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Abstract: This study presents a decision support system that aids the embedded system designers during the
synthesis phase to select the optimal system components such as processors, memories, communication
interfaces, etc., from the available huge design alternatives. The selection process should consider the
configuration options available both at the system level and the micro-architectural level, along with the
knowledge about the system parameters that affect the overall objectives of the system m order to satisfy the
applications requirements. The focus of the Electronic Design Automation (EDA) community is towards
developing an efficient strategy for aiding the system designer during the synthesis to incorporate the domain
knowledge of the target architecture and to take early design decisions. The Bayesian Belief Network (BBN)
based modeling framework proposed i this study attempts to resolve the existing limitation in imparting domain
knowledge and provides a pioneering effort to support the designer during the process of embedded system
design. Sensitivity analysis is performed for identifying the most influential parameters for the decision making
and to verify the robustness of the proposed model. Case studies in support of the proposed model are
presented in order to understand how the BBN can be used in the embedded system design process by
propagating the evidence and arriving at inferences in such a way to ease the decision making process.
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INTRODUCTION

A Decision Support System (DSS) is an interactive
Computer-Based System or subsystem itended to
support decision makers m diverse domains such as
medical, transportation, risk management, safety control,
product development, etc. The DSS helps the decision
makers to use modemn communications technologies,
handling multiple datas, documents and inferring
knowledge from existing models or data to identify and
solve problems in order to take decisions early. The main
focus of developing a DSS for a particular domain 1s to
mnprove decision quality and productivity and to reduce
cost and time. A systematic approach is essential during
the development of any DSS to handle quantitative
mformation at hand for building the model and to ensure
easy integration with the existing system.

The importance of developing an intelligent DSS has
grown to a large extent due to the technological
advancements. Intelligent DSS System has the ability to
learn or understand from experience, respond quickly and
successfully to a new situation, use reasoning to solve

problems and to apply knowledge and mfer to mampulate
the environment. Artificial Newral Networks (ANN),
Case-based reasoning,
algorithms and fuzzy logic are some of the examples of
Intelligent algorithms or techniques used during the
development of any DSS.

A DSS for the modern Embedded Computer System
design has become wmportant due to the rapid growth with

Inductive learning, Genetic

respect to technology scaling in terms of mcluding more
number of transistors within a single chip. The scope of
adding more number of functionalities has been increased
because of the further miniaturization possible at the
Electronic System Level (ESL) design. The most important
challenge for the embedded system designer is to adapt
and utilize the underlying technology efficiently so as to
incorporate all the functionalities and constramnts required
for the given application. The modern system design
methodology has been shifted to be application specific
rather than providing a generalized architectural design
solution. This shift in the design paradigm has provided
a mechanism to build and wnplement a complete system
designed for a particular application within a single chip.
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The objective that must be satisfied during the
embedded system design depends primarily on the
constramts 1mposed by the applicaion Generally,
multiple objectives must be considered such as power
consumption, performance, core size, memory bandwidth
and energy. Apart from these fundamental constraints,
there are other higher level factors like incorporating
flexability, providing reconfigurable logic, desigming
scalable or reusable architecture, Intellectual Property (TP)
core integration, etc. which further increases the
complexity of the design process (Chen and Kung,
2008).

The embedded system design process usually starts
with the initial specification of the application and its
requirements. The designer analyses the objectives and
nature of the application and requires a high level test
bench to aid the design process during the synthesis
phase. The synthesis phase is the most critical aspect of
the embedded system design process in which the
designer has to perform the sub tasks such as
representation of the application, modeling the target
architecture, different design
alternatives available in terms of the system parameters,
mapping of application onto the chosen design
configuration and validating the performance. The critical
aspects involved during the synthesis phase cannot be
performed manually because of the huge design effort and
time needed to complete the entire process. This 1s the
exact stage at which an Electronic Design Automation
(EDA) tool is highly essential for aiding the designer
during the synthesis phase.

The extensive research effort in each of the sub tasks
involved in the synthesis phase has been significant in
recent years. Since, considerable amount of time 1s needed
for the selection of optimal design, the most promising
effort considered by the EDA commumnity 1s to provide a
mechanism to aid the designer for selecting the optimal
design configuration from the available alternatives,
considering multiple objectives and to take early design
decisions. The challenge that arises with respect to the
development of the tool is how much of the mapping of
available design space onto the objective space could be
automated. Further to this challenge, the objective space
usually constitutes multiple criteria to be considered
during the design thus transforming the tool design
toward multi-criteria decision making problem.

