International Tournal of Soft Computing 11 (4): 247-254, 2016

ISSN: 1816-9503
© Medwell Journals, 2016

Regression Test Cases Prioritization for Object-Oriented Programs
Using Genetic Algorithm with Reduced Value of Fault Severity

Samaila Musa, Abu Bakar Md Sultan, Abdul Azim Bin Abd-Ghani and Salmi Baharom
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Malaysia

Abstract: One of the most important activities in software maintenance 1s Regression testing. The re-execution

of all test cases during the regression testing 1s costly. Several of the researchers address the 1ssue of test case
prioritization using genetic algorithim, but most of the researcher do not select modification-revealing before

prioritization and used the same fault severity. This stusy presents regression test case prioritization of selected
test cases for object-oriented software using genetic algorithm with reduced fault severities when a fault 1s
executed by the preceding test cases. The experimental evaluation of our proposed approach was done using
nine programs. The researcher measure the performances of their prioritization approaches using Average
Percentage of rate of Faults Detection (APFD) metric. It was observed from the results that the approach
mcreases the effectiveness of regression testing in term of rate of fault detection. It was concluded that

priorntization of modification-revealing test cases based reduced fault severity to compute fitness value to a

smaller value provides considerably better results.

Key words: Regression testing, genetic algorithm, test case prioritization, APFD, severity

INTRODUCTION

Software testing is one of the software engineering
activities that 1s perform even after the software delivery.
Regression testing is a software activity performs due to
some changes in the software in term of improvement due
to user’s requirements or debugging to make sure that
existing functionalities and the initial requirements of
the design are not affected. But, it 1s not feasible to
retest-all due to cost and time consumption

Regression testing is an activity that tests the
modified program to ensure that modified parts behave as
mtended and the modification have not mtroduced
sudden faults. Regression test selection technique helps
in selecting a subset of test cases from the test suite.
After the selection, when the selected test cases are large
in number, there 1s need to order them based on some
criteria to reduce the execution time of regression testing,
i.e. prioritization of the test cases. Rothermel et al. (2001)
describe regression test case prioritization as a technique
that allows the testers to order their test cases based on
certain criterion so that those with highest priority are
executed earlier in regression testing activity than lower
priority test cases and it can be used m conjunction with
test case selecton when test case discarding 1s
acceptable, also assert that it can increase the utilization

of testing time more beneficial than non-prioritize when
the regression testing activities are unexpectedly
terminated.

The regression test case selection and prioritization
can be made usmg different approaches, either using
heuristic approach or evolutionary approach. But using
evolutionary approach, example genetic gorithm gives
better results in making sure that all affected parts are
tested. The effectiveness of genetic algorithm based
approaches was proved by a lot of researcher.
Elbaum et al. (2002) proposed an approach that focuses
on scheduling the test cases so as to improve the
performance of regression testing. The author explained
the four methodologies of regression testing: retest all,
regression test selection, test suite reduction and test
case priortization and it was proved that prioritized test
cases show better results than the non-prioritized test
cases between prioritized and non-prioritized one using
Average Percentage of Fault Detected (APFD).

Huang et al. (2010) proposed an approach that
considers the cost-cogmzant metric that used varying test
case costs and fault severities for test case prioritization
technique based on the use of historical records and a
genetic algorithm. The authors run a controlled experiment
to evaluate the effectiveness of the proposed techmque.
The results indicate that the proposed technique

Corresponding Author: Samaila Musa, Faculty of Computer Science and Information Technology, Umversiti Putra Malaysia,

Serdang, 43400, Malaysia

247

Int. J. Soft Comput., 11 (4): 247-254, 2016

frequently yields a higher Average Percentage of Faults
Detected per Cost (APFDc) and also show that it is also
useful in terms of APFDc¢ when all test case costs and
fault severities are uiform. Malhotra and Bharadwa; in
2012 proposed a prioritization approach based on the
execution history of test cases using GA. The fitter test
cases based on the number of statements covered were
given higher priorities. But the approach 1s for procedural
and smaller program.

