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Abstract: Binary Decision Diagram (BDD) has been a popular method for representation of Boolean functions.
Various methods using several variable-ordering techniques have been proposed for minimizing the size of
BDD. Though, there are a number of methods to reduce the size of BDD no such data structures are introduced
to challenge the BDD for decades. This study explains a novel data structure to store boolean functions called
as ACTD Diagram (ASCII Decision Diagram). The complete ACID diagram generation process is explained in
this study with examples and several advantages of ACID diagrams are in comparison to BDDs are discussed
and the complete method to implement the ACTD diagram in hardware is explained. Researchers also propose
several solid future works in ACID diagrams. First future research is to validate the proposed ACID diagram
using several benchmark circuits and the second future research is to develop an algorithm to simplify the ACID
diagrams similar to BDD simplification. The third future research is to develop methods to support don’t care

functions.
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INTRODUCTION

Binary Decision Diagrams (BDD) 1n general 15 a
direct acyclic graph representation of a Boolean functions
proposed by Akers (1978) and Bryant (1986). The success
of this techmque has attracted many researchers in the
area of synthesis and venification of digital VLSI circuits.
Since BDDs allow efficient representation of many
practical functions (Priyank, 1997, Ingo, 1987), they have
became very popular data structures. The efficiency of
BDDs depends mainly on the size of their graph
representations.

The size of the BDD dramatically depends on the
chosen order of vanables (Prasad and Smgh, 2003; Rudell,
1993; Ebendt, 2003). Finding a better variable order 1s
often worth spending considerable computational effort
(Aloul et al., 2002). Determining an optimal variable
ordering 1s an NP-hard problem (Harlow III and Brglez,
2001). Another parameter critical during the construction
of BDDs 18 the maximal memory requirement which 1s
directly proportional to the number of nodes. A good
ordering can lead to a smaller BDD and faster runtime
whereas a bad ordering can lead to an exponential growth
mn the size of BDD (Aloul et al., 2004). Accordingly, much
attention has been devoted to techmiques for finding a
good varable ordering. All these variable ordering
techniques fall into two categories: Static Variable
Ordering (SVO) algorithms (Fujita ef al., 1988; Malik et af,
1988) and Dynamic Variable Ordering (DVO) algorithms
(Rudell, 1993; Somenzi, 2001).

The evaluation time i1s also another important
parameter when BDDs are used to evaluate logic
functions. The evaluation time is proportional to the path
length in the BDD. In general the mimimization of path
length in Decision Diagrams (DD) 1s important in
databases, pattern recogmition, logic sunulation and
software synthesis (Nagayama ef af, 2003). The
minimization of APL proposed by Nagayama et af. (2003),
Ebendt et al. (2004) and Liu et al. (2001) reduces the
average evaluation time of logic functions. The
mimmization of the APL leads to circuits with a smaller
depth on the paths from Root to terminal nodes. By this,
the circuit is optimized for speed on the one hand and on
the other hand the number of very long paths 1s reduced
(Fey et al., 2004). The APL minimization 1s very much
effective in real time operating system applications
(Nagayama and Sasac, 2004; Balarin et af, 1999,
Lindgren ef al., 2000). The mimmization of LPL (Longest
Path Length) of BDD can reduce the longest evaluation
time which 1s more important for Pass Transistor Logic
(PTL) (Shelar and Sapatnekar, 2001 ; Bertacco et al., 1997).
So, the mimmization of longest evaluation time waill
improve the performance of the circuit (Shelar and
Sapatnekar, 2001; Bertacco et al., 1997).

A set of BDDs representing many functions can be
combined into a graph that consists of BDDs sharing
sub-graphs among them. This method saves time and
space for duplicating isomorphic BDDs. By sharing all the
1somorphic sub-graphs completely, no two nodes that
express the same function coexist m the graph. Such a

Corresponding Author:
India

S. Deivanai, Department of CSE, Akshaya College of Engineering and Technology, 642 109 Coimbatore,



Int. J. Soft Comput., 10 (2): 143-150, 2015

graph is called as Shared BDD (SBDD) or multi-rooted
BDD. In a shared BDD, no two root-nodes express the
same function (Raseen and Thanushkodi, 2009).

