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Image Restoration
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Abstract: The problem of compensation is considered arising from the registration of hardware distortion
images, the model of which is presented by two-dimensional Fredholm integral equations of the first kind. Under
this model, an idea of an additive image component 1s obtained accessible for the recovery and the method of
adaptive regularization for its calculations 1s developed on the basis of empirical data within the conditions of
an a priori uncertainty about the properties of the additive noises.
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INTRODUCTION

The ratio (Bates and McDomnell 1989,
Gonzalez et al., 2004; Pratt, 1978) 1s the model used often
for an 1mage registration:

Voa-u, te .n=1L. . . Nm=1.,M (1)

where, €,, i3 an unknown error during the registration of

a signal part of the type:

'g'—.s

T (X, -X, ¥, -y) £ (x, y)dxdy (2)

Where:

1(x, y) = Hardware function of the registration system
(the kernel of an integral equation) which is
assumed to be known

f(x,y) = An unknown input impact of the registration
system which makes the main interest

The objective 1s to restore an unknown mmpact (Eq. 2)
f(x, y)according to the known elements of the left part in
Eq. 1 and the kemel 1(x, y). The restoring operator
D(x, v, v, 1) used at that is also natural to seek in the class
of linear ones, meaning the recovery procedure:

B, y) = (%, v.V, 1) ©)
Where:
fix,y) = Input impact assessment (restored image)
A% = A set of recorded data
V={v. tn=1. ., Nym=1.,M 4

The complexity and ambiguity of restoring operator
development is conditioned by the mathematical
incorrectness of an inverse problem concerning the
solution of an mtegral (Eq. 2) which requires the use of
regularization methods when empirical data are applied
(Eq. 4). The most well-known method of regularization is
the application of a restoring operator of the following
form (Gonzalez et al., 2004):

f( y) - J‘J-V(Z,t)R {z, t)

o (R(z D (5)
aD(z, t))exp(j(zx + ty))dzdt
(4m)

where, the asterisk denotes a complex conjugation:

Viz, t)= i i v, exp(-jz(n-1))exp(-jt(m-1)) (6)

n=lm=1

R(z )= [ [1(x. y) expl-jxz) exp(-iytudzdy (7

Where:

D(z,t) = The stabilizer which is a positive function of
two variables, slightly decreasing m the field of
integration

o = A small positive number which 15 called the
regularization parameter

The limits of integration in the operator (Eq. 5) are
determined by the property of Fourier function
transformant periodicity of the frequency functions
sampled with a constant pitch (equidistant) of an
argument.
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At the basis of an operator development (Eq. 4) the
theorem on Fourier transformant of the convolution 1s
used (Eq. 2). The second term 1n the denommator of an
mtegrand expression in Eq. 5 plays the role of a
compensator concermng a too rapid decrease of the
kernel Fourier transformant module as compared to the
decrease of the Fourier transformant module in respect of
empirical data (Eq. 6). The stabilizer of the following form
is chosen rather frequently:

Dz t) = 22 +t* (8)

This form corresponds to the variational principle of
Euclidean norm scuares minimization concerning the first
private derivative estimates of input impacts (for restored
images ).

The selection of regularization parameter is carried
out heuristically, although it 1s recommended to use the
so-called residual principle withuin the conditions of a
priort mformation about the properties of the second term
mEqg 1.

This method was developed by Sizikov, Tikhonov
and Arsenin and Leonov. Tts application allows you to
receive the recovery results resistant to the registration
error impacts with an appropriate choice of the
regularization parameter. However, you may consider as
a drawback some artificial introduction in the restoring
stabilizer operator of (generally speaking) a heuristically
chosen form and the need for a priori lnowledge
concermng the registration accuracy level for a signal
part of the empirical data at an adequate choice of the
regularization parameter.

The aim of this research is the development of an
image reconstruction method, based on the use of linear
representations via the basic functions generated by an
equation kemel (Eq. 2). This allows to get a greater
adecuacy of regularization procedure including an
adaptive estimation of error level concerning the
registration of the empirical data signal part.

MAIN PART

Construction of recovery process images: Let’s assume
that the kernel of Eq. 2 (instrumental function) may be
represented as the followmng product:

(X, y) = 5(x) 5(y) 9

This form adequately reflects the properties of the
hardware features for the most recording systems for
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example in radiolocation (distance-azimuth) as well as at
the use of optical sensors for which an additional
condition of a circular symmetry 1s performed:

1%, y) = 1,0 5(y) (10)
at that the Gaussian Model serves as the basic model:
(1) = Kexp(-t'/26") (11)

where, K is some positive ratio. Keeping in mind that
all considered functions are the models of physically
implemented processes let’s assume their square
integrability (the belonging to two-dimensional space L,)
and in particular the limitations of the FEuclidean
standards:

el = [ [ 50 s (y)dudy<es 12)
IF 17 = [ [£7(x, y)dxdy=eo (13)
Let’s introduce a lineal:
N M
Y=Y Ya,ixxny,y 149

n=1lm=1
where, the matrix elements A = {a_}t.n=1, .., N.m=1, .,

M are real numbers. Then, Rektoris any function from L,
may be uniquely represented in the following form:

f(x, y) = fi(x, )+ 1,0, y) (15)

where, the following equations are performed for the
function £, (x, y):

£, (X, ¥ 1,(%, %) 5,(y,,-y)dxdy = 0

§—t
§—t

(16)
n=1L.,Nm=1..,M

Therefore, after the substitution of the representation

(Eq. 15) in the equation system (Eq. 1) taking into account
(Eq. 2 and 16) we may easily obtain the matrix equation:

V=BAC+E a7

where, E={e_ ', n=1,.. N:;m=1, .., M and the elements

of square matrices B= {by}, i, k=1, .. Nand C = {c,}.n,
m =1, ..., M are determined from the following relations:
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b (18)

ik

§ o &

1, (%, -3) 1, (%, -x)dx

Com = I 50, ¥) 15(Y,, -y )dy

(19)

Let’s note that the second component of the
right-hand side of the representation (Eq. 15) concerning
the desired solution does not influence the result of
an image registration and therefore its restoration
15 immpossible. Thus, a natural and an adequate
representation of the required assessment concerning an
input impact is a linear form Eq. 14, the coefficient matrix
which must satisfy (Eq. 17). Thus, the task of input
exposure restoration 1s reduced to the problem of
linear coefficient matrix estimation (Eq. 14) according to
responce registration results. Obviously, the matrices with
the elements (Eq. 18 and 19) are symmetric and positively
defimte. Therefore, there are such orthogonal matrices of
eigenvectors and the diagonal matrices of eigenvalues
for which the following conditions are performed
(stroke denotes the transposition of a matrix) (Lancaster,
1969):

BQ=QL,

CG =GP,

QQ=QQ = diag(l,...1),
G'G =GG = diag(L ...1),
L = diag(Ay, ..o 2

P = diag(p;. ... Pu b

My Zhe, 20, k=1 N,
Pe 2Per, 20, k=1 .., M1

(20)

Thus Eq. 17 may be transformed to the following

form:
W =LTP+0O (21)
Where:
W=QVG (22)
O =QEG (23)
T = QAG (24)
The matrix elements:
Z=LVP={z.},i=1 .., N;k=1..M (25)

are determined by the following correlations:
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7, = APty i=1 ., Nok=1..M (26)
Therefore, if the following conditions are performed:
ho=0,i=1 . p, = 0, k=1, (27)
Then m:
7, =0i=1+1.  Nyk=I+,.., M (28)

Thus, 1t 18 natural to require the performance of the
equalities:
(29)

t, =0,1=

>

LA, Nk =T+, ., M

ik

The remaining elements of the required matrix may be
reduced to the following condition:

|| W,,-L, T, P, ||* = d° (30)

where, the symbol [IIF denotes the square of the Euclidean
matrix standard:

L, =diag(h,, ... A, 1P =diag(p,....p, )
Tll :QiAGI

(31

and the matrices Q, and G, are rectangular ones and
include a corresponding number of eigenvectors (the
number of columns 1s equal to the number of non-zero
elgenvalues).

The right part in Eq. 30 is determined from the
following considerations. Since, the failure of similar
(Eq. 28) equations to zero for the elements of the matrix W
1s conditioned by the presence of image registration errors
then the relation:

N

Y Y wh N1 (M)

n=J+1lm=1Jp+1

(32)

may serve as an estimate of their mean square. Then, to
estimate the sum of squared errors for other components
of the matrix W 1t 1s natural to use the following ratio:

d* = s*NM/(N-T_ ) (M-, (33)

Tt is clear that for the calculation of the matrix T,, one
(Eq. 30) 1s not enough as it has an infimte number of
solutions. In order to select one of them 1t is offered
to use the variation principle of a standard square
minimization of a restored component (Eq. 14) that is IIf; |l
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The substitution of Eq. 14 in the definition (Eq. 13)
after the conversion taking into account (Eq. 20) and
definitions (Eq. 24) allows to obtain the following
representation for the required standard:

I L

HE1F =Y D hPati

n=Im=1

(34)

Let’s present in the following form Lagrange function
of the proposed variation minimization problem (Eq. 33) at
the performance of the condition (Eq. 30):

I, Ly Lo

FL(“"’ Tll) = MZ E Knpmtim+2 2 (W1k-x1pkt1k)z-dz
n=1m-=1 1=1k=1

(35)

The equation to zero the first partial derivatives

according to the required matrix elements provides the

representations for the components of a variation problem

solution (regularized solution):

Tow=w (wtap)i=1.,7 k=11, (36

JF

The substitution of this representation to the
condition (Eq. 30) provides a nonlinear equation for the
indefinite Lagrange parameter:

I
WYY wl/(utap,)t =4 (37)
i=lk=1

Not difficult make sure at equity next.