A Bayesian belief network 15 a graphical model that
determines the causal relationships among a set of
variables through probabilistic reasoning (Heckerman,
1997). The Bayesian belief network has been utilized for
decision making m most real-life problems such as
forecasting, medical diagnosis (Vila-Frances et al., 2013;

consideration of the

365

Yet et al, 2013), risk management (Lee et al, 2009;
Fang and Marle, 2012), product development (L1 and
Wang, 2011), safety control (Zhang et al, 2013) and
multi-criteria,  multi-attribute  decision = making
(Deleroix et ai., 2013) and fault inference (X{u, 2012), etc.
The structural end mathematical properties of the
BBN easily allow the designer to represent the causal
interdependencies
system attributes and the specified constraints at the
micro-architectural level. The ability of the BBN to
propagate the evidence throughout the network provides
an easier mechanism for understanding the cause and
effect relation between the variables of the system beng

that exist between the various

modeled. Since, the Bayesian belief network provides a
convenient way for the construction and representation
of the cause and effect relation among system attributes
easily, it 1s considered to be a suitable methodology for
decision making mn the embedded system design process.
This study proposes a BBN based DSS for embedded
system design.

LITERATURE REVIEW

Embedded system computing has now become
ubiquitous computing because of the advancements in
the embedded system
application domains in which it has been employed. The
most important aspect in the embedded system design
process 1s the consideration of the target architectural
platform for the given application to be ported after final
verification has been completed. Before the actual
implementation has been done, the designer needs to
evaluate and verify the correctness of the entire design
using the test bench platform. Generally, two methods
have been employed in describing the test bench
platform, analytic modeling (Gries and Keutzer, 2005) of
the target platform or using an Instruction Set Simulator
(IS3) (Blythe and Walker, 2000, Burger and Austin, 1997).
Analytic modeling of the target architecture has the ability
to portray the exact behavior of the platform with high
degree of precision. The difficulty in analytic modeling 1s
the time required for building the model, considering all
the aspects of the target architecture. ISS exactly
resembles the target platform specification, providing user
friendly environment for identifying the hot spots and
facilities to improve the performance of the given
application.

Various methodologies have been proposed for
embedded system synthesis such as model-based
design, Platform based Design (PbD) (Kempf et af.,
2011) and abstract description of architecture using

research and the various
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programming constructs. The Ptolemy (Lee, 2003)
framework enables the modelling, simulation and design
of the concurrent, real-time embedded systems for
analyzing the interaction between the system
components, using heterogeneous mixture of Models of
Computation (MoC). SPADE (Lieverse et al., 2001), a
system level framework, presents an arclutectural
exploration method based on a single MoC using Kahn
Process Network (KPN) (Kahn, 1974). This framework
follows the Y-chart principle for system level design
based on various abstraction levels.

GRACEH (Mueller ef al., 2001) 1s a SystemC based
simulation environment for Network on Chip (NoC') centric
systems that targets abstraction levels higher than
Register Transfer Logic (RTL) to achieve mcreased
simulation speed. ARTEMIS (Pimentel et af., 2001) yet
another system level framework has extended the research
of SPADE by increasing the simulation speed and
mcorporating automatic heuristics for choosing design
alternatives.

StepNP framework (Paulin et al., 2002) represents a
development environment including the design aspects of
architecture, application and tools. The main focus of this
framework 1s to explore different network processor
architectures. The fundamental differences that exist
between these tools is the way the given application has
been represented, the representation of architectural
specifications, compiler optimizations possible, support
for Field Programmable Gate Array (FPGA) emulation and
how much the tool automates the design process.

System level synthesis using evolutionary algorithms
has been implemented by Thiele et al. (2002) that target
the applications and SoC architectural design in the
domain of packet processing. Approximate methods
(Eisenring et al., 2000; Fredriksson et al., 2005) have been
unplemented for optimization of the design through
satisfying some predefined condition or specified
constraints. Decision making in real-time embedded
systems design has been formulated as a framework by
Shankaran et al. (2006). Most of the tools or frameworks
have not exploited the domain knowledge when modeling
the architecture. The existing tools utilize heuristic based
approaches for aiding the embedded system design
process which result i sub optimal solutions for the
decision making problem.

The idea proposed by Beltrame et al. (2010) moves
the design complexity from simulation to probabilistic
analysis of parameter transformations by employmg the
domain knowledge of the target architecture. Exploration
process has been modelled as a Markov Decision
Process (MDP) and the solution to such MDP relates with
the sequence of parameter transformations to be applied
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in order to maximise or minimise the desired value
function. The simulation has been performed only in
particular cases of uncertainty thus massively reducing
the simulation time needed to perform the exploration of
a system while maintaining near optimality of the results.