You and Lu (201 2) proposed an approach based on
genetic algorithm for the time aware regression testing
reduction problem. The maximization of the execution time
of the remaining test cases after the removal of the
redundant test cases was the main objective of this
problem. The authors used eight problems as example to
evaluate the genetic algorithm to examine the efficiency.
A multiple control flow based coverage criteria that
improved test suite prioritization technique of structural
program testing by increasing the test code coverage was
proposed by Ahmed er al (2012) that maximize the
number of coverage items. The authors considered test
suite as chromosome, test cases as genes and assigned
weights to the test cases to compute fitness. They
evaluate performance of the approach using Average
Percentage of Fault Detected (APFD) and the approach
shows better results.

A requirement based system level test case
prioritization was proposed by Kumar and Chauhan (2013)
and Raju and Uma (2012) in order to reveal severer faults
at an earlier stage. This is based on factor oriented
regression testing using GA. A novel approach based on
rule based fuzzy classificaion was proposed by
Xu et al. (2013) that selects set of high effective test cases
from a very large pool. The authors also developed a test
plan for large real world software systems using the rule
based fuzzy classification. The rules are generated for
only if-then. A prioritization approach using genetic
algorithm to order test cases was proposed based on fault
coverage and execution time by Singh and Kaur (2014).
The approach was not implemented. In two similar
previous approaches (Musa et al., 2014a, b), the authors
presented evolutionary approaches that used genetic
algorithm, but the changes were made manually wlich
may result i making bias selection, and the mitial
population in GA are only two parents which reduce the
possibility of forming best ordering. Also the fitness
value was computed using the same fault severity huistory.

Purohit and Sherry (2014) proposed an approach that
used genetic algorithm to prioritize test suites. The
approach prioritize test suites based on their fitness value,
and the fitness values are computed based on the number
faults detected. But the approach does not consider

248

dependencies between the changed and other statements
in order to find statements that are dependent on the
changed statements. Also the changes might not have
affected all the test cases, there 1s need to select affected
test cases and then prioritize them. Their approach is for
procedure programs, therefore it cannot be apply directly
apply for object-oriented programs. They also used the
same severity even if a fault was executed by the previous
test case.

this
prioritization approach that prioritizes the selected test
cases by wsing genetic algorithm. The fitness value is
computed using reduced severity of fault of already

In study we present an evolutionary

executed statement by the preceding test cases.
MATERIALS AND METHODS

genetic Algorithm, the
regression testing and

This study describes
evaluation matric (APFD),
experimental design.

Genetic algorithm: Many real life problems have been
solved using evolutionary algorithms and GA 1s one such
evolutionary algorithm. Genetic Algorithm has emerged as
optimization techmque and search method. Problems
being solved by GA are represented by a population of
chromosomes as the solution to the problems in form of
string of binary digits, mteger, real or characters and each
string that makes up a chromosome is called a gene.

Average percentage of rate of faults detection (APFD)
metric: To evaluate the performance of regression test
case prioritization, many researchers Musa et al
(2014a, b), Kumar and Chauhan (2013), Xu et al. (2013),
Raperia and Srvastava (2013), Pamigrahi and Mall
and Gupta and Yadav (2013) used APFD metric to
evaluate the prioritization techmques. A sample of test
cases and the faults detected by each test case are
presented in Table 1.

The APFD metric widely used m gauging the
performance of program P and test suite T is given as:
APFD = 1T +Tf+. . +Tf Ynm+1/2n

Table 1: Faults detected by the test cases
T1 T2 T3

Test casesFaults ™ T5 T6 T7 T8

F1
F 2

F3

F 4

Iin]

Int. J. Soft Comput., 11 (4): 247-254, 2016

T, cvinf, affStat

Encode the solution

v

Generate initial population
randomly

v

Evaluate the fitness based on
reduced severity

v

Termination

Prioritize
test cases

A

Evaluate the fitness
based on reduced

severity

A

Perform swap
mutation

f

Select two individual

Fig. 1: Our proposed prioritization framework

Where:
m = The number of faults
n = The number of test cases

Tt +TE,+ .. +Tf, = The position of the first test in T that

exposes the faults 1, 2... m

Consider the ordering:
T6, T5, T1, T2, T3, T4, T7, T8
T6,T2,T1, 15,13, T4, T7, T8