Statement 1: Equation 30 has a positive root only when
the the following inequality is performed:

(38)

Since, the left part of Eq 36 1s mcreased
monotonically with the increase of u=0 (positive
derivative), then this root is the only one and it is equal to
zero only if the following condition is performed:

d* =0 (39)

In the latter case the estimates (Eq. 37) take the
following form:

LO=w,Ap.i=L., T k=11 (40

ie., the components are restored in an asymptotically
correct way (Eq. 14). Equation 36 may be easily converted
to a form suitable for the application of Simple Iteration
Method.
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I L
p=d¥ Y wi/(wikp,)*]" (41)

i=lk=1

At that it is reasonable to use zero (initial)
approximation (if Eq. 38) is satisfied). Then the next
parameter value will be the most possible and so on that
is the approach to the root will be a two-way one. To
calculate the presentation coefficient matrix (Eq. 14) let’s
use the following ratio:

=QT, 1G; (42)

A
Thus, all relations which allow to calculate a

reconstructed image on the basis of the presentation
(Eq. 14) are obtained.

Examples and illustrations: At first let’s consider the
model (Eqg. 10 and 11). At that (Eq. 18) provides the
following:

b (43)

o = o = 2KO(m)" exp(-(x, %, ) /40%)

Assuming that the spatial sampling 13 performed
uniformly (equidistant) with an merement A, let’s present
(Eq. 40) n a standard way (h = A/g):

b (44)

s = Op = 2AK{M)" hexp(-(n-m)*/4h°)
where h = 0/A. A special interest 15 presented by the
dependence of non-zero eigenvalues number J; of the
matrices (Eq. 43) on the value of parameter h. At that it is
reasonable to have a simple relationship which allows to
perform the assessment of thus characteristics. It 1s natural
to use the comparison of the cast eigenvalues as a
guideline with the maximum use of inequality, for example:

A, £0.0013, (45)

at the performance of which an own number with such an
index 1s assumed to be zero. Then, the mmimum one from
such a set of indexes 1s taken for ;. Table 1 provides the
estimations of the values I, for the following case
N =M =1000.

Table 1 data and computational experiments at other
values of dimensions show that when the inequality
M=100 is performed a good approximation is obtained at
the use of the following correlation:

I, =[0.85X__ /m] (46)
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Table 1: Estimation of values J,

h I

0.1 1000
0.5 1000
1.0 851
1.5 569
2.0 423
2.5 322
3.0 282
4.0 212
10.0 85

where, X, is the spatial size of a registered image domain
and the square brackets denote the integer part of a
number. Thus, the rank of the matrix (Eq. 42) is determined
by the ratio of the determination domain size to the size of
the Gaussian parameter 0. Let’s note also that the ratio
0.85 matches the probability mtegral value at an argument
equal to one. Tt is also known that this parameter tends to
zero if delta function will be a Gaussian limit.

CONCLUSION

This study proposes a new method for an inverse
problem of image restoration solution. Tt is based on the
use of function basis that is determined by the kemel of
an integral equation. Also the method of an Adaptive
Regularizing algorithm is developed for the calculation of
approximate solutions concerning integral equations
according to empirical data.
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The proposed method of image reconstruction takes
mnto account the information on the nput image
adequately and allows to take into account the distortions
arising from the registration of the empirical data
adaptively.

ACKNOWLEDGEMENT

The study has been conducted under subsidy
#14.581.21.0003 (project ID-RFMEFT58114X0003) with the
Ministry of Education and Science of the Russian
Federation.

REFERENCES

Bates, R H. and M.J. McDonnell, 1989. Image Restoration
and Reconstruction. Clarendon Press, Oxford, UK.,
Pages: 283.

Gonzalez, R.C., R.E. Woods and S.L. Eddins, 2004. Dagital
Image Processing Using MATLAB. Pearson Prentice
Hall, New Tersey, USA., ISBN-13: 978-0130085191,
Pages: 609.

Lancaster, P., 1969. Theory of Matrices. Academic Press,
New YorK, England, Pages: 277.

Pratt, W.K., 1978. Digital Image Processing. JTons Willey
& Sons Inc., New Jersey, USA ., Pages: 735.



	75-IJSC - Copy_Page_1
	75-IJSC - Copy_Page_2
	75-IJSC - Copy_Page_3
	75-IJSC - Copy_Page_4
	75-IJSC - Copy_Page_5

