International Tournal of Soft Computing 10 (5): 336-339, 2015

ISSN: 1816-9503
© Medwell Journals, 2015

Approaches to Organization of the Software Development

PRA. Valiyev, L.A Galiullin and A N. Tliukhin
Branch of Kazan Federal University in Naberezhnye Chelny, 10A Sujumbike Avenue,
The City of Naberezhnye Chelny, The Republic of Tatarstan, Russian Federation

Abstract: During the last 40 years the software development industry has not become the engineering one. The
main 1ssue of the software development 1s the related risks. Great amount of the out-of-the-box software
solutions accelerates the development process, however, generates a variety of solutions of the same tasks
which in its turn increases the uncertainty and risks related to the software development. The main objective
of work on a software design 1s reduction of risks; one of such approaches to organization of the software
development 15 Extreme Programming (XP). In its turn, the common property of the software code also allows
the programmers to quickly improve their skills. Besides, a common software code completely eliminates the
probability of situation when one of the programmers leaves and takes a part of the code with him, killing the
long-term and sometimes almost completed project. Pair work at the same computer, continuous testing,
continuous design and code improvement (refactor), integration immediately after implementation of the new
fumctionality all of these XP techniques are aimed at achieving that both the design and the software code itself
is easily modifiable at any point of the project life-time both at the stage of the primary system design and years
after the software commercialization. Simple design and commonly accepted coding standards will allow the new
team members to puzzle out the project quickly. And continuously developing and supported umt tests will
ensure secure operational performance.

Key words: Programming languages, software, design, development, information architecture, information

systems, programming methods (techniques), extreme programming, pair programming, refactor,

risk mitigation

INTRODUCTION

The software design industry that appeared about
40 years ago due to standardization of the communication
protocols between the software products gradually breaks
through the original chaos, contimung booming. The
high-level programming languages, data-description and
management aids, integrated software environments are
created and evolving, the design workbench becomes
more and more sophisticated. Hundreds of thousands of
specialists all over the world for the international software
market daily (Abdullah and Abdelsatir, 2013).

However, during the last 40 years the software
development industry has not become the engineering
one. Upon availability of the developed methods of
organization of the software design (RUP, XP, etc.) and
fundamental approaches to arrangement of the software
itself (object-oriented, procedure-oriented programming,
etc.) there are still no exact formalized coding procedures
for particular kinds of tasks. A huge number of various
components and out-of-the-box software solutions

significantly accelerates the development process,

however, generates a variety of solutions of the same
tasks which in its turn increases the uncertainty and risks
related to the software development (Wood ef al., 2013).

RISKS OF THE SOFTWARE DESIGN

The main objective of work on a software design 1s
reduction of the related risks. These are the main of them:

¢ Failure to comply with the terms the date of the
software delivery comes and it will be necessary to
tell the customer that the program will not be ready
for another 6 months

s The project is closed after multiple delays the project
1s cancelled without being completed

» System clogs the software 13 being successfully
operated, however, after a few years the cost of the
system modifications or number of errors causes the
necessity to change the program

» The emror level the project 1s completed, however, the
error level is that high that software can not be used
in practice

Corresponding Author: P.R.A. Valiyev, Branch of Kazan Federal University in Naberezhnye Chelny, 10A Sujumbike Avenue,
The City of Naberezhnye Chelny, The Republic of Tatarstan, Russian Federation

Int. J. Soft Comput., 10 (5): 336-339, 2015

¢+ Lack of understanding of objectives the project is
completed however, it does not solve the tasks set

¢+ Changes in the objectives the project is completed
however the issue for solution of which it was
designed six months ago is substituted through
another, more topical issue

* Achievement of false goals the software product
features a variety of potentially interesting options
that could be efficiently implemented however neither
of them nor the combination thereof will not provide
much benefit by solving the task set

¢ The staff left after 2 years of development all skilled
programimers started hating the software bemng
designed and left

RISKS OF THE COMMERCIAL
SOFTWARE DESIGN

By considering the risks of design of commercial
software for the purposes of the engine testing
automation one should take into consideration both the
state in the software design industry and the specifics of
the process itself.

In the software design industry over the recent
vears a significant misbalance is observed the demand for
highly-skilled specialists by many times exceeds the offers
available, at the same time, the number of the poorly
qualified specialists exceeds the demand and with each
yvear this misbalance becomes more and more strained
(Putra et al., 2012). Speaking of automation one should
mention the tendency of the last year to increase in the
remuneration of labor of young specialists in the scientific
area which may have a positive effect on the software
design for commercial purposes.

