)

timetables (refer to 8D and median in Table 2) which are
rather comparable to some results obtamned by other
population-based metaheuristics reported in the literature
(indicated by a small difference between best and median
and worst where the smaller the difference the more
consistent the algorithm). For example, the algorithm has
obtained the best results for all small datasets (same as
other approaches) and outperformed some population-
based metaheuristics for the medium and large sized
datasets. This might be due to the followmng factors:

The population size reduction may help the search to
converge to local minima (centre of mass) in the big
crunch phase, whilst regenerating new population in
a new big bang phase may help to diversify the
search

Searching some neighbours within the search space
boundaries in the big crunch phase may likely to
guarantee a significant solution improvement.
Exploiting an elite pool in generating new promising
population in successive big bang phases in which
1t transfers good mformation about elite solutions to
next generations in order to perform a recombination
of good quality solutions

The effectiveness of V3 1s due to an efficient search
space exploration and effective solution space
exploitation. This presents the ability of the BB-BC to
maintain a balance between the diversity and quality of
the search.

An efficient exploration can be achieved by utilizing
an elite pool of good quality solutions to prevent
premature convergence of the search (Greistorfer, 2000).
Solutions (centres of mass) in the elite pool are utilized by
the big bang phase to regenerate new solutions (rather
than generating from scratch). The big bang phase
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reinitializes the search with new population to trigger the
search again towards the global solution. The elite
pool may provide useful
location/structure of the global solution. The exploitation
of the elite solution (centre of mass) is performed by the
simple descent heuristic and the population reduction
rate. This 1s achieved by performing further exploration of
an elite solution’s neighbours to enhance the quality of
the solution significantly rather than just depending on
reaching singularity.

However, compared to the state of the art approaches
(e.g., simulated annealing presented in Table 3) there are
some drawbacks 1n the BB-BC. First, there 1s no effective
utilization of the solutions (in the elite pool) in order to
perform an explicit solutions recombimation. This 1s due to
the fact that there is no combination operator (e.g.,
crossover) to intensify the search around an elite
solution. The mntensification of an elite solution (in the
BB-BC) is utilized in the form of a simple decent heuristic
(a local search routine). In which the search converges
toward a local minimum in the same neighbourhood of the

information about the

solution space, whilst a combination operator converges
the search toward a local minimum (perhaps) in a different
neighbourhood of the solution space. Second, the
diversity control is not properly achieved because of the
Euclidean distance measurement provides only the
location or quality differences between two or more
solutions. Therefore, a structured solution recombination
is not performed properly in the BB-BC.

In the BB-BC, it is still hard to manipulate in a way
suitable for adaptively manipulate the population size
during the search with regards to diversity. This is not
easily achieved using the Euclidean distance. In other
words, the Euclidean distance 1s unable to count the
number of (dis) smunier assignments of courses mto
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Table 4: Results of V3 applied to TTComp2003 instances

Population-based Local search
Instances V3 MMAS AS EMGD EGSGA 3-SAX GD LS HA SA
Comp01 46 05 55 52 54 16 85 63 45 45
Comp02 21 36 43 20 25 2 42 46 14 20
Comp03 45 09 6l 78 44 17 84 96 45 43
Comp04 88 138 134 74 132 34 119 166 71 87
Comp05 96 143 134 7 97 42 77 203 59 71
Comp06 0 24 32 3] 3 0 6 92 1 2
Comp07 2 24 52 3] 12 2 12 118 3 2
Comp08 1 28 48 15 23 0 32 66 1 9
Comp09 17 36 39 32 21 1 184 51 8 15
Compl0O 63 75 77 58 53 21 90 81 52 41
Compll 32 50 39 30 46 5 73 65 30 24
Compl2 78 95 102 88 96 55 79 119 75 62
Compl3 73 79 94 105 69 31 91 160 55 59
Compl4 20 73 109 51 13 11 36 197 18 21
Compl5 21 31 47 34 35 2 27 114 8 6
Complé 12 23 26 10 12 0 300 38 5 6
Compl7 87 108 78 121 104 37 79 212 46 42
Compl8 34 26 35 26 39 4 39 40 24 11
Compl9 62 108 119 57 63 7 86 185 33 56
Comp20 0 5 19 5 2 0 0 17 0 0