Solution

T6, TS5, T1, T2, T3, T4, T7, T8:

APFD = 1-(1*44+-1*3+1*1+1*1+1%1) / 8*5+1 / 2*8
=1-10/40+1/16

=1-025+0.0625

=0.8125=81.25%

Te6, T2, T1,T5, T3, T4, T7, T8:

APFD =1-(1*2+1*2+1 ¥ 1+ *¥1+1*1) / 8*5+1 / 2*8
=1-7/40+1/16

=1-0175+0.0625

=0.8875=88.75%

The higher the value of APFD, the better the value,
the faster the rate at which faults are detected and less the
cost of regression testing of modified programs.

Regression testing: This study presents proposed
approach for the prioritization of selected test cases T°.
Our proposed approach 1s based on GA with reduced
fitness value of already executed fault by the preceding
test case. The proposed approach 1s shown mn Fig. 1.

Perform ordered
crossover

249

Test case prioritization: This section presents our
proposed approach. The approach uses GA to optimize
the selected test cases. The selected test cases T" are
prioritized using genetic algorithm (Algorithm T), dencted
as “ModGAPriorTCase”. Algorithm T states all the steps
required to arrange the selected test cases T~ into an order
that will mcerease the rate at which T detect faults. The
steps are:

Encode the solution: The encoding technique used is
permutation encoding as one of the techniques used
in encoding the initial solution. To encode the
solution T" = {t]1 t2t3t5t617 8}, T' = {12356 7 8}.

Initial population generation: A random population of n
of T 1s generated as the initial population. Assuming
random number 15 the size of T7, the mitial population is
shown in Table 2.

Evaluate the fitness: Calculate the fitness value for each
chromosome in the population using algorithm II. The
fitness value of each chromosome in the population
generated above 1s shown in Table 2. The selected test
cases with their affected statements are given as:

tl = {n2n3 n4d}

t2 = {n2 n3 n6tn7 n9}

3= {n2n4dn6Enl0t

t5= {n9nl0}

t6 = {n2n3n4n9nl0nl3}
t7={n10nl13}

t8 = {n2n3 n6

Int. J. Soft Comput., 11 (4): 247-254, 2016

Table 2. Fitness values of initial population

Table 3: Fitness values of new population atter first iteration

Nurmber Cromosome Fitness Number Chromosome Fitness
1 2368715 551.50 1 2368715 551.50
2 2813756 496.50 2 3162758 510.50
3 3162758 510.50 3 7258613 541.00
4 7258613 541.00 4 1632785 511.50
5 1632785 511.50 5 8725613 521.50
6 8725613 521.50 6 6327581 560.50
7 8716325 466.00 7 3257681 526.50
Total 3608.5 Total 3723.0

To compute the fitness of chromosome 1 1n table 2
using algorithm IT: Chromosome 1=42 3 6 8 7 1 5}.
Compute the fitness of each gene by calculating the fault
severity by reducing the severity to 5% of the initial
severity if the fault 1s already visited by the preceding test
case and multiply it by the position of the gene in the
chromosome, as shown below:

Gene 2= {n2n3n6n7 n9% = 10+1H10+10+10 = 50*7
=350 //None of the nodes was visited

Gene 3= {n2ndn6nl0} =0.5+10+0.5+10=21*6=126
/f nodes 4 and 10 are not visited by gene 2

Gene 6= {n2 n3 nd n9 nl0 nl3}
0.5+0.5+0.5+0.5+0.5+10 = 12.5*5 = 62.5 //node 13
neither visited by gene 2 or gene 3

Gene 8 = {n2n3n6} =05+0.5+0.5=15*%4=¢6
Gene 7= {nl0nl3} =05+0.5=1*3=3

Gene 1 = {n2n3nd4! =0.5+05+0.5=15%2=3
Gene 5= {n9nl0} =05+05=1*1=1

The fitness of the clromosome will be
350+126+62.5+6+3+3+1 551.5. The remaining
chromosomes are computed using the same process.