PRELIMINARIES

In the following, researchers review some of the basic
definitions for BDDs.

Definition 1: A BDD is a Directed Acyclic Graph (DAG).
The graph has two sink nodes labeled O and 1
representing the Boolean functions 0 and 1. Each
non-sink node 1s labeled with a boolean variable v and
has two out-edges labeled 1 (if then) and O (or else).
Each non-sink node represents the Boolean function
corresponding to its 1 edge if v = 1 or the Boolean
function corresponding to its 0 edge if v = 0.

Definition 2: An Ordered BDD (OBDD) is a BDD in which
each variable is encountered no more than once in any
path. The order of variables is same along each path.

Definition 3: A Reduced OBDD (BDD) is an OBDD that
is reduced by two reduction rules: deletion rule and
merging rule. These reduction rules remove redundancies
from the OBDD.

The size of a BDD 1s largely affected (and varies from
linear to exponential) by the choice of the vanable
ordering. Figure 1 illustrates the effect of the variable
ordering on the size of BDDs, for the following Boolean
Eq 1:

F=% X, + X "X, Xy X+ X - Xy X,

(1)

Definition 4: In a BDD, a sequence of edge and nodes
leading from the root node to a termmal node 1s a path.
The number of non-terminal nodes on the path is the path
length.

Fig. 1. Effect of variable ordering on the size of BDDs; a)
Xy, Xp, X, Xg and b) x, X3, X, X,
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Definition 5: The APL is equal to the sum of the
node traversing probabilities of the non-terminal nodes
(Nagayama et al., 2003; Nagayama and Sasao, 2004) which
give nthe Eq. 2

(2)

where, N denotes the number of non-terminal nodes.

Definition 6: The edge traversing probability, denoted by
P(e;) or Ple,), is the fraction of all 2n assignments of
values to the variables whose path includes (e, or e;)
where e or e, denotes the O-edge (or the 1-edge) directed
from away node V, (Nagayama et al, 2003). Since, all
paths include the root node, this node is traversed with
probability 1.00. Since, all assignments to values of
variables are equally likely, researchers can use the
following Eq. 3 to calculate the P(V)) for the rest of the
nodes:

POV)

2

(3)

=Ple,)=Ple,)

Definition 7: The Longest Path Length (I.LPL) of a BDD
denoted by LPL (BDD) 1s the length of the longest path
from the root to terminal node.

Definition 8: Tn a Decision Diagram (DD) for logic
function, the memory size of the DD, denoted by Mem
(DD), is the number of words needed to represent the DD
inmemory (Nagayama and Sasao, 2004).

In a memory, each non-terminal node requires an
index and pointers to the succeeding nodes. Since, each
non-terminal node in a BDD has two pointers, the memory
size needed to represent a BDD is:

Mem(BDD) = (2+1}x nodes (BDD} (4
Property of a single BDD node: A single BDD node is
shown in Fig. 2. It can be seen from the Fig. 2 that a
typical BDD node has many parents (F1, F2, ..., Fn) and

two children (solid line and dashed line marked as L
and R).

L

Fig. 2: A single BDD node
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Proposed ACTID diagram: In the proposed system called
as ACID Diagram (ASCI Decision Diagram) the decision
diagram 1s generated using the following algorithm.

Step 1: The number of input variables is split into levels
of 8 input variables each. The total munber of levels 1s
given by Eq. 5:

va

NL:{—
8

)

Where:
NV = Number of input variables
NL = Number of levels

If the mumber of input variables is not a multiple of 8
then the last level is formed with <8 variables. For
example, if the number of variables 1s 21 then the 21
variables is split into 3 levels of 8, 8 and 5 variables each.
It should be noted that the maximum number of variables
m each level is 8 and the mimmum of variables in each
level 1s 1.