BBN has been used by Olson et al. (2007) for
performing the hardware/software partitioning during the
embedded system design for categorizing the functional
components into hardware and software. This has been
done through incorporating a methodology for generating
the qualitative structure of BBN and also the quantitative
link matrices. A travelling problem scenario,
Watthayu and Peng (2004) has been modeled using the
BBN for multi criteria decision making. An efficient BEN
based learning has been proposed for reliability
engineermg and optimization processes m industrial
systems by Gruber and Ben-Gal (2012). A design guidance
scheme using simulation based BBN has been proposed
by Parakhine ef al (2008) aiding the designer with
guidance by describing the causal relationships between
various system characteristics and qualities. The BBN has
been used to model the availability of different services
provided by a company to the customers. Aleti and
Meedemniya (2011) have mplemented a heuristic based
Bayesian learning algorithm for the component
deployment optimization problem in the field of control
system application

Though several researchers have looked at different
techniques, very little effort has gone into the
incorporation of domain knowledge of the target
architecture. The need to incorporate the domain
knowledge in modeling the architectural parameters of the
system is becoming increasingly important. The designer
needs to understand the various architectural
specifications in detail to gain knowledge about the target
platform. The focus of acquiring the knowledge should be
concentrated at the instruction set level of the target
architecture. Thus the current demand in the EDA
industty to automate the embedded system design
process and to incorporate the domain knowledge of the
system design has motivated to present the proposed
framework, considering the architectural alternatives at
the micro-architectural level and multiple objectives to be
satisfied during the design for the given application. The
Tensilica’s Xtensa architecture ISS is considered as
the target architectural platform for identifying the
architectural attributes 1 this proposed techmque.
Tensilica’s Xtensa IS5 technology provides the
configurable and extensible processor cores for the SoC
designers with fully supported hardware and software
generation. Once the knowledge about the behavior of the
system parameters have been acquired then the causal
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reasoning capability of the BBN can be fully exploited
which has not yet been utilized in the embedded system
synthesis process so far.

The fundamental advantage of using configurable
and extensible processor 1s that the designer has the
ability to include or exclude a functional umt and extend
the basic instruction set that suits the application
demand, during the design. Most techniques have not
considered the modeling aspect of the target architecture
at the Since, the core
instruction set of the Tensilica’s Xtensa processor can be
customized, the proposed framework utilizes the Xtensa
Instruction Set Architectural (ISA) options and other
general factors during the construction of the BBN for the
design problem.

functional instruction level.

INTRODUCTION TO BBN

Bayesian Belief Networks (BBN’s) have been widely
used as a modeling technique for representing the domain
knowledge and performing reasoning under uncertainty
of a complex system. The construction of a BBN Model is
divided into two stages, qualitative and quantitative
(Nadkarni and Shenoy, 2004). During the first stage, the
basic structure of the BBN is represented using DAG
which exemplifies the probabilistic relationship among the
variables of interest during the system modeling. The
nodes in the DAG directly represent the key attributes of
mterest to be modeled. The directed edge between any
two nodes describes the causal or mfluential relation
among them. At the quantitative stage, each node in the
BBN locally represents the uncertainty of the
mterdependence that exist among the attributes using the
Conditional Probability Table (CPT). The important
objective in constructing a BBN is to perform probabilistic
reasoning of the system attributes that has been modeled
(Neapolitan, 2003).

The core concept of BBN 1s based on the probability
theory. Conditional probability, joint probability, Bayesian
theorem, the chain rule and the product rule play a vital
role m defining the mathematical aspects of the BBN
(Daly et al., 2011). The sigmficance of the BBN has been
its capability to mfer new knowledge from the existing
knowledge. Another aspect of the BBN is the ability to
represent the domain knowledge as causal relations
among the variables. Figure 1 shows the BBN for a simple
land purchase problem. The BBN consists of five discrete
variables described as follows, Distance to city (D), basic
Facilities (F), approved Land (I.), Cost (C) and Purchase
the land (P). The conditional mndependence relation
between each of these variables is represented by DAG at
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Approved (L)
Purchase (P) B

Fig. 1: Example of BBN for land purchase problem

the qualitative level. The variables D, F and L have a
direct dependency relation with the variable C that is
distance, facilities and whether the land 1s approved or
not will have a direct effect on the cost of the land.
Similarly, the variables C and 1. have a direct dependency
relation with the variable P. The dependency relation
between the variables has been normally achieved
through the domain knowledge of the system being
modeled or from the experts. A node X is said to be a
parent of a node Y, if and only if there is an arc pointing
from the node X to the node Y.

