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Abstract: Volatility 1s an important factor in the world of financial derivatives. Prediction of market volatility 1s
very important for accurate valuation of stocks. This is required to calculate expected market return. Prediction
of volatility is very much crucial in option pricing. Basically there are two main approaches to predict the
volatility. They are historical approach and implied volatility approach. The main problem with the historical
approach is that it pre assumes that future volatility will not change and that history will exactly repeat itself.
Tmplied volatility claims that volatility on any day can only be estimated during trading on that day itself. In this
study a sincere effort 1s made to predict and determme historical volatility using past data. Model works

satisfactorily with minimum possible error.
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INTRODUCTION

Financial gain is the most basic motivation to predict
stock market prices 1s. Any system that can consistently
pick wimers and losers m the dynamic market would
make the owner of the system very wealthy. Thus,
many individuals including researchers, investment
professionals and investors are continually looking for
the superior system which will yield them high returns.

Since, the origin of the stock exchange, shares
trading have gammed importance in the financial markets.
Today the relationship between the shares and its
explanatory variables an appropriate forecasting model to
predict the stock market, continues to be a subject of
extensive research. The main reason for this is the
availability of vast amounts of historical data along with
enormous processing power of computers. This has
enabled the use of automated systems to assist in
complex decision making environments.

Today neural networks are one of the most
innovative analytical tools in the financial area. Dealing
with uncertainty in finance primarily involves recognition
of patterns in data and using these patterns to predict
future events. Artificial Neural Networks (ANNs) handle
this better than other techniques because they deal well
with large noisy data sets. ANNs learn from previous
samples of data in much the same way that a r would
teach a child to recogmze shapes, colors, alphabets, etc.
The ANN builds an internal representation of the data and
by doing so, creates an internal model that can be used
with new data that it has not seen before.

The ability of neural networks to discover non-linear
relationships n input data makes them 1deal for modelling
non-linear dynamic systems such as the stock market. The
goal of this work 13 to develop a Neural Network Model
which can be used to predict the volatiity in S&P
(Standard and Poor) 500 index. This work also emphasizes
the optimization of the model to produce more accurate
results.

Literature review: Back in 1990, Hawley, Jolnson and
Raina identified various potential uses of neural
networks in corporate finance, financial institutions and
investments. In 1995, Boritz and Kennedy showed that the
performance of neural networks is sensitive to the choice
of variables selected and that the networks cannot be
relied upon to evaluate and focus on the most important
variables. Neural networks have been employed with
success to make stock market predictions and stock
selection. The networks have been used to determine
optimal buy and sell timing for an equity index
(Kimoto et al., 1990). In 1997, Gonzalez Miranda and
Burgess have used the networks to predict intraday
volatilities for the Spanish stock market Volatility was
predicted for the Austrian stock market and it was found
that neural networks outperform Auto Regressive
Conditional Heteroskedasticity (ARCH) Models. Ths
study emphasizes on the fact that volatility predictions
using neural networks are superior to Generalized ARCH
(GARCH) Models.

This study focuses on the use of artificial neural

networks For time series forecasting. This method
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analyses past data and estimates the future data values in
the time series which will be good approximations of the
actual values. The traditional time series forecasting
provides reasonable accuracy over short perieds of time
but the accuracy of time series forecasting diminishes
sharply as the length of prediction increases. Neural
networks have an advantage over traditional systems
because they can extract rules without having them
explicitly formalized. In a highly chaotic and only partially
understood environment such as the stock market this is
an inportant factor. Traditional systems are only good
within their domain of knowledge and do not work well
when there 13 missing or incomplete information. Neural
networks handle dynamic data better and can generalize
and make educated guesses. Thus, neural networks are
more suited to the stock market.

The predictability of market volatility is very
unportant for accurate valuation of stocks to calculate
expected market return. Prediction of volatility is crucial in
option pricing. There are two main approaches to estimate
and predict the volatility. They are historical approach
and the implied volatility approach. An obvious problem
with the historical approach is that it assumes that future
volatility will not change and that history will exactly
repeat itself. Tmplied volatility claims that volatility on any
day can only be estimated during trading on that day
itself, i.e. in real time (Malliaris and Salchenberger, 1996).