MMMAS: Max-Min Ant System (Socha et al., 2002); AS: Ant Systemn (Mayer et af., 2008); EMGD: Hybrid of Electromagnetic-like mechanism with force
decay rate Great Deluge (Turabich et af., 2009); EGSGA: Extended Guided Search Genetic Algorithm (Jat and Yang, 2011); 3-8Ax: Extended work of the
official winner with some refinements and greater number of iterations equals to 1 million (Kostuch, 2005, GD: Great Deluge (Burke et af., 2003); 18 Local
Search (Di Gaspero and Schaerf, 2006); HA: Hybrid metaheuristic, a mixture of constructive heuristics (including local search and Tabu Search), Variable
Neighbourhood Descent and Simulated Arnealing (Chiarandini et af., 2006); SA: Simulated Annealing approach (Ceschia et af., 2011)

timeslots in two solutions. The Euclidean distance is
useful to determine the boundaries and distribution of the
search space. Also, the Euclidean distance cannot be
replaced by any other distance measurements (e.g.,
Manhattan distance) in the BB-BC.

However, elite solutions are utilized to generate new
promising solutions (rather than from scratch) to restart
the search with a new diversified population but close n
quality to the current centre of mass. The elite pool
provides useful mformation about the location of the
global solution (desired centre of mass) presented by the
Euclidean distances between solutions in the population
and the centre of mass (s).

Furthermore, further
experiments by testing V3 on two more benchmark
datasets (1.e., TTComp, 2003 and ITC2007-Track2) to
support the hypothesis of the effectiveness, efficiency
and consistency of the implementation (V3). Table 4 and
5 show the results obtained by V3 (under competitions’
stopping condition, 1.e., 474 sec for TTComp2003 and
494 sec for ITC2007) compared to the state of the art
approaches.

researchers carried out

Notice that across all the 25 runs for each instance of
both competitions” datasets Tables 4 and 5 V3 13 able to
obtain feasible solutions, without marking even a single
production of an infeasible solution. From Table 4, it is
clear that V3 has obtained high quality results compared
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to most of the presented approaches. Tt has obtained high
quality solutions that are better than most approaches for
3 mstances (e.g., comp06, comp07 and comp20).

In the 2nd competition TTC2007 (Track2), Table 5
shows that V3 has obtained optimality (penalty cost = 0)
for one third of the instances (comp5, comp6, comp8,
compl3, compl4, compl 5, compl 7, compl8 and comp21).
Other results are comparable to the best known results
reported in the literature (e.g., comp24, cost = 3). For the
instance compl2, the BB-BC (V3) has obtained a high
quality timetable (cost = 14) better than the rest of the
approaches reported in the Table 4. Tn addition, V3
outperformed many approaches for most instances shown
in Table 5 especially the population-based ones in terms
of quality and feasibility.

In the experiments, researchers demonstrate the
effectiveness of incorporating the elite pool and a local
search as well as measuring the Fuclidean distances in
enhancing the original BB-BC. Where the elite pool 1s
exploited to maintain a balance between diversity and
quality of the search; while the Euclidean distance helps
in the search update process.

The local search adds more sigmficance to the
process of improving the quality of the solutions. The
t-test values in Table 6 (w.rt consistency and
effectiveness) which demonstrates the effectiveness of V3
where the t-test is carried out with 24 degree of freedom at
a 0.05 level of significance.
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Table 5: Results of V3 applied to TTC2007 (Track2) instances

TLocal search

Population-based

Instances V3 CTI HA LSA HSAT TSSA SA AS HGATS
Compl 541 61 1482 1861 1166 571 59 15 523
Comp2 984 547 1635 inf 1665 993 0 0 342
Comp3 198 382 288 272 251 164 148 301 379
Comp4 360 529 385 425 424 310 25 239 234
Comp3 0 5 559 8 47 5 0 34 0
Compé 0 0 851 28 412 0 0 87 0
Comp7 6 0 10 13 6 6 0 0 0
Comp8 0 0 0 6 85 0 0 4 0
Comp9 1067 0 1947 inf 1819 1560 inf 0 1102
Compl0 860 0 1741 inf 2001 2163 inf 0 515
Compll 245 548 240 263 288 178 142 547 246
Compl2 14 869 473 804 474 146 267 32 241
Compl3 0 0 675 285 298 0 1 166 0
Compl4 0 0 864 110 127 1 0 0 0
Compl35 0 379 0 5 108 0 0 0 0
Complé 1 inf 1 132 138 2 0 41 0
Compl7 0 1 5 72 0 0 0 68 0
Compl8 0 0 3 70 25 0 0 26 0
Compl9 1680 inf 1868 inf 2146 1824 inf 22 121
Comp20 563 1215 596 878 G625 445 543 inf 304
Comp21 0 0 602 40 308 0 inf 33 36
Comp22 2383 0 1364 889 inf 29 5 0 1154
Comp23 982 430 688 436 3101 238 inf 1275 963
Comp24 3 720 822 372 841 21 0 30 274

