International Tournal of Soft Computing 11 (3): 131-135, 2016

ISSN: 1816-9503
© Medwell Journals, 2016
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Abstract: The concept of the store automatic machine with an exit from the point of view of computability
theory 1s entered. The comparative analysis of the entered concept with automatic machine with store memory
from the pomt of view of formal languages and grammars is carried out. Examples of automatic realization of
some cars of Turing by means of finite-state and store machines with exits are reviewed. It is proved that the
circle of the tasks realized by the store automatic machine with an exit 1s wider, than at the finite-state machine

with an exat, but already, than at Turing’s machine.
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INTRODUCTION

In the theory of automatic machines and
computability theory interest is attracted reducibility
(extent of automatic transformations (Bayrasheva, 1982,
Komeeva, 2011) for fimte-state machines, T-degree
for Turing (Rogers, 1972) machine). Tt is known that
possibilities of the car of Turing much ample
opportunities of fimte-state machines. Therefore studying
of automatic machines which will be by the opportunities
between finite-state machines and Turing’s machine
attracts interest. Such automatic machine is the store
automatic machine which unlike the fimte-state machine
has “memeory™ an opportunity to address stack (“store™)
storage. At the same time we can write down an element
mn a stack, get an element from a stack and just read out an
element, without any actions over a stack. Those in the
store automatic machine transition depends not only on
current state and an entrance symbol but also on an
element which is at stack top.

The concept of the store automatic machine (the
automatic machine with store memory, the SM- automatic
machine, the SM-converter) has appeared in the 60th of
the last century (Shutzenberger, 1963, Lewis and Stearns,
1968; Akho and Ullmar, 1978) and 1s so far well studied,
but only as the automatic machine without an exit (the
“recognizing” automatic machine) from the point of view
of formal languages and grammars. At the same time the
question about the reducibility from the point of view of
the theory of a computability still remains open. Therefore
we will give generalization of a concept of the store
automatic machine, addition in him an output tape.

We will give exact defimition of a store automatic
machine (Sipser, 2012). Definition 1; The Store Automatic
Machine (SAM) is called the six:

(Q 5 T,8,q,F)
Where:
(Q = Final set of states
¥ = Entrance alphabet
I' = Store alphabet
3 = O(ZuA)(TuAN)"QOx(TuA) function of transitions
A = Empty symbel
qo = The mtial state
F = Set of final states

Thus, the store automatic machine 1s set by system
of teams of a look:

q.a,A —q,B ey
Where:
q; = Current state of SAM
a = An entrance symbol (can be)

A = The current top symbol of store (stack)

g = A new state

B = A new top symbol of store

- = The external symbol which isn’t belonging to any
of alphabets of SAM

As can be seen from the definition 1 this automatic
machine without an exit he is intended only for
recognition (in him there is no output film and
respectively, the output alphabet; and this automatic
machine, as a rule has to fimsh work m one of the
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allocated final states). However, from the point of view of
the theory of automatic machines, a set of final states and
the allocated initial state not obligatory attributes of the
automatic machine. Besides, 1in automatic machines there
are output alphabet and the film. According to thus remark,
we will give defimition of the store automatic machine with
an exit (Zarubina ef ai., 2016a).

The store automatic machine with an exit
Definition 2: We will call the store automatic machine
with an exit (SAMwE): The five:

(Q, 2,2, I, &)
Where:
Q = Final set of states
Y = entrance alphabet
2’ = output alphabet
I' = store alphabet
& = Qx(EuN)x(TuA)Qx(ZuAy(Tul), function of

transitions, an empty symbol

Those the team from system of teams for the store
automatic machine with an exit looks as follows:

4;.8,A —¢q;,B 2)
Where:
g, = Current state of SAMwE
a = An entrance symbol (can be /)
A = The current top symbol of store (can be /)
g, = A new state
b = An output symbol (can be /)
B = A new top symbol of store