The dependency relations have been expressed in
terms of CPT for each variable in the BBN, at the
quantitative level. The variables have a set of possible
states that represents the intended sample points from the
available sample space which must be mutually exclusive
and collectively exhaustive. The conditional distributions
of each of the variables is denoted as follows: P (D), P (F),
P (L), P(C|D, F, L) and P (P|C, L). Using these conditional
probability distributions, the joint probability distribution
can be computed easily. The fact that there is no arc from
D to P and F to P sigmfies that P 15 conditionally
independent of both D and F, given C and L. In this way,
the conditional independence and dependence relations
can be easily modeled and analyzed. The first step in the
process of inferring from the BBN that has been
constructed mvolves setting of evidence values for some
of the variables. After specifying the evidence, the BBN
has to be simulated for propagating the evidence
throughout the network and to observe the influence of
that evidence across all other variables. Thus, the causal
relationship among the variables and the probabilities of
outcomes has been captured within the network during
the process of inference.

The construction of the BBN has been performed
using two approaches namely, data based approach and
knowledge based approach (Darwiche, 2010). Conditional
independence semantics has been used during the
construction of the BBN to induce models from the given
data mn the data based approach. This approach is very



Int. J. Soft Comput., 9 (6): 364-376, 2014

much useful when the BBN has to learn from the existing
data that is available as a training set. In the knowledge
based approach, the causal knowledge of the domain
experts has been used for constructing the BBN. This
approach is useful in the modeling situation where the
representation of the domain knowledge is of at most
unportance and the availability of mitial set of data 1s
limited. The most effective way of constructing the BBN
has been possible by combining the two approaches
using the expert’s domain knowledge and the initial
quantitative data available.

The first step involved in the BBN based modeling 1s
to identify the attributes, influential factors (both external
and internal), goals and uncertain criteria associated with
the system bemg modeled. The second step mvolves
building the network from the expert knowledge or
available empirical data to specify the qualitative structure
of the BBN based on the objectives to be achieved,
considering certain factors or constraints. CPTs for each
node have to be specified in the next step to reflect the
causal interdependencies that exist among the variables
quantitatively. Finally, the network has to be compiled to
propegate the evidence that have been imposed on some
of the vanables to observe the behavior of other
variables.

The BBN provides a systematic, comprehensive
method of representing the causal interdependencies
among the variables with the probabilistic information that
15 available and a convement way for mferring the
network with several inference algorithms. FExact
algorithms (Korb and Nicholson, 2004) and approximate
algorithms (Lauritzen and Spiegelhalter, 1988) have been
used for inferring the BBN. The BBN has been employed
in several application areas such as medical, forecasting
and control as a solution model for taking decisions with
multiple objectives. This has been the key motivation for
the implementation of the proposed framework as a DSS
for aiding the designer during the embedded system
design process.

PROPOSED FRAMEWORK

The main objective of the proposed technique is to
develop a modeling framework that has the ability to

Table 1: Entities considered during the embedded system design problem

describe the inter-relations and uncertainties that exist
between the key architectural attributes during the
embedded system synthesis process. The proposed
framework also considers the inportance of assisting the
system designers to take early design decisions. The
structural properties and several advantages of the BBN
have greatly influenced its utilization during the system
design process.

Identification of architectural variables, factors and
criteria: The most important step before building the
BBN Model 13 to classify the identified architectural
attributes in terms of their functional and behavicral
aspects which mnfluence the overall performance of the
system. Instruction option, interface option and memory
option are the three fimdamental options that have been
identified as constituting the core of the architectural
specification. Instruction options provide necessary
instructions to implement several operations. Interface
options provide the facility to enable the commurncation
between processor to processor and processor to
memory. The memory options provide various
combinations of Instruction Cache (IC), Data Cache (DC),
cache associativity and cache line size. Imparting the
knowledge gained about the performance of the system in
the presence/absence and various combinations of these
options is the key issue in the construction of the BBN.

The performance of the system depends not only on
the functional units configured but also on some of the
factors like total cycles taken for executing the
application, cache misses, instruction counts of the
application bemng executed, mumber of cycles taken for
executing an instruction that is Cycles Per Instruction
(CPT), etc. The interdependencies and importance of these
highly mfluential factors 15 considered during the
construction of the BBN. After having considered the
architectural options and factors, the overall objectives
like power consumption, core size, execution time, energy
and cost have to be considered which further increases
the complexity towards achieving a common goal
pertaining to the design of any embedded systems. The
nodes 1n the proposed BBN construction are classified
into objectives, factors, constraints and set of actions.
The entities associated with the problem under
consideration are described in Table 1.