Selection: Two (two chromosomes) are selected from the
population for crossover based on their fitness calculated
using algorithm II. The fitter individuals have higher
chance of being selected for next generation. As shown
in Table 2, chromosomes 1 and 4 are the best individuals
among the population and have the maximum chance of
being selected for crossover: Chromosome 1 =P1 = {2 3
68715} and Chromosome 4 =P2={725861 3}

Crossover: After selection of the two parents, crossover
operation is applied to the selected chromosomes. Tt
involves swapping of genes or sequence of bits in the
string between two mndividuals.

A valid solution would need to represent a cluld
where every test case/gene is included at least once and
only once. The authors use ordered crossover to produce
valid child for next generation. Generate a random integer
number r, between 1 and (numberQfGenes-1) to be the
crossover point. A subset of the first parent (P1)

250

contaiung first rth genes are copied and added to the first
child. Genes/test cases which are not yet in the first cluld
are added from the second parent in their order. The
second child will contain the first rth genes from the
second parent (P2) and the remaining genes from the first
parent (P1).

Offspring = Chuldl and Cluld2 = orderedCrossover
(Pi, Pj) = orderedCrossover (P1, P2)
P1=42368715tandP2={725861 3}
Ifr=73,

Childl =Cl1 = {236 ...} from P1, then 7 58 1 from P2

and
o Child2=C2=4{725 ...} from P2, then3681 from P1
s Therefore,

Cl=142367581}andC2={7253681}

Mutation: The mutation operation also needs to be
adjusted, so that 1t will not add random test case/gene to
the offspring, possibly causing a duplicate. The authors
use swap mutation to avoid duplication of test cases.
Two random integer numbers between 1 and
(numberOfGenes — 1) are generated, i.e. rl and 12. The
genes of these positions will simply swap their genes for
the first cluld (C1), and the same process is repeated for
the second child (C2):

¢+ 1 = Swap mutation (childl)
s (2 = Swap mutation (child2)

Given:

Cl=42367581}andC2={7253681}

If the two random numbers are 1 and 3, then the first
child will be

Cl=46327581}

If also the two random numbers for the second child are
1 and 4, then second child will be: C2= {3257 68 1}.

Evaluate the fitness: Evaluate the fitness of the two
offspring C1 and C2 using algorithm TT.

Replacement: C1 = 560.5 and C2 = 526.5. Add the two
offspring to the population and remove two worst
chromosomes from the new population. After the first
iteration, Table 2 will becomes Table 3.

Int. J. Soft Comput., 11 (4): 247-254, 2016

For the next iteration, chromosomes 1 and 6 are the best
mndividuals among the chromosomes in Table 3 and have
the maximum chance of bemng selected for crossover:
Chromosome 1 =P1 = {236 87 1 5} to be parent]l and
Chromosome 6 =P2= {6327 58 1} to be parent2.

Termination: Check if the termination condition is not
true, repeat steps 4-9, else end the process and return the
optimal ordering,.

Algorithm 1: To prioritize the selected test cases:
. ModGAPriorTCase (T°, EvaPrioTcase) {

. EvaPrioTcase: is the set of best ordered test cases

» Te: is the set of encoded position of selected test cases as the solution

. Pc: is the set of chromosomes generated as population from Te

. F(PD): is the fitness of chromosome i

. /fEncode the selected test cases (T”) using permutation encodintion
7 Te={i, i, ..., ip)

. Generate n randomn chromosomes as initial population

. //Exvaluate the fitness of each chromosome using

. algorithim TT

. For each chromosome 1ton

. F(P)) = calcFitness(chromosome)

. end for

. Select two chromosomes from the population for crossover based on
their fitness

. REPEAT

. Perform crossover

. Perform mutation on the offspring

. /levaluate the fitness of the two offspring using algorithm For each
chromosome 1 to2

. F (P) =calcFitness (chromosomei)

. end for

. add the two offspring to the population

Algorithm 2: For computing fitness of chromosome
calcFitness (chromosomei) {
gene: is atest case in the selected test cases
allele: is a node in the test case coverage information
alVisited: are the alleles already executed
For each gene j in the chromosome i
For each allele a in the gene j
If a is already executed
assign reduce fault severity
otherwise
assign initial faultseverity

end if’

add a to the alVisited

compute the total severities of all the alleles

end for
compite the fitness of the gene j
end for
sum the fitness of all the genes for chromosome i.
return the fitness
end calcFitness

Experimental design: The researcher conduct experiments
to evaluate the rate at which faults are detected for the
computing fitness value of GA using equal severity and
reduced severity of fault to 5, 10, 50 and 75% 1 regression
test case prioritization of selected test cases, and run the

251

experiments on the same computer using JAVA jdik1.7
with Neatbeans IDE on Intel ® Core™ 15-3470 at 3.2GHz
and 8 GB RAM, under Microsoft Window 7 Professional.