The option markets depend on a large number of
variables. As the economic environment changes, the
option markets dynamically follow different, changing
rules; sometimes a rule 1s valid for only a short period.
The empirical financial studies in the GARCH Model imply
that the training history length ‘1. should not be very
large. Additional research in the financial community has
also demonstrated that financial data can be considered
stationary only during a moderately short span of time
(Liang et al., 2009). Three different measures are employed
to quantify the implicit volatility of the Hong Kong
financial market. They are namely: historical volatility,
unplied volatility model-based volatility. The volatility
modelling and forecasting performances of evolving
Fuzzy Semantic Memory (eFSM) are encouraging when
subsequently benchmarked to several well-known other
computational intelligence based modelling techniques
(Tung and Quek, 2011).

Neural network is a black box which takes some
variables as an input and gives an output. The network
consists of neurons that are connected to each other. A
neuron transforms the input information according to
some rule and propagates the result further to other
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neurons. The neural network can be considered as an
algorithm for an approximation of unknown functions.
One of the major advantages of neural networks is that
theoretically they are capable of approximating any
continuous function and thus the researcher does not
need to have any hypothesis about the underlying model.
Rather, the model has a capacity for adaption, based on
the features extracted from the data (Haoffi et o,
2007). Hajzadeh et al. (2012) stress the mmportance of
Generalized ARCH Models in finance.

Artificial neural network is a valuable tool for time
series forecasting. Tn the case of performing multi-periodic
forecasting with artificial neural networks, two methods,
namely iterative and direct can be used. In iterative
method, first subsequent period information is predicted
through past observations. Afterwards, the estunated
value is used as an input; thereby the value of the next
period 1s predicted. The process 1s carried on until the end
of the forecast horizon. In the direct forecast method,
successive periods can be predicted all at once. Hence,
this method yields better results as only observed
data is utilized in order to predict future periods
(Hamzacebi et ai., 2009).

Many neural network models have generalization
ability, i.e., after training they can recognize new patterns
even if they haven’t been m the traimng set. Since, in
most of the pattern recognition problems, predicting
future events (unseen data) 1s based on previous data
(training set), the application of neural networks would be
very beneficial (Naeini et al., 2010). Forecasting foreign
exchange rates using artificial neural networks and Particle
Swarm Optimization (P30) is highlighted by Georgios
Sermpinis. In his study, he stresses on the risk of getting
trapped into local optima and the final solution is assured
to be optimal for a subset of the tramming set when
ANN is used along with PSO instead of only PSO
(Sermpinis et al., 2013).

Design of neural networks: In finance, volatility is a
measure for variation of price of a financial mstrument
over time. Historic volatility is derived from time series of
past market prices. An implied volatility is derived from
the market price of a market traded derivative.

Neural networks model mathematical relationships
between inputs and outputs. Based on the architecture of
the human brain, a set of processing elements or neurons
(nodes) are intercommected and organized in layers. These
layers structured  hierarchically,
consisting of an input layer, an output layer and middle

of nodes can be

(hidden) layers. Each connection between neurons has a
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numerical weight associated with it which models the
mfluence of an mput cell on an output cell. Positive
weights indicate reinforcement; negative weights are
assoclated with mhibition Conmnection weights are
‘learned’ by the network through a training process as
examples from a training set are presented repeatedly to
the network. Each processing element has an activation
level, specified by continuous or discrete values.

An artificial neural network consists of a collection of
interconnected processing units or nodes. These are
input nodes, output nodes and hidden nodes. Tnput
nodes receive mput signals or values from an external
source, output nodes transmit the result of the neural
network processing and hidden nodes make up the
internal layers between input and output node layers.
Connections between nodes are weighted that 15 they
have a value that represents the strength of the
connection. Different activation functions are possible,
including the threshold function, piecewise linear, sigmoid
and Gaussian.

