International Tournal of Soft Computing 11 (3): 107-113, 2016

ISSN: 1816-9503
© Medwell Journals, 2016

On the Study of 3D Fractals

"Bulusu Rama and *Jibitesh Mishra
'Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, India
*Department of Computer Science and Applications,
College of Engineering and Technology BPUT, Bhubaneswar, India

Abstract: Fractals provide an mnovative method for generating 3D mmages of real-world objects by using

computational modeling algorithms based on the imperatives of self-similarity, scale invariance and
dimensionality. Images such as coastlines, terrains, clouds, mountains and most interestingly random shapes

composed of curves, sets of curves, etc., present a multi-varied spectrum of fractals usage in domains ranging

from multi-colored, multi-patterned fractal landscapes of natural geographic entities, image compression to even

modeling of molecular ecosystems. Fractal geometry provides a basis for modeling the infimte detail found in
nature. Many different types of fractals have come into limelight since their origin.

Key words: Fractals, 3D Images, Mandelbrot set, Mandelbulb, Julia set, Sierpinska gasket, 3D rendering, IF3

INTRODUCTION

Today fractal geometry is completely new area of
research i the field of computer science and engineering.
It has wide range of applications. Fractals i nature are so
complicated and irregular that it is hopeless to model them
by simply using classical geometry objects. A fractal is a
rough or fragmented geometric shape that canbe
subdivided into parts, each of which 1s (at least
approximately) a reduced size copy of the whole or in
otherwords is self-similar when compared with respect to
the original shape. The term was comed by Benoit
Mandelbrot in 1975 and was derived from the Latin word
“fractus™ meaning“broken” or “fractional”.

Formally, the fractals are categorized in two types 1.e.,
regular (geometric) and random fractals. Regular fractals
consist of large and small structures that are exact copies
of each other, except in size. One of the more well-known
regular fractals is the Koch snowflake which is made up of
small triangles added to the sides of larger triangles to an
mfinite degree. Random fractals are more apparent in
nature as their small scale structures may differ in detail.
Tt was this type of pattern that greatly influenced
Mandelbrot, who gave these pattems the name fractal,
from the Latin word fractus.The primary characteristic
propertiesof fractals are self-similarity, scale invariance
and gener alirregularity in shape due to which they tend
to have asigmficant detail even after magnification-the
more the magnification the more the detail. In most cases,
afractal canbe generated by a repeating pattern

constructed by a recursiveor iterative process. Natural
fractals possess statistical self-similarity whereas regular
fractals such as Sierpinski gasket, Cantor set or Koch
curve contam exact self-similarity. “Clouds are not
spheres, mountains are not cones, coastlines are not
circles and bark is not smooth, nor does lightning travel
in a straight line” (Mandelbrot, 1982).

Natural phenomena of fractals: Many objects in the
nature can be created by applying the concept of classical
geometry like-lines, circles, conic sections, polygons,
spheres, quadratic surface and so on. There are various
objects of nature which carmot be modeled by applyng
Euclidean geometry hence, there is need to deal with such
complicated and irregular object which can only be
constructed by fractal geometry. To generate such
complicated object iteration process 1s required which 1s
called iterated function system.

MATERIALS AND METHODS

Process of generation: We present here the process to
convert 2D fractals to 3D and give an example as to how
2D has been converted to 3D in the case of Mandelbulb
(Rama and Mishra, 2011) and the cube based Sierpinski’s
gasket (Bulusu, 2012).

Process of generation of 2D fractals to 3D: The steps
used in the process of generation of 2D fractals to 3D are
as follows: For a given maximum number of iterations

Corresponding Author: Bulusu Rama, Department of Computer Science and Engineering, MLR Institute of Technology,

Hyderabad, India

Int. J. Soft Comput., 11 (3): 107-113, 2016

denotedby the constant maxit, plot the set defined by the
(min, max) range of values of each point the axes (Xmin,
¥max), (Ymin, Ymax)

This 13 done by first generating a grid based on
theline spacing values for each Xz and Yz The
linespacing 1s calculated using the distance of each suc
hpoint based on (Xmin, Xmax) and (Ymin, Ymax), set
tolower and upper limits from the origin of z, whos einitial
value is always 0. For each co-ordinate axisinvolved, we
get a line spacing value, e.g., Xline spacing, Yline spacing
etc.

Then the actual fractal is plotted by selecting all
points in the grid obtamed from the step above and
checking if it qualifies as a candidate for being part of the
fractal. If the difference between these twoline spacing
values 13 O, then the corresponding point be longs to the
fractal being generated. And the wmion of all such poimnts
gives the domam of the resulting fractal set.