Step 2: Each node of 8 (or less) variables is expanded as

a flat array of 256 (or less) items each. Apart from the 256

(or less) items, each node has a header of 4 bits. The total

contents of each node is given by the Eq. &
IL = 2 + 4 bits (6)

Where:

II. = Number of items in level

NVL = Number of variables in level in the ACTD diagram

For example if there are 5 bits in a level the number of
items is 2°(32) 32 plus 4 bits. A single level may alsc have
many ACID diagram nodes. Tt should be noted that all the
nodes in each level has the same number of variables. The
reason for having the split (of bits in header) 1s that the
header indicates the number of variables in the level and
the items indicate the pointers to the next level of
variables. The header may also indicate if the item 1s the
final level by pomting to logic 0 or logic 1. The meamng of
the 4 bit header is shown in Table 1.

The complete model of a single node (8 bits) of an
ACID diagram node 18 shown i Fig. 3. From Fig. 3, it can
be seen that the header has 1000 (binary) thus indicating
that there are 8 bits in the node. From 8 bits, the total
combination of 2°(256) pointers is shown in the Fig. 3.

Figure 4 shows the ACID diagram node for 5
variables. The header has the value of 0101 mdicating that
there are 5 variables in the node. These 5 variable pointers
are shown in separate 32 field values as in Fig. 4.
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Table 1: Meaning of the ACID diagram node header

Header bits (binary) Meaning
0000 Logic zero
0001 1 variable in a node
0010 2 variables in a node
0011 3 variables in a node
0100 4 variables in a node
0101 5 variables in a node
0110 6 variables in a node
0111 7 variables in a node
1000 8 variables in a node
1001-1110 Future use
1111 Logic one

1000 0 1 255

Fig. 3: A complete ACID diagram node

0101 31

Fig. 4: An ACID diagram node with 5 variables

0000 1111

Fig. 5: Node 0 and 1 (ACID diagram node headers)

Figure 5 shows the ACTD node for logic limiters
(zero and one), respectively. Tt should be noted that the
headers have only 0000 and 1111 (for logic zero and one)
as shown m Table 1.

Step 3: The generated nodes of the ACID diagram is then
linked with each other using the pointers. Since, there are
eight variables m each group, there are a maximum of 265
items. Since, the value of the values range from ASCIL
zero to ASCII 255, the proposed method 1s called as ASCIL
decision diagram which 1s ACID diagrams 1n short.

EXAMPLE FOR GENERATING
THE ACID DIAGRAM

Consider the following truth table (Table 2) with three
inputs and one output. Since, there is only 3 variables the
ACTD diagram has only one level. The complete ACID
diagram is shown in Fig. 6. The header in Fig. 6 has the
value 0011 indicating that there are 3 variables. For three
variables there are 8 fields. These 8 fields pownt to logic 0
or logic 1 (0000 or 1111 header).

For diagrams with >8 variables various levels of
nodes are used. These various levels of nodes are joined
together with the help of pointers.
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0011

Header

Fig. 6: ACID diagram with 3 input variables

Table 2: Truth table with 3 inputs and 1 output

Input A Input B Input C Output 7
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ADVANTAGES OF ACID DIAGRAMS

Access time: For BDD the total access tune 1s given by
Eq 7:

TTBDD = NNBDD*(TLNODE+EPTR ) (7

Where:

TTBDD = Total time for BDD operation

NNBDD = Number of nodes in the BDD

TLNODE = Time needed to load a node from the memory

EPTR = Time needed to evaluate the next node
pointer based on the value of the pomter

The total access time for ACID diagram is given by Eq. 8:

TTACIDD = NLACIDx(TLLEVEL+EPTR) (8)
Where:
TTACID = Total time for ACID diagram operation
NLACID = Number of levels mn the ACID diagram
TLLEVEL= Time to load a single level
EPTR = Time to evaluate the next pointer

Usage of processor registers directly: In BDDs the data
structure is distributed, i.e., data is spread across different
levels of left and right pomters. Thus, accessing these
data structures is a processor intense task. Whereas, in
ACID diagrams the pointers are spread as a straight array
of 256 (or less) pointers. Thus, ACID diagrams can use
the processor registers directly which saves a lot of
resources.

No waste of memory: In BDDs to take a decision at each
node the value of the variable 1s loaded into the memory
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Fig. 7. BDD for 3 vanables

and then compared. This is wastage of memory since the
complete memory element is loaded and only one bit is
accessed. In case of ACID diagrams the comparison 1s
made with complete unit which saves a lot of memory.