Types of artificial neural mnetworks: Feed forward
artificial neural networks consist of an architecture where
there are no connections that loop back to nodes that
have already propagated their output signal. They have
the property of being static, producing only one output
pattern for each input pattern. In an implementation where
all nodes are numbered in ascending sequence this means
that there are no connections from higher numbered
nodes to lower numbered nodes. Single-layer feed forward
networks consist of input and output layers only.
Multi-layer feed forward networks contain at least
one hidden layer of nodes that receives connections from

the previous adjacent layer of nodes. Connections
between nodes in adjacent layers are common but short
cut commections that circumvent one or more hidden
layers may also exist. Artificial neural networks with an
architecture that includes feedback connections are called
recurrent or feedback neural networks. As a result they
are dynamic systems, entering more than one state for
each new mput pattern. Figure 1 i3 a simple neural
network model with feed forward paths.

Training artificial neural networks: The purpose of
neural network traimng 1s to produce appropriate output
patterns for corresponding input patterns. It is achieved
by an iterative learning process that updates the neural
network weights based on the neural network response to
a set of trainmng mput patterns. Leaming can be
categorized as supervised, reinforcement, unsupervised
or hybrid. Supervised learning occurs when the correct
output pattemn 1s known and used during training. In
reinforcement learming the correct output 1s not known
but a measure of the correctness of a network output
response can be computed. Unsupervised learmning does
not require a correct output to be available during
traimng. Hybrid learming combines supervised and
unsupervised approaches. Different learning rules form
the basis of different training algorithms. The applicability
of these rules 1s dependent on the neural network
architecture and the leaming category bemg used.
Error-correction learning rules in supervised learning use
the difference between the correct and actual output
patterns to adjust connection weights with the aim of
reducing this difference (error). The most popular
supervised training algorithm for multi-layer feed forward
the

neural networks 1s back propagation. Based on
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error-correction learning rule, back propagation is a
gradient descent algorithm that updates connection
weights by computing the benefit of the update in terms
of reducing output error. Supervised learning in neural
networks generally involves three data sets:

A training set which consists of mput pattermns used
during training

A test set which consists of input patterns used to
test the network after traiming is complete

A validation set which includes mput pattermns used
to determine when to stop training to prevent the
network from becoming too specific to the traming
data

This is achieved by testing the network on the
validation set for every n iterations of training on the
training data. Training 1s stopped when the validation set
error 1s as mimmuin as possible.

In neural networks, over-fitting is an another
problem. These networks have enough flexibility in their
structures to perform well on traming data. They are
characterized by a very high accuracy on traimng data
and low accuracy on test data. Smaller, less complex
neural networks that perform well, overcome this problem
of over-fitting.

MATERIALS AND METHODS
Mathematical equations: In an artificial neural network,

the output of non-input nodes can be described by the
following equation:

Yo~ fl{zwijxj-tl}
1=1

Where:

v, = The output of the node 1

%, = The jth mput to the node

w; = The connection weight between the node and input
%

t, = The threshold (or bias) of the node

f = The node activation function

The most commonly sigmoid activation function is
denoted by the logistic function:

L(l+e ™)
Where:
b = The slope parameter
x = The result of the weighted sum of the node inputs
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The rule back
propagation uses a sum of squared error calculation
generally given by the followmng equation:

error-correction  learning for

T n

E=Y Y (Y, (D-Z (1)

t=1 t=1

Where:
T = The number of training patterns
n = The number of output nodes

Yi(t) and Z,(t) = The actual and expected outputs of node
1 for pattern t

Volatility: The generalized volatility oT for time horizon
T m years 1s expressed as:

If the daily logarthmic returns of a stock have a
standard deviation of ¢SD and the time period of retums
is P, the annualized volatility is:

— GSD
R

In this work, the S&P 500 data is downloaded from
Yahoo Finance. This data is used to calculate percentage
change in closing prices and hence the volatility for the
corresponding days. The mput vectors and target vectors
are divided mto three sets as follows:

The first set 18 used for traimung

The second is used to validate that the network is
generalizing and to stop training before over fitting
The last is used as a completely independent test of
network generalization (testing)

Validation vectors are used to stop training early if
the network performance on the validation vectors fails to
improve or remains the same for max_fail epochs n a row.
Test vectors are used as a further check that the network
1s generalizing well but do not have any effect on traming.
We would like to predict future values of a time series y(t)
from past values. This form of prediction is called
nonlinear autoregressive with exogenous (external) input
or NARX. The defining equation for the NARX Model is:

y(t) = (y{t-1), y(t-2),..., y(t-n, ju(t-1),u(t-2),..,u{t-n, )

This NARX Model is realized using the Neural
Network Time Series tool in MATLAR. The standard
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NARX network is a two-layer feed forward network with
a sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer. This network uses
tapped delay lines to store previous values of the x(t) and
v(t) sequences. The output of the NARX networle, v(t) is
fed back to the input of the network (through delays),
since y(t) 1s a function of y(t-1), y(t-2), ..., y(t-d). However,
for efficient tramning thus feedback loop can be opened.
The toolbox function (close loop) can be later used for
converting NARX network from the series-parallel
configuration (open loop) which 1s useful for training to
the parallel configuration (closed loop) which 1s useful for
multi-step-ahead prediction.

The Levenberg-Marquardt back  propagation
algorithm appears to be the fastest method for tramung
moderate-sized feed forward neural networks. It also has
an efficient implementation in MATLAB Software
because the solution of the matrix equation is a built-in
function, so its attributes become even more pronounced
in a MATLAB environment.

The inputs and corresponding targets are fed to the
network model for different numbers of hidden neurons,
delays and number of traming to find the best performing
neural network. The model 1s then tried with different sets
of data inputs of different time durations for further
optimization.

Implementation

Neural network model: Following steps have been used
to forecast volatility from a back propagation neural
network:

¢ Selection of input variables
Pre-processing the input data
Specifying a neural network
Traming the network and forecasting

Selection of input variables: Kean suggests around 10%
of the number of data observations. Thus, if there are
300 days of observations to train a network, Kean
recommends thirty variables. The selection of input
variables will depend on the knowledge of what affects
the target variable.

Pre-processing the input data: Neural networks need
properly transformed data to be able to process them and
generate sound forecasts. Transformation, normalization
and data smoothing are three common ways of
preprocessing the data. Through transformation we can
coalesce a few input variables to form a single input
category. Methods include taking differences between
mputs or ratios of inputs. Reducing the inputs may help
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the network learn better. However, it is not necessary
to transform data before feeding into a network.
Normalization makes the statistical distribution of each
input and output data roughly uniform. The values are
scaled to match the range that the input neurons use.
Data normalization methods which include simple linear
scaling and statistical measures of central tendency and
variance, remove outliers and spread out the distribution
of the data.

Data smoothing filters out noise in the data.
Smoothing techmques suggested are sunple and
exponential moving averages and polynomial regression.
Data smoothing serves two purposes. First, the network
has been given useful information at a reasonable level of
detail. Second, the noise entering the data is reduced.

Some of the networks limited built-in

preprocessing capabilities like scaling and randomly

have

rearranging data to remove serial dependence. However,
these networks cannot transform or smooth data. If we
need to transform or smooth data, we have to do that
before feeding the data into the system.

Pre-processing has two parts: arranging the data in
the form that the neural network can read and scaling the
data so that the maximum and minimum of each variable
falls in a range of 1 and -1 (or 0 and 1 depending on the
type of transfer function specified) respectively and the
other values are scaled accordingly.

Specifying a neural network: Since, a typical back
propagation network should have at least three-layers, we
specify a three-layered network.