The external symbol which isn’t belonging to any
of alphabets of SAMwE

Thus, SAM 1s a special case of SAMwE 1f to put that
the output alphabet %’ = ¢ and on an exit always moves
an empty symbol A By analogy with the finite-state
machine with an exit the store automatic machine with an
exit can be set by means of the focused count. At the
same time each condition of SAMwE 1s the count’s top
and each team of a look (Eq. 2) 1s implemented by an edge
between tops of g and ¢ (Fig. 1). As already it has been
noted earlier, we can execute for one operation one of the
3rd of actions over a stack. For convenience of
reasonings we will accept the following designations: If
we write down an element n a stack, then in team (Eq. 2)
we write mstead of To 2 symbols written down and
previous. Example: g, a, A~q. b, BA (recorded the symbol
“B” at the previous value in a stack A). If we get a symbol
from a stack, instead of B in Eq. 2, we write an empty
symbol. Example: q, a, A-q, b, A (have got a symbol
from a stack A).

132

a, A(b, B)

1

q q;

Fig. 1: TImplementation of the command (Eq. 2) by means
of the count

If we do” t make any changes to a stack, then the team
has an appearance: ¢, a, A~ ¢, b, A where instead B the
top symbol of a stack just corresponds. By analogy with
the standard terms in the theory of automatic machines,
we will enter some more definitions.

Definition 3: We will call the Initial Store Automatic
Machine with an Exit (ISAMwE) SAMwE with the set
initial state.

Definition 4: We will call the Determined Store Automatic
Machine with an Exit (DSAMwE )} SAMWE in which for the
left part of team of a look (Eq. 2), there 1s the only right
part of team of a look (Eq. 2).

Definition 5: We will call the Nondetermimstic Store
Automatic Machine with an Exit (NSAMwE)
SAMwE in which for the left part of team of a
look (Eq. 2) there can be >1 right part of team of a
look (Eq. 2).

We will notice that already on these concepts
finite-state machines and store automatic machines
differ. Finite-state machines have property that the
finite-state determined machine 1s equivalent some
determined and naturally, on the contrary. And here for
store automatic machines this property doesn’t take
place (Meduna, 2000). Nondetermirmstic store automatic
machines are more powerful than the determined store
automatic machines. As, it was already noted above,
store automatic machines are a special case of store
automatic machines with an exit, therefore the same
ratio takes place and for them. Further all reasonings in
article will concern DSAMwE. We will consider on
examples various

as machine of Turing can be

realized by finite-state and store machines with

an exit.
MATERIALS AND METHODS

Realization of some MT finite-state and store machines
with an exit: Tt is obvious that owing to the thesis of
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Chercha, we realize any algorithm realized by the
finite-state machine or the store automatic machine also
by Turing’s machine. Therefore, interest 1s attracted by
the retum realization what types of machine of Turing can
be realized by various automatic machines. At the same
time, once again to pay attention to distinctions in
concepts SAMwE and SM-converters, we will consider
not standard tasks on calculation of predicates of
a look:

P(x)=xe {a“b"

n>0}

or

1

H>OJ

Q(x)=x¢& {anb"

which are given when studying SM-automatic

machines.

Summation of final number of composed: Formulation of
a task: on the input tape MT we have final number
composed m an unary numeral system (where, n of units
is n-1), divided among themselves by one zero. Tt is
necessary to receive on an output tape the sum composed
(where already n of units correspond to number n).

We will set MT according to defimition: the set of
entrance states Q = {qy, q;, ..., Qs the entrance alphabet
coincides with output state ¥ =2'= {0, 1} and function
of transitions &: QxZ"QxE'={L, R, N} is set by Table 1
(gg-a final state). This machine of Turing can be realized
by both the fimte-state machine and the store automatic
machine with an exit And in both cases because of
existence of a separate output tape function of transitions
will be set by smaller number of states.

Realization by the finite-state machine with an exit: The
state graph of the finite-state machine realizing the sum of
final number of composed 1s represented mn Fig. 2. Thus,
this MT 18 implemented by the fimte-state machine with
an exit in which a set of states Q = {q;, q,, .} the entrance
alphabet % = {0, 1} the output alphabet £ = {0, 1} and
function of transitionsd: QxX-Qx3%’ is set by Table 2
(q,-a final state).