Worst case number of pointers: Table 2 illustrates a
Boolean function with three input variables and one
output variable. The worst case un-simplified BDD for this
function 18 shown in Fig. 7. The number of pointers used
in this worst case BDD is given in Eq. 9:

TBDDPTR = 1+2+4+48 = 15 %)
where, TBDDPTR is total BDD pointers. Tn case of ACID
Diagrams (Fig. 6) the total mumber pointers used 1s given
by Eq. 10:

TACIDPTR =1+8=9 (10

where, TACIDPTR 1is total pointers in ACID diagram
(Fig. 6) pointers. Comparing Eq. 9 and 10, it can be seen

that ACID diagrams uses less number of pomters and
thus is much faster compared to similar BDDs.

HARDWARE REPRESENTATION OF
ACID DIAGRAMS

Raseen and Thanushkodi (2009) gives the various
hardware and software representation of BDD. Similar
to Raseen and Thanushkodi (2009), researchers are
proposing the hardware representation of ACID diagrams.

ACID diagram node black box: A typical node of an
ACTD diagram is shown in Fig. 8. Figure 8 is a black-box
representation of an ACID diagram node. A typical ACID
diagram node has two sets of inputs and one set of
output. The values of the headers n the ACID diagram
node are stored inside the node and does not change
even 1if the inputs to the ACID diagram node changes.
The inputs to the ACID diagram node are:
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Input from other ACID
diagram nodes
|

Values of 1-8 input

An ACID | .
variables

diagram node

Values of 0-256 outputs
to other ACID diagram nodes

Fig. 8 Black box of ACTD diagram node

*  Binary values (1 or 0) from the parent nedes (nodes
from previous levels)

¢+ Binary values (1 or 0) from, one to eight input
variables

The output of ACID diagram node is 0-256 lines.
Ounly one 0-256 lines gets the value of logic 1 and others
get the value of logic 0. This means that only one of
output lines of the ACTD diagram is selected and other are
not.

Components of the ACTD diagram node: The complete
ACID diagram node can be divided into many
components or parts for easier visualization of the
functionality.

Inputs from previous levels: First step is to process the
binary values from previous levels (higher levels). The
ACID diagram node gets activated if inputs from any one
of the previous level is logic 1. This can be implemented
by ORing all the inputs from the previous level. This
process is shown i Fig. 9. In Fig. 9 the values from the
previous levels is ORed and stored in a intermediate
signal “A’.

Values from one to eight input variables: Each ACID
diagram node has inputs as 8 (or less) signals from eight
mput variables. Depending upon the values of the
variables the intermediate signal *A’ is de-multiplexed to
256 (or less) lines. These intermediate lines are called as
DMB (De-Multiplexed Bus). Apart from these signals the
de-multiplexer has an enable line which is controlled by
the signal from the ACID diagram node header. This
de-multiplexer component of the ACID Diagram node 1s
shown in Fig. 10.

Inputs from previous level

Fig. 9: Processing inputs from previous levels

Intermediate signal 'A’

. Demultiplexer input line|
Control signal P P

from the —JEnable Eight
node header address lines

Values of
[— 1-8 input
variables
De-multiplexer

Demultiplexed lines

De-Multiplexed Bus (DMB)

Fig. 10: De-multiplexer component of ACID diagram node

Processing of ACID diagram node header: The header of
the ACID diagram node decides which output line of the
ACID diagram node 1s active. The ACID diagram node
header is of size 4 bits. These 4 bits are provided as inputs
to 16 bit output de-coder. The meaning for the output of
the de-coder is shown in Table 1. The realization of the
de-coder circuit 18 shown in Fig. 11. The decoder has 4
input lines from the ACTD diagram node header. Tthas 16
output lines. The eight output lines (corresponding to
0001-1000) go as input to the temporary Decoder BUS
(DCB). The remaimng eight lines go as input to the enable
signal for the de-multiplexer component.