Objective

To design a modeling framework that aids the embedded system designer during the HL.S phase

Decision problem

To decide the combinations of the functional instructions and other micro-architectural features to be included for the given

application, with some constraints to be satistied during the design
Set of alternatives (design space) Instructions options, interface options, memory options

Criteria (objective space)
Set of possible actions
Factors

Execution time, cost, energy, area, power
Set of functional components from the design space to be mapped on to certain constraints in the objective space
Tnstruction count, cycles per instruction, total cycles, cache-misses, instruction fetch width, component density, technology
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CONSTRUCTION OF BBN

Once the variables, factors and objectives have been
identified then the system attributes can be represented
qualitatively by constructing the BBN. Each varable
associated with the system design is represented as a
node in the BBN. The dependency relation between the
variables is represented by an edge from one node to the
other. The identification of the causal relationship
between the variables is usually achieved through domain
experts, fundamental knowledge about the system or
by performing simulation studies. The proposed
methodology for the construction of the BBN utilizes both
the domam knowledge and the results obtained from a
simulation study that is performed to analyze the behavior
of the basic architectural parameters.

The simulation study 1s performed considering
computationally intensive, memory intensive and
communication intensive application workloads. The
ALPbench (Li et al., 2005) and Mediabench (Lee et al.,
1997) benchmark suite provides wvarious application
workloads for analyzing the performance of the target
architecture. Three different applications such as Joint
Photographic Experts Group (JPEG) encoder, Motion JPEG
encoder, Advanced Encryption Standerd (AES) and
Secure Hash Algorithm (SHA) have been considered for
the performance analysis. Each application has been
simulated in thirty different configurations involving
various combinations of mstruction units in the target
Tensilica Xtensa processor architecture. The simulated

[

e

results exhibit the performance of the system in the
presence or absence of the functional mstruction umts
across various configurations. An edge between any pair
of nodes in the BBN represents the direct dependency
relation that exists between those two variables. Figure 2
shows the BBN that 1s constructed for the proposed
problem with the predefined probabilities of each node.
The BEN is constructed using GeNTe 2.0 which is an open
source development environment for building graphical
decision-theoretic models.

The target architecture considered has a certain basic
instruction set for performing several operations. Other
than these basic instructions there are some additional
instructions that can be configured to suit a particular
application’s requirement. For example, a computationally
intensive application may require a 32-bit multiplication
instruction unit or a floating point instruction unit to
improve the performance. The proposed model
constitutes most of the functional instructions that can be
customized which accounts for the combination of
available TSA options. The functional instruction units
such as multiply and accumulate, multiplication, mteger
division, fleating point, density mstructions, synchronize
instructions, normalized shift, clamps and zero overhead
loop mstructions have been identified as the potential
instruction units that directly affect the
performance. The behavior of the system 1s modeled with
respect to the effect of presence or absence of these
functional instruction units.

overall

Al EE

Fig. 2: The predefined probability distributions of the variables in the constructed BBN
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Three different interface facilities for enabling the
communication between processor to processor and
processor to memory have been provided within the
Tensilica Xtensa architecture. The combination of
the presence or absence of the interface units such as
Processor Interface (PIF), General Purpose Input-Output
(GPIO) and Queue Interface (QIF) constitutes the
available interface options. The Tensilica Xtensa
architecture also provides support for the inclusion of the
on chip cache memory. Based on the Tnstruction Fetch
Width (IFW), the Instruction Cache (IC) size, Data Cache
(DC) size, cache associativity and line size may vary,
hence all of these variables in the BBN constitute the
available memory options.

Each of the identified mstruction units, interface
units, memory umts and other important mnfluencing
factors are represented as individual nodes in the BBN as
shown in Fig. 2. The various types of applications
considered in the simulation study are represented as
states in the node ‘application type’ which lighly
influences the selection of the identified instruction
options, interface options and TFW. An edge between
each of the identified instruction umnits, mterface units,
IFW and the node ‘application type’ sigrufies that the
type of application directly affects the selection of the
combination of instruction, interface and memory units for
the design.

The nodes ‘instruction options’, ‘interface options’
and ‘memory options’ contribute to the number of
transistors needed for implementing the functional units
and hence there 13 a direct edge from each of the these
variables to the node ‘component density’. The
combination of instruction units directly contributes to
the number of mstruction counts needed for the execution
of the given application. The edge between the nodes
‘instruction options” and ‘instruction count” depicts the
causal interdependency between these nodes. The
simulation study revealed the effect of instruction cache
size, data cache size, cache associativity and cache line
size on the variable cache misses. The causal relation
between different memory options available and cache
misses is represented by the edges from the nodes “1C”,
‘DC’, *ASSO” and ‘LINE’ to the node “cache misses’.

The wnpact of mstruction, mterface and cache misses
on the number of cycles spent for executing an instruction
that is CPI is represented in the BBN by incorporating
edges from the nodes ‘instruction options’, ‘interface
options’ and ‘cache misses’ to the node ‘CPI’. The total
cycles needed for executing the given application depend
on the CPI which influence an arc between the nodes
‘CPI” and ‘Total Cycles’. The technology with which the
chip 1s designed imposes the limitation on the choice of
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clock rate for driving the functional units within the chip.
The choice of clock rate in turn relates to the fundamental
parameters of the SoC design such as leakage power,
dynamic power, leakage energy and dynamic energy. The
causal effects of all of these parameters are represented
qualitatively using a direct edge between the respective
nodes.