The next step 1s to plot the actual fractal set based on
the set of points obtained from step 3.This is done by
iterating the above steps based on the max number of
iterations (this is now an inputvariable) and the (Xmin,
Kmax), (Ymin, Ymax) ranges, till all the iterations are
complete. However, as uper limit for the maximum number
of iteration sbeing input is fixed at value greater than
maxit, toensure that the generated fractal doesn’t blowup
mnto an mnfimte space on the screen.

The output: The program runs as a Windows console
applicationwith the 3D image of the fractal (Rama and
Mishra, 2010) beingrendered as a colour-mapped image
projected on to the 3D plane, using Matlab 3D Tmage
Rendering Software. The use of Open G L algorithms and
the standard Graphics library makes the implementation of
the routines for construction of the initial grid and the
subsequent fractal as also the colour-coding and 3D
rendering very flexible and efficient.

Generation of the mandelbulb: The 3D Mandelbulb 1s
generated by taking results obtained by applying above
described method based on the defined parameters and
then subsequent rendering of each image output in 3D
using Matlab Software. The Mandelbulb 1s obtained by
using an nth power of a 3D hyper-complex number, atrue
3D version of the same can be obtained and is often
referredto as the Mandelbulb. This is obtained by using
a rotationtrans formation away from the z-axis. The 3D
Mandelbulb is generated using the iteration z = ztc
where z and ¢ are 3-dimensional hyper-complex numbers
with the power mapping z ---> 2, defined as stated above.
For n=3, the result1s a 3-dimensional bulb with a fractal

108

Fig. 1: “True’ 3D simulation of the Mandelbrot
Setgenerated using n 2 as part of the
hyper-complexdimensional rotation around the
z-axis (Rz (-0)

Fig. 2: *True” 3D mandelbrot

simulation of the
setgenerated using Rz (0) as the hyper-complex
dimensional rotation around the z-axis

surface and a number of protruding “lobes™ that
dependent on the parameter n. Multple graphic
renderings can be generated using n>2.

The output: The program runs as a windows console
application with the 3D image of the Mandelbulb being
rendered as a colourmapped image projected onto the 3D
plane (Rama and Mishra, 2011), using MATLAB 3D Image
Rendenng Software. The first 3D fractal of Mandelbulb 1s
obtained by using a rotational transformation of Rz (-8) as
depicted n Fig. 1. The second one 1s obtained by a
positive angle around the ¢ rotation. This gives a
negative z-componenta round Rz (8) resulting the fractal
in Fig. 2. The use of Open GL. algorithms and the standard

Int. J. Soft Comput., 11 (3): 107-113, 2016

Fig. 3: The 3D Sierpmski gasket (Cube-based) having
depth =3

graphics library makes the implementation of the routines
for construction of the imitial grid and the subsequent
Mandelbrot set as also the colourcoding and 3D
rendering very flexible and efficient. Additional details
and other techniques to generate the 3D Mandelbrot Set
can be found in the book as in (Barnsley, 1988) and the
publications (Rama and Mishra, 2011; Wik and Saupe,
2004).

Generation of the 3D sierpinski gasket: The process of
generation of the cubed-basedversion of the 3D Sierpinski
gasket (Bulusu, 2012) 15 outlined.

We started with a cube to generate the 3D Sierpinski
Gasket (by imitating the 3D Sierpinski triangle) and then
recursively re-generated the 3D fractalto arrive a new 3D
Sierpinski gasket version-that resembles an almost 360°
self-similar 3D version of the orignal fractal but one
that 1s constructed as a self-manipulated syndicate of
successive 1lterated version-results, each of wlich
represents a 3D fractalpore of the imitial 3D Sierpinski
gasket. The programwas written in the CH+ programming
language, the 3D “visual” rendering was done using the
open Glut Graphics library. It runs as a Windows
consoleapplication with the variable depth being mput as
the first command-line argument (any non-zero integer
value, preferably from 1- 9).

The originally generated 2D Sierpinski gasket uses a
square as imtiator and the IFS as generator. The
equivalent 3D version of the Sierpinski gasket uses a cube
as initiator and the TFS as the generator all of them having
an additional property called depth = 3. Figure 3-5 are the
maneuvered versions obtained by recursive re-generation
with the same depth property (i.e., depth = 3). Figure 6 is
the maneuvered version of Fig. 5 obtamed by
recursive re-generation with the depth property equal to
2. Fmally, Fig. 7 seemingly displays the starting 3D

109

Fig. 4: The 3D Sierpinski Gasket (Cube-based) having
depth = 3 obtained from recursive re-generation of
Fig. 3

Fig. 5: The 3D Sierpinski gasket (Cube-based) having
depth = 3 and applying the generator on Fig. 4

Fig. 6: The 3D

Sierpinski
Generatedusing depth = 2 applying the generator
on Fig. 5

gasket (Cube-based)

Sierpinski gasket as a 3D Cubed version (Mirtchovsli.
2001) with the depth property changed to 1. The step-by-
step procedure is as follows:

¢+ Adding a new depth property that is input
dependent to a chosen 3D cube image. The default
depth is chosen to be 3

Int. J. Soft Comput., 11 (3): 107-113, 2016

Fig. 7: The 3D Sierpinski Gasket (Cube-based) generated
using depth = 1 applying the generator on Fig. 6

The generating IFS consists of a (xy,2)
transformation that consists of an (x, y) rotationand
a z-based zoom or the scaling factor

Setting the reference frame by specifying a (height,
width) pair to the enclosing (movable) window.
The default colour scheme is red/blackfor each
cube-based 3D fractal

Using the IFS, auto-generate 8 self-similarfractal
blocks and position them at the 8 different
corners of its parent cube fractal. This creates a
linked chain of smaller but self-similar 3D
Sierpmski Gaskets-that are withuin theboundaries of
the frame-of-reference. The dynamic variables
involved in this method are:

The depth property that represents anadditional new
variant that defines aprojection

The reference frame itself

The (%, v, z) triple representing the translation forthe
3D fractal. Here z represents the zoom i.e., scaling
factor

The dynamic translation is a chieved by
auto-capturingthe variations in the scaling (the z-variable)
value and the corresponding (x,y) rotation; and
auto-adapting the Glprojection(s) to the conforming
V1ewports.

The output: The program runs as a Windows console
application using the Open Glut APT with the 3D
Sierpmski gasket (Bulusu, 2012) being generated as an
IFS-based recursive version of the 2D Sierpinska carpet
that uses a cube as the base imtiatorfor the IFS.
Successive fractal images are obtained by interactive
mouse-based positional translation and context-aware
zoom-based scaling in a dynamic fashion and varying the
depth property from 3-1. Using Matlab 3D image
rendering Software, the displayed graphics are processed
for “true” GUI compatibility.

110

RESULTS AND DISCUSSION

Discussion about different 3D Julia sets: The following
section gives a discussion about the differences between
the different 3D Julia sets as shown in Fig. 8-12. The Julia
Set was invented by the French Mathematician Gaston
Julia in 1918 while studying the iteration ofpolynomials
and relational functions. Tt is very closely relatedto the
Mandelbrot set. Tt is also obtained by iterating the
equation z = z+c. The primary difference between the
Julia set and the Mandelbrot set 1s the manner mn whichthe
function 1s iterated. The Mandelbrot set iterates as
perz = Z° +c with z always starting at 0 and varying the
cvalue. The Julia set iterates as per z = z+c, where ¢ is
constant and z 1s variable. In other words, the
Mandelbrotset 1s in the parameter space or the c-plane,
while the Julia set 13 in the dynamical space, 1e., the
z-plane (Lee, 2011).

An Tterated Function System (TFS) based on a
co-efficient cand the maximum number of iterations is
iterated as manytimes as the maximum number of
iterations. The resulting set of points can span an
indeterminable amount of space that 13 afunction of the
number of iterations mvolved. Now, for anyrandomly
chosen point z from this set, it can either be located inside
or outside of the generated area, depending on the
valueof ¢ and the co-ordinate-axes range. The Julia set
comprisesall such pomts z, each of which lies outside of
the bounded space before the IFS was applied. Applying
the set of affinetransformations on the starting set of
points, in each iterationstep, the resulting fractal is a
self-similar shaped image that resembles an approximation
to the original image. This effectis best visualized when
rendered m 3D.

The corresponding program is written in CH++ and
built as a Visual C++ Project of type Windows Console
Application. The resulting Julia Set is rendered as a 3D
image using Matlab 3D image rendering Software.
Multiple 3D Julia sets are generated by varying the
number of iterations and therandom co-efficient c.
Figure & shows the initial 2D image of the Julia set.
Figure 9-11 show the different 3D TJulia sets
Fig. 8.

The following Fig. 9 shows a 3D Julia set-the result
obtained by successive iterations and changing various
modeling parameters starting for every pixel, iterating
znew = zold™+c on the complex plane wntil it leaves the
circle around the origin with radius 2. The number of
iterations it the color of the pixel.

For a Julia set, for each pixel apply an iterated
complex function Figure 12 This function 18 newz =
oldz*+c with z and ¢ both being complex numbers. The 7
is initially the coordinates of the pixel and will then
constantly be updated through every iteration: each

for

Int. J. Soft Comput., 11 (3): 107-113, 2016

Fig. 9: First 3D Tulia set for Fig. 5. 2D (zoomed-in)

Fig. 10: The 2nd 3D Julia set from Fig. 5 (2D Julia set)
obtained by changing thickness and width
(zoomed-in)

iteration, the “newz” of the previous iteration is now used
as “oldz”. If we keep iterating this function, depending on
the initial condition (the pixel), z will either go to infinity
or remain in the circle with radius 2 around the origin of
the complex plane forever. The points that remain in the
circle forever are the ones that belong to the Julia set. So

111

Fig. 11:3rd 3D Julia thickness 17 mm, width 81 mm,
grayscale defines thickness (zoomed-in)

Fig. 12: Julia set for each pixel

we keep iterating the function until the distance of z to the
origin {0, 0) 1s >2. And also give a maximum number of
iterations, for example 256.