Appropriate specification of mumber of layers is an
art. Tt needs experimentation. The countless combinations
of layers and neurons that we can make and the time it
takes to tram a network after each specification 15 an
arduous exercise. A single or two-layer network
would be rather inadequate in capturing the complex
interrelationships between market variables. If the number
of layers specified is three, then it is such that it is not too
few and not too many. Four layers can also be used but
that would make the training time prohibitive. The
resulting improvement m forecast accuracy may not be
worth the extra tume. However, a back propagation
network should have at least three layers (Hamid and

Igbal, 2004).

Training the network and forecasting: The nitial input
and target data used are 1x4001 cell arrays of 1x1 matrices,
representing dynamic data: 4001 time steps of closing
prices and volatility. This 15 divided as follows:
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e 70%, ie, 2801 target time steps for training: these are
presented to the network during traimng and the
network 18 adjusted according to its error

¢ 15%, i.e., 600 target time steps for validation: these
are used to measure network Fig. 1. Weights of the
neural network generalization and to halt traming
when generalization stops umproving

¢ 15%,i.e., 600 target time steps for testing

These provide an independent measure of network
performance during and after traimng. There can be
various combinations possible to obtain the closest
results. The default number of idden neurons 1s set to 10.
The default number of delays s 2. The network 1s tramned
multiple times with different number of neurons and
delays till the performance is optimum. If there is
significant correlation in the prediction errors then it
should be possible to improve the prediction, perhaps by
mcreasing the number of delays in the tapped delay lines.
If the performance on the training set is good but the
test set performance is significantly worse which could
indicate over fitting then reducing the number of neurons
can improve the results. The network 1s trained using
Levenberg-Marquardt back propagation. Tt automatically
stops when generalization stops improving. Training
multiple tumes will generate different results due to
different imtial conditions and sampling. A multi-layer
perceptron with one hidden layer for volatility forecasting
is as shown in Fig. 1. The input consists of previous
values of volatility and other market data available on time
t. The output of the network 13 a value of expected
volatility. The input-error cross-correlation function
llustrates how the errors are correlated with the input
sequence x(t). For a perfect prediction model, all of the
correlations should be zero (Fig. 2):

¢ If the network performance is not satisfactory, one
could try any of these approaches: Increasing the
number of traming vectors

¢ TIncreasing the number of input values, if more
relevant information is available

E—\‘

x1

x2

ﬁ

yl

NARX neural network

Fig. 2: Masked NARX Model

s Trying a different training algorithm

»  Resetting the mmtial network weights and biases to
new values with init and tramning again

¢ TIncreasing the number of hidden newrons or the
mumber of delays

RESULTS AND DISCUSSION

This section includes various graphs which give the
details pertaimng to the designed neural network with
different number of hidden layers and delays.

Figure 3 gives the input error cross co relation which
1s highest at zero lag. This 1s what 15 desired for a good
neural network.

Figure 4 shows error auto co relation graph which 1s
within the confidence limit. Here the confidence limit is
0.025%. Figure 5 is time series response which has two
graphs, actual one and predicted one. This graph shows
the error in the design too. It contains error curve also.
Minimum error has been occurred in this network.

Figure € is the error histogram of the designed
network. From this graph, we can infer that error is
maximum at zero lag and reduces in the two sides.
Figure 7 is the predicted volatility out put. At any point
oftime volatility can be calculated using this greaph.

Figure 8 are the other outputs auch as gradient and
mu. These outputs mdicate the following. Figure 9 has
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four regression models, training, validation, test and
overall. Overall regression co efficient is 0.9992 which
very well ndicates that it 1s the best fit curve.

CONCLUSION

In this research, neural network has been used to
develop a model for volatility. The developed model
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works using the historical data. To develop this model
neural network time series tool box of MATLAB 2013b
has been used.

The model works satisfactorily and this volatility
will be used as one of the inputs to the next work.
The optimization of Non-linear Autoregressive with
exogenous (external) mput (NARX) i1s critical to the
performance. It involves changing the network size, the
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size of the input and test data and training algorithms.
Usmg NARX was beneficial as it allowed us to alter input
taps as well as the number of neurons. Simulations have
revealed that an adaptive feed forward network that varies
the number of neurons alone would not have performed
as well as the NARX System.
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