Goal of the study: The goal of our study is to evaluate the
effectiveness of computing fitness value based on fault
severity reduction of previously executed statements for
regression test case prioritization in using genetic
algorithm. This research will be mmportant to software
testers in ordering the selected test cases for regression
testing. Our research question is:

RQI1. How effective is the computation of fitness
i faults sevemty of
statement/fault executed by the preceding test cases in
using genetic algorithm to prioritize selected test cases?

To address the question above, experiments were
conducted to evaluate the performances based on rate at
which faults are detected. Based on the above research
question, the following hypothesis 1s presented:

The mull hypothesis 1 (H,,,) = There 1s no sigmficant
difference in the mean of rate of fault detection in using
genetic algorthm to prioritize test suite using the same
severities (33) and using different reduced severity (Rd =
5%, Rd =10, Rd = 50 and Rd = 75%) to compute fitness
value in GA to prioritize selected test cases, and can be
formulated as: Hyg = tps= idni0 = tpso = tpas = g5 Where g
is the mean rate of faults detection scores of technique j

value based on reduction

measured on the nine programs.

Alternative hypothesis 1 (H,3) = There
significant difference in the mean of rate of fault detection
in using same severity (33) and different reduction of fault
severity (Rd = 5%, Rd =10, Rd = 50 and Rd = 75%) to
compute fitness value of GA to prioritize selected
test cases. It can be formulated as: H 4 = Pes# Urin # Mrso
Hpss * Mg (at least one of the means 15 different from
the others)

s a

Experimental setup: The empirical procedure for our
proposed approach is: given a set of selected test cases,
coverage information for each test case and affected
statements, prioritize the selected test cases using GA
with different fitness functions and compute the APFD of
the prioritized test cases.

Three programs with three different versions each
were used for empirical evaluation of owr proposed
approach which make up mne (9) programs; the Cruise
Control (CC) 1s from a Software-artifact Infrastructure
Repository (SIR) by Do et al. (2005); a repository that
provide software for experimentations, binary search tree
(BS) is from sanfoundry technology education blog by

Bhojasia and ATM machine (AT) by Deitel and

Int. J. Soft Comput., 11 (4): 247-254, 2016

Table 4: Summary of the sample applications

Table 5: Summary of the APFD of the three programs with 3 versions each

SPr LOC NC NM NT Nmt
CC1 283 4 33 10 36
CcC2 310 5 36 13 84
CC3 339 6 38 15 167
BS1 293 3 25 17 52
BSs2 323 4 28 20 43
BS3 343 5 30 22 119
AT1 670 12 42 23 49
AT2 740 13 47 26 120
AT3 770 14 50 28 191

Paul (2005) is a case study provided in Java how to
Program book for the implementation of the ATM
machine, as shown 1 Table 4; SPr is the sample program,
LOC 1s the lines of code, NC 1s the number of classes for
each version, NM 1s the number of methods, NT 1s the
number of test cases, NMt is the number of mutants, CC1,
CC2 and CC3 are the Cruise control program versions 1, 2
and 3 respectively, BS1, BS2 and BS3 are bmary search
tree program versions 1, 2 and 3 respectively, and ATI,
AT2 and AT3 are the ATM program versions 1, 2 and 3
respectively.