Realization by the store automatic machine with an exit:
It 18 obvious that this algorithm through SAMWE can be
realized by analogy with the previous realization by the
fimte-state machine having just put that the stack is
always empty (i.e., the stack won’t be involved). However,
one of the purposes to show operation of the store
automatic machine in operation. Therefore, we will give
realization of SAMwWE with use of store. We will set the
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Table 1: Function of transitions of the machine of Turing for an example 1

Transition 0 1
Qo 0 O N 1. 0. R
a 0 0. R q. 1, R
qz g, 0, L 4. 0, R
qs g, 1, L -

g4 g, O.R Qs 1, L
qs -

Je g, O L -

a4z 0 0. R 07, 0. L

Table 2: Function of transitions of the finite-state machine for an example
Transition 0 1

o L7 i, A
h o, q. 1

A

Fig. 2: A state graph of the finite-state machine for an
example 1

Fig. 3: State graph of the store automatic machine for an
example 1

store automatic machine with an exit according to
definition. Let the set of states Q = {q,, q,, g;} entrance,
output and store alphabets coincide X = %° = {0, 1} and
function of transitions &: Qx(BuA(TuA)"Qx(TuA)x
{T'WA) is set by Table 3 (g, a final state). The state graph
of this SAMWE is represented in Fig. 3. Here and further
for reduction of record of work of SAMwE we waill
designate through and the top symbol of a stack (if the
specification what the top symbol is isn't necessary; he
can also be an empty symbol).

“Copy”: sequence: The formulation of the problem: on the
input tape recorded sequence of any number of units. It
should be on the output tape to record the original
sequence and its “copy”, separated by a single 0. The set
of entrance conditions of turing machine Q = {q;, q,,...,
qy;¢ the entrance alphabet coincides with output X = X!
{0, 1} and function of transitions &: QxX-QxX = {L, R, N}
is set by Table 4 (q,,-a final state).



Int. J. Soft Comput., 11 (3): 131-135, 2016

Table 3: Function of transitions of SAMWE for an example 1

Transitions Actions

Qe 1, A AL LA

Qo. 0, A~gg, AL A
Qo A=, A A
Transition to a state q;
Q. A=, A A
from a stack). We remain is able q;
Q. A=y, A A

All units from an entrance tape register in a stack. Nothing is given for an output tape. We remain is able qp
If on an entrance tape zero, the top unit from a stack are removed. Nothing is given for an output tape. We remain is able gy
On an entrance tape elements have come to an end. The top unit firom a stack is removed. Nothing is given for an output tape

On an entrance tape there are no elements. The top elerents of a stack on one are given for an output tape (and, respectively, are removed

On an entrance tape there are no elements. The stack is empty. Transition to a final state g, Completion of work of SAMWE

Table 4:Function of transitions of MT for an example 2

Transition 0 1

Qo Q3. 0, L q, 0. L
0 q: 0, L -

0 g: 1, L -

qs Qs 0, L ¢, 1, L
Ga g 1R s LL
qs 9 O, R g, LR
Qs 0. 0, R g LR
O Q. O, R -

tH Q. 0, L g, O, L
Qs Q- 0, L g, 1, L
Quo 41, O, R qu. 1, L

0, A ) A, 4(4,4)

La14) | qo -AARN gy MARY Fay

Fig. 4: State graph of the store automatic machine for an
example 2

About realization by the finite-state machine with an exit:
Because of this problem we need to somehow “remember”
how many units contains the original sequence, the
implementation of “copying” Turing machine state
machine with access impossible.

Realization by the store automatic machine with an exit:
Thanks to existence of “memory” (stack) in the store
automatic machine, realization of the “copying”™ MT
through SAMWE 1s much simpler. In this case the set of
states Q = {q, q, O} entrance, output and store
alphabets coincide ¥ = ' = I' = {0, 1} and function of
transitions & Qx(ZuA<(TuA) Q= uM)x(T'uA) is set
by Table 5 (g,-a final state). The state graph of thus
SAMWE i1s represented in Fig. 4.

RESULTS AND DISCUSSION

Modular difference of two numbers: Formulation of a
task: on an entrance tape 2 numbers in an unary numeral

system are set. On an output tape to write down result of
a modular difference of the set numbers. In this Turing
machine will be consistently erased extreme left and
extreme right units. A set of states Q = {qg ..y st
entrance and output alphabets coincide £ = £* = {0, 1}
and function of transitions &: QxZ-QxX1x{L, R, N} is set
by Table 6 (gz-a final state) (Table 6).