The ACTD diagram output generator AND gate: The
output of the ACID diagram node 1s generated by
ANDing the individual lines from the De-Multiplexer Bus
(DMB) and Decoder Bus (DCB). The width of DMB and
DCB is 256 lines (from 0-255). Each and every line from the
DMB in order (0-255) 15 ANDed with the corresponding
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Decoder

To enable signal of

4 bits —
from |

header__|

16 output]
lines

0001

4 input lines

OR gate

the demultiplexer
component

Lines 0 and 1 of DCB

0010

Lines 2-3 of DCB
Lines 4-7 of DCB
Lines 8-15 of DCB
Lines 15-31 of DCB
Lines 32-63 of DCB
Lines 64-127 of DCB

P2

1001

Fig. 11: The decoder component of the ACID diagram node

De-Multiplexed Bus (DMB)
|

Decoder__|

Bus (DCB) Line by line AND gate

Values of 0-256 outputs to
other ACID diagram nodes

Fig. 12: ACID diagram node output generator

order (0-255) to generate the signal of the final output bus.
It should be noted that only one of the final 256 signals
gets the value of logic 1. If the ACID Diagram node is a
terminal node (Logic O or logic 1) then all the output lines
gets logic 0. This process is shown in Fig. 12. Figure 12
has 256 input lines from DCB and 256 input lines from
DMB and 256 output lines for other ACID diagram
nodes.

The complete block diagram of ACID diagram node: The
complete block diagram of an ACID diagram node is
shown in Fig. 13. Figure 13 has the flowing blocks:

OR gate processor from previous node
De-multiplexer component that handles the values
from eight variables

De-coder component that handles the values from
the ACTD diagram node header

Final AND gate that generates the output from the
ACID diagram node
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Lines 128-255 of DCB

-] Input from
OR r
upper levels

o Enable signal —
XI(ITJILE :gfi}:: g - % . = Input from
header Decoder De-multiplexert= eight
DCB [— variables
N——-F
nput
Line by line  Inputk DMB

Values of 0-256 outputs
to other ACID diagram nodes

Fig. 13: Block diagram of ACID diagram node

Thus, the hardware representation of the complete
ACTD diagram node is explained.

CONCLUSION

In this study, researchers have proposed a novel
data structure called as ACID diagrams (ASCIL decision
Diagrams) for storing Boolean function The input
variables are grouped into batches of eight variables each.
Each group is further expanded into 256 (or less) items.
Each item points to other groups of variables (or logic one
or logic zero). Each group also has a header which
indicates the mumber of variables m the group (or logic
one or logic zero). The complete protocol of the group is
explained in detail using diagrams and tables. Unused
combinations in the header bits are reserved for future
work. The construction of the ACID diagram 1s also
explained with an example of three bit function.
Advantages of ACID diagrams such as diagram access
time, processor register usage, memory wastage and
number of pointers used are discussed in detail in the
advantages section. The complete logic circuit to
implement the ACID diagram node is explained in detailed.
Components of the ACID diagram node are explained. The
compenents are then joined to build the full block diagram
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of the ACTD diagram node. Several future research is also
proposed. The first proposed future research is to build
BDD and ACID diagram for benchmarks and prove that
ACID diagrams are better than BDDs. Another future
research of this study will be to develop algorithms for
reduction of ACTD diagrams. Yet, another future research
will be to develop algorithms and data structures to store
do not cares. The algorithms and data structures
described and developed in this study will lead to more
efficient protocols to store boolean functions.

RECOMMENDATIONS

Validation of proposed method using benchmarks: One of
most strong future research n this study is to validate
the proposed methed using standard benchmarks. This
process is explained as follows:

Step 1: load the benchmarks mto the memory

Step 2: build the BDD for the benchmark function
Step 3: build the ACTD diagram for the benchmark
function

Step 3: compare the size of BDD and ACID diagram
Step 4: from the comparison of the sizes, prove that
ACTD diagrams and efficient than BDDs

Reduction of ACID diagram similar to BDD: The BDD
shown 1n Fig. 7 can be easily reduced using the standard
reduction technicques. The future research proposed in
this study is to develop techniques to reduce ACID
diagrams.

Approach of don’t cares: This study explains the
approach to build and access ACID diagrams for Boolean
zero and Boolean one function. Yet, another proposed
research 1n this study 1s to develop ACID diagram
algorithms for don’t care functions.
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