Finally, the variables affecting the system’s overall
objectives such as power, core size, cost, execution time
and energy are represented using causal relationships.
The leakage power and dynamic power are directly related
to the overall power consumed during the execution of the
given application. The variables ‘component density” and
“technology’ influence the effect on the variables ‘core
size’ and ‘cost’ which 15 qualitatively represented by the
corresponding arcs between these nodes. The causal
effect of the variables ‘Total Cycles” and ‘Tnstruction
Count’ on the variable ‘execution time’ is represented in
the BBN. The effect of ‘leakage energy’, ‘dynamic
energy’, ‘total cycles” and “execution time” contributes to
the overall energy dissipation which is also taken into
account in the proposed BBN. Table 2 describes in detail
about each mnode and ther comesponding state
representation used during the BBN construction and
modeling.

Specifying Conditional Probability Table (CPT): The CPT
for each node in the constructed BBN 1s to be specified to
represent the causal relation of the variables
quantitatively. The CPT is constructed by using both the
subjective estimate from the available domain knowledge
and simulation statistics. The construction of CPT for all
the parent nodes is easier because it is the initial prior
probability distribution specification. The difficulty lies in
the construction of the CPT for the nodes with number of
parents. The CPT for a particular node grows
exponentially with respect to the number of parents and
the number of associated states within each parent node.
Generally, two scenarios are possible when specifying the
CPT for each node in the BBN which 15 described in
Table 3.

For example, the node ‘instruction option” has eleven
parent variables each of which has two states associated
with them. Thus, there are 2" total combinations of CPTs
that should be filled for the node ‘instruction options’
which exemplifies the complexity involved in the process
of specifyng the CPTs during the quantitative
representation of the BBN. Similarly, the node ‘CPI” has
three parent variables, namely ‘instruction options’,
interface options” and ‘cache misses’. The corresponding
states assoclated with these parent variables are four, four
and three, respectively. Hence, the total combinations of
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Table 2: BBN nodes and states used in the embedded system synthesis model

Nodes Description States
Aplication type  Applications have been categorized according to their Computational intensive, communication
computational complexity and the domain to which they belong to intensive, memory intensive, all type
MACI16 The MAC 16 option adds multiply-accurmnulate functions that are Present, absent
useful in DSP and other media processing operations
Clamps Instruction operation used in conjunction with MUL-16 unit to Present, absent
clamp the result to 16-bit before they are stored in the memory
MUL16 Provides two instructions that perform 16 by Present, absent
16 multiplication, producing a 32-bit result.
MUL32 Provides instructions that perform 32-bit integer multiplication. Present, absent
Consumes more area than MAC 16 and MUL 16 units
D Integer divider option provides instructions for 32-bit signed and Present, absent
unsigned integer rerainder and quotient operations
SFFP Ringle precision floating point operation with 32-bit floating point register file Present, absent
DPFP Double precision floating point instruction to accelerate the 64-bit floating point operations  Present, absent
NSA Implements the normalized shift instruction option Present, absent
DI Density Instruction options allow more compact code and can reduce the Present, absent
memoty foot print of the application software
ZOL1 Zero overhead TLoop option adds the ability to determine the Present, absent
number of iterations before entering into a loop
81 Synchronize Instruction option provides facilities for shared Present, absent
memory cormmunication between multiple processors
PIF Processor interface Present, absent
GPIO General purpose I/0 interface Present, absent
QIF Queue interface Present, absent
IC Instruction cache 1,2,4,8,16,32, 64 and 128 K
DC Data cache 1,2,4,8,16,32, 64 and 128 K
ASS0 Cache associativity Direct mapped, 2 Way, 4 Way
LINE Cache line size 16 byte, 32 byte, 64 byte
Instruction Instruction Set Architectural (ISA) options All options, average combinations, few options,
option very few options
Cormp density  Density of the ISA options Very high, high, average, low
Tnterface option  Combinations of possible interface units All options, average combinations,
few options, very few options
IFw Instruction fetch width low, medium, high
Cache miss Instruction and data cache misses Low, medium, high
CPT Cycles per instruction Low, medium, high
Inst count Instruction count Low, medium, high
Total cycles Tatal cycles taken for instriction execition Low, medium, high
Core size Total area occupied for the corresponding combinations of the configurations Low, medium, high
Cost Cost of die, design cost Low, medium, high
Execution time  Time taken for the execution of the instructions Low, medium, high
Energy Core and memory energy Low, medium, high
Power Tatal power consumption Low, medium, high
Technology Manufacturing technology used for the chip design 40 nrm, 45 nm, 63 rm
Clock rate Choice of the clock rate for driving the functional units Tncrease, decrease
Teakage Tt is the power consumed by unintended leakage that Tncrease, decrease, constant
power does not contribute to the Integrated Circuit (IC) function
Dynamic power Tt is the power consumed during the execution of instructions Tncrease, decrease, constant
Teakage energy Tt is the energy dissipated by unintended leakage that Tncrease, decrease, constant

does not contribute to the Integrated Circuit (IC) function

Jyvnamic energy It is the energy dissipated during the execution of instructions Increase, decrease, constant