About realization by the finite-state machine
with an Realization by the
machine with an exit is again impossible as it is

exit: fimte-state
necessary “to remember” as far as one number 1s
more than another.

Realization by the store automatic machine with an exit:
Realization of a modular difference through SAMwE is
again sinpler as thanks to existence of a stack the
possibility by symbol comparison of the first and
second stack, without the need for additional passing of
a tape appears. So, the set of states Q = {q;, g, g} the
entrance alphabet X = {0, 1} the output alphabet
coincides with store & = I' = {1} and fimction of
transitions 6: Qx(ZuAY<(TuA"Qx(Z LM =TuN) is set by
Table 7 (q,-a final state). We will notice that if to change
operation 3 as follows q,, 1, 1-q,,/A: that this SAMwE
realizes an algorithm of comparison as a result of which on
an output tape it will be removed bigger of two numbers
which are written down on an entrance tape.

Multiplication of two numbers

Formulation of a task: on an entrance tape 2 numbers in
an unary numeral system are set. Tt is necessary to write
down the work of the set numbers on an output tape. This
task realizable in MT. In a type of dimensions of function
of transitions, we won't give realization of an algorithm
here. For realization of a task it is necessary “to
remember” 2 multipliers. Therefore this algorithm can't be
realized both by the finite-state machine with an exit and
the store automatic machine with an exit (SAMWE thanks
to existence of a stack can remember one value, but not
two. Though multiplication of any number by some
concrete value means of SAMWE 1s feasible).
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Table 5: Function of transitions of SAMWE for an example 2

Transition Actions

Qo 1, A-qo, 1, 1, A

We bring each unit fiom the initial sequence to an output tape and the copy we write down in a stack

qg, M, 1-q, 0, 1 When entrance symbuols have ended, is brought to the output sequence 0 we leave a stack without changes. We pass into a state q;
q, A 1-q, 1A We bring all units out of a stack on an output tape
QA A=gg AL A When units and in a stack end, SAMWE finishes work

Table 6: Function of transitions of MT for an example 3

Transition 0 1

%o . O.R q, O,R
0 . O,R 0. LR
q %, 0, L 0. LR
q: - 4. 0, L
Qs g O, L g 1L
s Q. 0. L g5, 1L
Qs 0@, 0. R g LR
& G 0. R 0. L L

Table 7: Function of transitions of SAMWE for an example 3

Transition Actions

0. 1, A~ge. A LA

All units of the first register in a stack. On a conclusion moves nothing

qs, 0, A-qp, A, A The first has ended, on an entrance tape 0. The stack remains without changes, on a conclusion moves nothing
Transition to a state g,

qi, 1, 1-q;, A, A On symbolical comparison of the first (in a stack) and the second (on an entrance tape)

qi, LA-q, LA The first more we bring to an output tape all remained units on an entrance tape

g, M, =gy, 1, A The second more we bring to an output tape all remained units from a stack

e Ay Mgy, A A Cormpletion of work of SAMwWE

CONCLUSION

The following theorems naturally follow from the given
examples.

Lemma 1: The store automatic machine for the
opportunities at least isn't inferior to the finite-state
machine with an exit.

Evidence: Obviously, SAMwE without involvement of a
stack 1s a fimte-state machine with an exit. Respectively,
any command of the finite-state machine ¢, a~q, b is
implemented in SAMWE g, a, A-q, b, A

Theorem 1: The store automatic machine with an exit is
more powerful (it 15 capable to realize a bigger circle of
tasks) than the finite-state machine with an exit. The proof
is obvious owing to examples 2 and 3, these articles and
lemmas 1 (as in examples it is shown that there are tasks
realized by SAMWwE but which can't be realized means of
finite-state machines with an exit).

Theorem 2: Turing's machine 1s more powerful than the
store automatic machine with an exit. The proof follows
from an example 4. Thus, in operation the concept of the
store automatic machine with an output is entered,
examples of its operation are shown. It 1s proved that by
the opportunities the store automatic machine with an
output 1s between finite-state state machines with an
output and the Turing machine. Further store automatic
machines with an output can be used in different
application areas (in particular, in  encoding
(Zarubina ef al., 2016b).
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