However, there are no grounds for supposmg that
situation will change that fundamentally to attract the
yvoung highly-skilled staff to the industry. The gap
between the remuneration of labor of specialist m the
industrial area and let’s say in trading or banking one
(which m therr turn are far from bemg the most well-paid
areas of the software design) is so significant that even
the outlined positive trends will hardly result m the
substantial growth of mterest m such activity even
on the part of the poorly qualified specialists. On the
other hand, the market flooding with poorly qualified
specialists creates pre-requisites for graduates to come to
the industty for the purpose of gaming experience,
practical skills, improving their qualification to leave
further on for working in other more attractive
comparues.

On the basis of analysis of the situation certain
conclusions may be drawn as to the risks of the software
design m the industrial area. Engaging as contractors
mainly poorly qualified specialists one may state for
certain that nearly all nisks relating to the software
design are increased. Taking into account the high staff
turnover one may draw a conclusion that the risk of the
‘staff leaving’ is increased significantly with all the
consequences arising from it and namely:

¢ Delay in the project turover

+ Long period of adaptation of the new employees
resulting in more delays

» Intricate, unclear design of the software systems

» Complete ‘death’ of the project when the specialist
gone has not left the software source codes or left
the codes that no one can puzzle out

Examples show that the “death’ of the project i case
of leaving of one particular specialist despite the seeming
absurdity of the situation is more than real and such a
situation occurs quite frequently.

APPLICATION OF XP TECHNIQUES AS
A METHOD OF ROSK MITIGATION

Of course, one of the main goals of any project
management 1s first of all, the risk mitigation In case,
when the risks are high (and by design of the software for
the purposes of the industrial sector they are especially
high) the project management and organization of works
upon the project shall be assigned the special priority.
One of the methods of such orgamzation of works on the
software aimed at mitigating most of the risks 1s extreme
programming.

To some people the principles of extreme
programming resemble the common sense. XP is based
on the principles of common sense and applies them to
the extreme extent (Sohaib and Khan, 2011). The examples

of such common sense are:

» If the code reviews are good then we will review the
code all the time (pair programming)

s Tftesting is good then each will test all the time (unit
testing), even the costumers (functional testing)

s if design is good then we will make it to be a part of
the daily routine (refactor)

¢ If simplicity is good then we will leave the system
with the simplest design that would support all
functional capabilities (the simplest thing that 1s able
to work)

Int. J. Soft Comput., 10 (5): 336-339, 2015

¢ If architecture is important then each will work
determining and improving the architecture all the
time (metaphor)

¢ If the integration testing is useful then we will
mtegrate and test few times a day (contimuous
integration)

» If short cycles are good then we will make the cycles
to be mimmal (seconds, minutes and hours and not
weeks, months and years) (scheduling game)

XP provides two sets of promises:

* It promises to the XP programmers that each day
they will work on the things that really matter.
They will not need to face the unpredictable
situations alone. They will be able to do everything
possible to make their system to be successful. They
will tale decisions they are the best at and not vice
versa

* XP promises to the customers and supervisors that
they will get the maximum effects from each week of
programming

Every few weeks they will be able to see certain
progress and what is especially important they will be able
to change the direction of the project in the middle of the
progress without incurring enormous costs.

In short, XP promises to reduce the project risk to
mnprove the feedback options i case of changes in the
objectives, to improve the performance of the working
process during the entire system lifetime and to increase
interest in creation of the software within the teams-all of
that at the same.

These are the main XP techniques:

¢ Scheduling game the scale of the next release is
determined by combining the tasks set and
engineering estimates. If the reality does not
correspond to the plan, the plan is upgraded

* Small releases a simple system 15 created within a
short time then the new versions are released within
very short mtervals

* Metaphor guides all the system design process by
the simple plain description of how the system
operates

¢+ Simple design the system is designed in the
simplest mammer possible at any given moment of
time. Extra complexity is removed as soon as it is
detected

Testing the programmers continuously code the unit

tests that should run faultlessly to ensure that the

development is continued. Customers compose

tests demonstrating that fimctional features are

completed

» Refactor the programmers restructure the system
without changing its behavior in order to eliminate
redundancy, improve commurmcation, simplify or and
enhance flexibility

» Pair programming the entire software code 1s written
by two programmers at the same machine

» Common property anyone may modify the code in
the system at any time

» Contimious integration as soon as any task is
fulfilled it is integrated in the system immediately,
integrations are performed many times a day

¢ The 40 h long working week not >40 h a week, as a
rule

¢ Customer availability a real user is involved in the
team that 1s able to answer the questions during the
entire working weelk

» Coding standards for the purposes of improvement

of communication between developers at the

software code level the programmers write the entire

code according to the accepted rules (Zhai et al.,

2011)

Having summarized these techmques one may say
about development in the XP style that:

The programmer pairs work together. The
development is guided by continuous testing. First you
test, then you code. Until all the tests are completed you
can not consider the task to be fulfilled. When the tests
are completed and you can not invent a test that could fail
this means that you have completed adding functional
options.

The programmer pairs do not only invent tests and
make them work. They also continuously improve the
system design. Any code can be reviewed and modified
by any person in the team. Pair work increases the
efficiency of analysis, design, implementation and testing
of the system anywhere where it is required by the
systermn.