Table 3: Possible scenarios in specifying the CPT for each node in the BEN

Scenario description Mathematical representation of the number of possible combination

Number of states associated with each parent variable is equal Where *3’ represents the number of states in each parent variable and V” represents
the number of parent variables

11 Gov

ic2tom
j=Itom

Where, ‘S; represents the number of states in each parent wvariable and
“V. represents the number of parent variables with equal number of states

Nurmber of states associated with each parent variable is not equal

CPTs for the node ‘CPI" will be 4°x3 = 48, Table 4  verifying its robustness and consistency. The sensitivity

describes an example CPT for the node ‘execution time’
which 1s filled using the knowledge obtained from the
simulation study.

Once the qualitative and quantitative representations
of the BBN are completed then the next step is to validate
the constructed BBN through sensitivity analysis for
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analysis provides the most important mformation of how
much a particular factor influences the decision making
process based on the fixed objectives to be met. The
measure of mutual information represents the difference
of the a priori and a posteriori entropies of a random
variable (L1 and Wang 2011). Since, entropy reduction has



Int. J. Soft Comput., 9 (6): 364-376, 2014

been utilized and proved to be suitable for sensitivity
analysis m Bayesian network (Lee et al, 2009). In this
study, the concept of mutual information and entropy
from the mformation theoretic principles is utilized to deal
with the sensitivity analysis, in order to identify some of
the key factors that affect the desired objectives.

The relative mfluence between uncertain variables
within the BBN can be easily identified by measuring the
entropy. Table’s 5 and 6 show the result of entropy
reduction calculation from the sensitivity analysis of
factors that affect the objectives core size and energy. For
example in Table 6, the factor total cycles has a larger
entropy reduction value which gives more certain

Table 4: Example CPT for the node “execution time® specified using the
expert’s knowledge
Execution time

Knowledge from simulation study

Instruction count Total cycles Low Medium High
Low Low 0.5 0.3 0.2
Low Medium 0.6 0.3 0.1
Low High 0.2 0.3 0.5
Medium Low 0.3 0.5 0.2
Medium Medium 0.4 0.5 0.1
Medium High 0.5 0.4 0.1
High Low 0.3 0.5 0.2
High Medium 0.1 0.3 0.6
High High 0.1 0.2 0.7

Table 5: Entropy reduction values in the BBN with respect to core size

Nodes I1X:Y)
Comp density 0.11565
Instruction options 0.03507
MAC 0.00880
CPI 0.00879
Inst count 0.00506
Total cycles 0.00273
MULIL6 0.00211
Application type 0.00118
Energy 0.00079
ID 0.00077
MUL32 0.00053
SPFP 0.00029
DI 0.00017
Execution time 0.00008

Table 6: Entropy reduction values in the BBN with respect to energy

Nodes IXY)
Total cycles 0.25862
CPI 0.06983
Tnstruction options 0.01703
Execution time 0.01161
Comp density 0.00569
MAC 0.00433
Inst count 0.00232
MUL16 0.00102
Core size 0.00079
Application type 0.00058
D 0.00039
MUL32 0.00027
SPFP 0.00015
DI 0.00010

information on the desired objective than the other
factors. Similar entropy reduction calculation is carried out
for all the remaming nodes in the constructed BBN to
identify the consistencies of the imtial probability
assessment and their influence over the desired
objectives.

INFERRING FROM THE NETWORK AND
UPDATING THE BELIEF HYPOTHESIS

After constructing the BBN, the behavior of the
model has to be observed through imposing evidence on
some of the variables. Evidence is imposed on a variable
by instantiating any one of its states. The change of the
state mmposed on some variables in the network, causes
the corresponding variables to be instantiated and the
effect of this evidence is propagated throughout the
network to every other node after compiling the network.
This causes every node to update their beliefs which 1s
regarded as the posterior probabilities of the variables
after observing some evidence. The following case
studies describe the mechanism of propagating the
evidence imposed on some of the variables throughout
the network and the process of inferring the behavior of
the other variables within the networlc.