AS: Ant Systern (Mayer ef ai., 2008); HGATS: Hybrid Genetic Algorithm with Tabu Search (Jat and Yang, 2011); CTL Combination of general purpose
Constraint Satisfaction Solver, Tabu Search and Iterated Local Search (Atsuta et ., 2008); HA: Combination of constructive procedure to achieve feasibility
and a simulated annealing (Chiarandini ef ., 2008); LSA: Local Search Algorithm taken from the Constraint Solver Library combined with Variable
Neighbourhood Search algorithms (Muller, 2008); TSSA: Cornbination of Tabu Search and Simulated Annealing in conjunction with various neighbourhood
operators (Cambazard et al., 2012). The official winner; HSAT: Hybrid approach which combines a constructive heuristic, two separate phases of Simulated
Amnnealing and Neighbourhood operators and it is time dependent (Lewis, 2012); SA: Simulated Annealing approach (Ceschia et d@l., 2011, inf: no feasible

solution was obtained with distance to feasibility (DF=>0)

Table 6: t-test of V3 for the three benchmark datasets

Socha TTComp2003 ITC2007 (Track2)

Instances t-test p-value Instance t-test p-value Instance t-test p-value
Srmall 16.03 0 Comp01 29.273 0.000 Compl 37.321 0.000
Smmall 2 4.843 0 Comp02 37.247 0.000 Comp2 37.714 0.000
Smmall3 6.011 0 Comp03 35421 0.000 Comp3 75.232 0.000
Smmall 4 6.549 0 Comp04 144.526 0.000 Comp4 107.545 0.000
Smmall 5 7.688 0 Comp03 171.842 0.000 Comp5 10.258 0.000
Mediuml 76.621 0 Comp06 2.138 0.043 Compé o -
Medium?2 60.186 0 Comp07 9.294 0.000 Comp7 51.000 0.000
Medium3 47.848 0 Comp08 8.683 0.000 Comp8 o -
Mediumd 48.236 0 Comp09 19.118 0.000 Comp9 69.721 0.000
Mediums5 40.194 0 Compl0 52.148 0.000 Compl0 58.608 0.000
Large 90.929 0 Compll 39311 0.000 Compll 48.267 0.000
- - - Compl2 73311 0.000 Compl2 5.843 0.000
- - - Compl3 67.597 0.000 Compl3 o -

- - - Compl4 22176 0.000 Compl4 4.993 0.000
- - - Compl5 31.749 0.000 Compl5 o -

- - - Compl6 25823 0.000 Complé 8.851 0.000
- - - Compl7 117.371 0.000 Compl7 2.551 0.018
- - - Compl8 36.538 0.000 Compl8 1.445 0.161
- - - Compl9 46.104 0.000 Compl9 101.804 0.000
- - - Comp20 1.000 0.327 Comp20 220.654 0.327
- - - - - - Comp21 2.751 0.017
- - - - - - Comp22 541.400 0.000
- - - - - - Comp23 30.242 0.000
- - - - - - Comp24 8.442 0.000

o t cannot be computed because the standard deviation is 0
CONCLUSION

The goal of this study was to present the
effectiveness of utilizing an elite pool and the Euclidean
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distance in the BB-BC to enhance its capability of
maintaining a balance between the diversification and
intensification of the search. Three versions of the BB-BC
were tested on a post-enrolment course timetabling
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problem to support the hypothesis of utilizing an explicit
memory and diversity control strategies. The performance
of the three versions was relatively good and consistent
but still inferior to the best state of the art approaches
reported in the literature. An advantage of the hybrid
BB-BC is that the capability of exploration and
exploitation of multiple solutions. Although, since it has
fast solution convergence and it diversifies the search it
still has some drawbacks such as the diversity control
and performing a structured recombination of elite
solutions in order to produce good quality solutions. In
the future, researchers may investigate some alternative
selection and/or recombination mechanisms of elite
solutions m the BB-BC. That is, to further understand
how to maintain a reasonable degree of the search
diversity and to achieve an efficient convergence toward
better quality solutions as well as to achieve better
performance and consistency.
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