Integration follows implementation immediately,
including testing of integration itself. Pair worl at the
same computer, continuous testing, continuous design
and code improvement (refactor), integration immediately
after implementation of the new functionality all of these
KP techniques are aimed at achieving that both the design
and the software code itself is easily modifiable at any
pomnt of the project life-time both at the stage of the
primary system design and years after the software
comimercialization.

Int. J. Soft Comput., 10 (5): 336-339, 2015

SUMMARY

The methods described in this paper have been used
by development of the application for an automated
information system for diesel engine testing (Zubkov and
Galiullin, 2011; Biktimirov et al., 2014).

CONCLUSION

In order to realize the potential benefit from
application of the XP techniques the XP techmiques and
main factors characterizing the software design in the
industry have been compared. Poor skills of contractors,
high staff turnover rate, contractors’ interest no so much
n the successful completion of the project (for which they
paid little) as m improvement of qualification and
changing job for a well-paid one it is possible to manage
all those negative factors by using the XP.

Thus for example, pair programming allows improving
the contractors’ qualification much faster than alone
(Musa et al., 2011). Tt is better to hire two graduates and
ask them to code a unit than trying to parallelize the work
let the same graduates code the two different umits in a
parallel way. In the second case, the poor qualification of
contractors will determine the high probability that either
of units will be delayed or not completed at all which will
bring into challenge execution of the entire project.

In its tirn, the common property of the software code
also allows the programmers to quickly improve their skills
(T and Sedano, 2011). Besides, a common software code
completely eliminates the probability of situation when
one of the programmers leaves and takes a part of the
code with him, killing the long-term and sometimes almost
completed project. And sigmficantly reduces the effects
of the similar situation when one of the contractors
leaves, the code 1s left but no one can understand what
this code does and how it can be modified (Fojtik, 2011).
Indeed, the common property of the code along with pair
programming completely excludes the probability of such
situation n XP the remaimng team members will be able to
handle the entire software cone which will allow them to
quickly become clear of the segments of code designed
primarily by another team member.

Simple design and commonly accepted coding
standards will allow the new team members to puzzle out
the project quickly. And continuously developing and
supported umit tests will ensure secure operational
sperformance.

339

REFERENCES

Abdullah, E. and E.T.B. Abdelsatir, 2013. Extreme
programming applied m a large-scale distributed
system. Proceedings 2013 International Conference
on Computer, Electrical and Electronics Engineering:
‘Research Makes a Difference’, ICCEEE, Art. No.,
6633979, pp: 442-446.

Biktimirov, R.L., R.A. Valiev, L. A. Galiullin, E.V. Zubkov,
AN. Tljuhin, 2014. Automated test system of diesel
engines based on fuzzy neural network. Res. J. Appl.
Sct., 9 (12): 1059-1063.

Fojtik, R., 2011. Extreme programming in development of

specificsoftware. Procedia Comput. Sci., 3: 1464-1468.

F. and T. Sedeno, 2011. Comparing extreme

programming and Waterfall project results. 2011 24th

TEEE-CS Conference on Software Engineering

Education and Training, CSEE and T, Proceedings,

Art. No. 5876129, pp: 482-486.

Musa, S.B., N.M. Norwawi, M.H. Selamat and K.Y, Sharif,
2011. Tmproved extreme programming methodology
with inbuilt security. TSCT 2011 TEEE Symposium on
Computers and Informatics, Art. No. 5958997,

I

il

pp: 674-679.
Putra, I.PE.S., A. Yuliawati and P. Mursanto, 2012.
Industrial ~ extreme programming practice's

implementation in rational wnified process on agile
development theme. 2012 International Conference
on Advanced Computer Science and Information
Systems, ICACSIS Proceedings, Art. No. 6468769,
pp: 137-142.

Sohaib, O. and K. Khan, 2011. Incorporating discount
usability in extreme programming. Intl. J. Software
Eng. Applicat., 5 (1): 51-62.

Wood, S., G. Michaelides and C. Thomson, 2013.
Successful extreme programming: Fidelity to the
methodology or good teamworking? Informat.
Software Technol., 55 (4): 660-672.

Zhai, LL., LF. Hong and Q.Y. Sun, 2011. Research on
requirement for high-quality model of Extreme
Programming. Proceedings 2011 4th
International Conference Information
Management, Innovation Management and Industrial
Engineering, ICIII, 1, Art. No. 6115089, pp: 518-522.

Zubkov, EV. and L.A. Galiullin, 2011. Hybrid neural
network for the adjustment of fuzzy systems when
simulating tests of mternal combustion engines.
Russian Eng. Res., 31 (5): 439-443.

on

	336-339_Page_1
	336-339_Page_2
	336-339_Page_3
	336-339_Page_4