The color value of the pixel will then become the
number of times we had to iterate the function before the
distance of z to the origin got larger than 2. The constant
¢ in the formula can be anything really as long as it’s also
inside the circle with radius 2. Different values of ¢ give
different Julia sets (Norton, 1982).

The more iterations, the more detailed the Julia set
will look when zooming in deeply but the more
calculations are needed. The higher the precision of the
numbers, the longer we can zoom in without encountering
blocky pixels.

We can change the values of zoom and position
parameters to zoom in at certain positions. This can also
be done 1in realtime while the program is runmng, for
example by pressing the arrow keys to move and the
keypadtand-keys to zoom infout. Even better would be if
you could use the keypad arrow keys to change the
values of real and imaginary parts of the constant ¢, to
change the shape of the Julia set in realtime.

Int. J. Soft Comput., 11 (3): 107-113, 2016

Fig. 13: Details of every possible Julia set

. 15:Julia 1mages after the mcreasing the number of
iterations.

Programming something that can do that is pretty
simple, just use the SDI keys to change the values of
those variables and draw the Julia set every time again in
a loop. By using the appropriate code and changing the
required parameters at the appropriate place we can know
exactly at what coordinates of the Julia set the nice things
are. The result is that we can explore all the details of
every possible Julia set, find a nice shape with the keypad
numbers, then move with the arrow keys to a border or
mnteresting spot of the Julia set and start zooming m to see
more detail. The different shapes obtamed are shown in
Fig. 13-16.

112

farat

Fig. 16: Differences between different 3D Julia sets

Figure 14-16 show the differences between different
3D Tulia sets obtained by using the appropriate code and
rendering using 3D Matlab image rendering Software.

CONCLUSION

This study explained the study of 3D versions of
some of the common fractals-the Mandelbulb and the
Sierpinski gasket-the rendering of which gives a
real-world look and feel mn the world of fractal images,
followed by the discussion of different 3D Tulia sets. The
two-dimensional (2D), 3D versions of the same have been
realized based on the starting axioms/generators. The
results demonstrate how by using theory, computation
and experimentation fractal geometry is both an art and a
science and also enables generation of more beautiful
images and in higher dimensions too. In making further
research on fractals, these fractals help us to explore the
science of fractals in generation of new fractals based on
the ideas presented here which can also enable us to have
a real-world Imagimeering of the same which can translate
to examples like an entire coast-line set to dance in space
by adding 3D-animation enabled elevation to the
corresponding fractal image.

REFERENCES

Bamsley, M.F., 1988. Fractal Modeling of Real World
Tmages. In: The Science of Fractal Tmages. Peitgen,
H.O. and D. Saupe (Eds.). Springer New York, Berl,
Germany, ISBN: 978-1-4612-8349-2, pp: 219-242,

Bulusu, R.IM., 2012, Using 3D Sierpinski gasket to
generate and recursively re-generate 3D
fractals-closing the self-sunilarity loop. Int. 7.
Graphics Vision Image Process., 12: 43-48.

Le1, T., 1990. Similarnty between the Mandelbrot set and
Tulia sets. Commun. Math. Phys., 134: 587-617.
Mandelbrot, B.B., 1982, The Fractal Geometry of Nature.
1st Edn., W H. Freeman, San Francisco, CA., ISBN:

0716711869,

Int. J. Soft Comput., 11 (3): 107-113, 2016

Norton, A., 1982, Generation and display of geometric
fractals n 3-D. ACM. SIGGRAPH. Comput. Graphics,

16: 61-67.
Rama, B. and 1T.

3D fractal images

Sets. Int. J. Comput.

178-182.

Mishra, 2010. Generation of
for Mandelbrot and Julia

Commun. Technol., 1:

Rama, B. and J. Mishra, 2011. Generation of 3D fractal
images for Mandelbrot set. Proceedings of the 2011
International Conference on Communication,
Computing and Security, February 12-14, 2011, ACM,
ODISHA, India, ISBN: 978-1-4503-0464-1, pp: 235-238.

Wik, V.J.J. and D. Saupe, 2004. Image based rendering of
iterated function systems. Comput. Graphics, 28:

937-943.

113

	107-113_Page_1
	107-113_Page_2
	107-113_Page_3
	107-113_Page_4
	107-113_Page_5
	107-113_Page_6
	107-113_Page_7