Case study 1: In this study, evidence is mstantiated by
assigning the state as ‘medium’ for both the variables
‘cost’” and ‘power’, resulting in the alteration of belief
hypothesis to the entire network. The important variables
to be mnferred after imposing this evidence are ‘component
density’, ‘technology’, ‘dynamic power’ and ‘leakage
power’ which have direct influence on the objective
variables ‘cost’ and ‘power’, respectively. The
observation is that the probability for the average
component density has increased from 28-43% and the
probability for building the system in the 45 nm
technology is 50%. Similarly, the probability of dynamic
power to be increased 1s 67% where as the leakage power
remains constant. This shows how the states of other
variables are affected and guides the designer to choose
average combinations of instructions to aftain the
specified objective. Figure 3 shows the posterior
probabilities of the nodes after imposing the evidence on
the variables ‘cost’ and ‘power’.

Case study 2: In the second case, evidence 1s imposed as
‘low’, ‘low” and ‘medium’ for the variables ‘execution
time’, ‘energy’ and ‘cache misses’ respectively. The
observation of the posterior probabilities of certain
variables indicates that the mstruction options to be of an
average combination with 30% probability, the probability



Int. J. Soft Comput., 9 (6):

Omcuum timc)

364-376, 2014

O nc
(Onck:
Twok
Fourk |
Eight 1104
Sixieen 1504

Thirtytwo 1494
Sixtyfour 14

.

(A1l

Fow
Very few 21%)

Present st il
[ Absent +4% 7]

[ Asplication &

[0 Compdansin
Ve high 29%]
Figh
%\g

[O Instraction opiior]
Al options

Forly i
Sistyfiv... 25%| Avg comb
Fe optio.

Nery few.._17%

//\\

O Cachemiss
High 0%
Nedium 100%fT ]
Lov oy b
O 1Ic
[Onek
[Twok
[Fourk 1
[Eight 1%
[Sixicen  15%|
| Thirtytwo 15%]

0 nc
[Onck
[Twok
Fourk
Eight

3%)
3%)
%)
1%l
Siieen 15%)
[Thiryivo 15%)

Sixeyfour 15%)
[Onetnen. . 20%)

[Sivieen

[ Thiryowo.
ity Four

Jsixiyour 15%)

O 16Bimac

o com o Mul 16

| Ppreseni s

1] - X

Z0LI

[Present 52%)
Absent 48%|

Fig. 4: The posterior probability distributions of the variables for the case study 2

of low mstruction count to be 51 %, the probability for the
total cycles and CPT to be medium at 48 and 47%,
respectively. Figure 4 shows the posterior probabilities of
the nodes after unposing the evidence on the variables
‘execution time’ and ‘energy’.

Case study 3: This case study reveals the effect of the
variables ‘mstruction options’ and ‘interface options’ on
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the overall system design. The evidence is imposed by
changing the state of the variables ‘instruction options’
and ‘interface options’ to ‘all options’. The observation
of the posterior probabilities of certain variables indicates
that the computationally communication
intensive and memory intensive applications requires this
combinations with 40% probability. The chance of low
power design with respect to this evidence has the

intensive,
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Fig. 5: The posterior probability distributions of the variables for the case study 3

highest probabilistic value. Figure 5 shows the posterior
probabilities of the nodes after imposing the evidence on
the variables mstruction options and interface options.

The three case studies presented above clearly show
the mechamism of updating the belief hypothesis and
observing the effect of the instantiated evidence on
certain variables by inferring the entire network. Thus, the
reasoning capability of the BBN can be exploited during
the process of embedded system design. The primary
finding of this modeling framework is the ability of the
BBN to reflect the mterdependencies of the key
architectural attributes m the embedded system design
process. The ability of the BBN to imculcate the
probabilistic reasoning with high degree of precision on
the uncertamn factors of the system bemng modeled 1s one
of the important aspects in utilizing them for decision
making.

CONCLUSION

Efforts to develop complete, well structured and
easily adaptable techniques for automating the embedded
system design process will benefit the EDA community to
take early design decisions. The BBN based DSS
framework proposed in this study utilizes both the domain
knowledge of the target architecture and empirical results
obtained through a set of simulation studies to build the
model. The probabilistic reasoning capability of the BBN
under uncertain situations 1s considered to be the most
umportant aspect i utilizing the BBN for the embedded
system  synthesis. Representation of the causal
mterdependencies among the system variables and the
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inference mechanism provided for easy analysis of the
performance of the system being modeled under various
constraints, moves the embedded system design a step
forward towards completely automating the design
process.

RECOMMENDATIONS

The future enhancements that are possible with this
proposed framework will be in the construction of more
realistic models by considering all possible system
parameters and constraints to be satisfied Different
inference algorithms can be used for enabling the network
to learn and to predict the performance of the system.
Different techniques can be exploited for specifying the
CPTs automatically for each of the variables used mn the
design.
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