At CCl, brake () method and part of
handleCommand() method are mutated to have 36
mutants. At CC2 methods accelerate (), engineOff (), and
part of handleCommand () are mutated in addition to
methods mutated in CC1 to have 84 mutants. At CC3 the
methods engineOn (), enableControl (), disableControl (),
part of handle Command () are mutated and the
constructor CarSimulator () deleted together with the
mutants from version 2 to have 167 mutants. At BS1, the
methods countNode () and part of delete () and also some
class-level mutants are mutated to have 52 mutants. At
BS2, the methods isEmpty () and part of delete () are
mutated to have 43 mutants. At BS3 the methods insert
and search are mutated and also some class-level mutants
to have 119 mutants. At AT1, the method execute () of
deposit and balancelnquiry together with their
constructors and the method credit () of bank database
and account classes are mutated to have 49 mutants. At
AT2 in addition to mutants in version 1, methods
isSufficient Cash (), dispenseCash () of class
CashDispenser with its constructor, debit () of class
Account and part of the method execute () of class
Withdrawal are mutated and some class-level mutants to
have 120 mutants. At AT3 the method validatePin () of
class Account with its constructor, the method
authenticateUser () of class BankDatabase with it
constructor, and part of the method execute () of class
Withdrawal are mutated and some class-level mutants
together with mutants in version 2 to have 191 mutants.

RESULT AND DISCUSSION

The data collected from the experiments are shown
m Table 5. Table 5 gives the results of the mine (9)
programs, Where SPr is the sample program, APFD 15 a

252

Rample APFD using different reduced severity
program

Rd=5% Rd=10 Rd=50% RA=75% SS
CcCl 75.0 75.0 65.0 65.0 65.0
cC2 72.2 72.2 61.9 59.6 56.7
CC3 85.7 82.5 76.4 73.4 73.4
BS1 66.5 66.5 66.5 60.5 60.5
BS2 87.1 87.1 81.2 78.2 81.2
BS3 934 93.6 90.9 89.6 88.6
ATL 73.7 73.7 73.7 73.7 67.5
AT2 80.1 88.3 82.0 79.9 67.3
AT3 94.2 91.2 87.4 83.9 81.5

matric for measuring the effectiveness of test case
prioritization, the four columns represent different values
obtamed using different fault severity reduction; Rd = 5%,
Rd =10, Rd = 50 and Rd = 75% and the last column
represents values for using the SAME Severity (53).

Figure 1 compares the percentages of faults detected
over the programs. The horizontal axis represents the nine
programs and vertical axis represents the percentages of
faults detected for each reduction approach on each
program. From the figure, the highest percentage of faults
detected 75.0 and 72.2% are the same in Rd = 5% and Rd
= 10% for CC1 and CC2 programs respectively, whereas
for CC3 Rd = 5% scores 85.7% and Rd = 10% scores
82.5%. Rd = 50% accounted for the next lughest, 1.¢., 65.0,
61.9 and 76.4% respectively, Rd = 75% has 65.0, 59.6 and
73.4%, then SS scores 65.0, 56.7 and 73.4%, respectively.
For BS1 program, Rd = 5%, Rd = 10 and Rd = 50% showed
1dentical results of 66.5%, while Rd = 75% and SS have
least scores of 60.5%. The rate of fault detection for BS2
is also identical in Rd = 5% and Rd = 10% of 87.1% and
BS3 are higher in Rd = 10% of 93.6% followed by Rd = 5%
with 93.4% compared to Rd = 50% with score of 81.2%
and 90.9%, Rd= 75% with 78.2% and 89.6% and SS scores
81.2 and B88.6%, respectively. In ATI, Rd 5%,
Rd =10%, Rd = 50% and Rd = 75% show the same fault
detection rate of 73.7%, while SS scores 67.5%. But in
AT2 and AT3 Rd = 5% and Rd = 10% have the higher
scores of 89.1 and 88.3%, respectively and Rd = 50% has
the next scores of 82.0% followed by 79.9% for Rd = 75%
and 67.3% for SS. AtAT3, Rd = 5%, Rd= 10%, Rd = 50%,
Rd = 75% and SS have scores of 94.2, 91.2,87.4, 83.95 and
81.5%, respectively.

Figure 2 and 3 shows the mean of faults detected
from all the application in the three approaches. The y-axis
represents the mean percentages of faults detected and
the x-axis represents the four reduction approaches. As
shown 1 the figure, reduced prioritization with Rd=5%
scored the highest mean scores of 81.9% and Rd = 10%
scored second highest mean scores of 81.1%, followed by
Rd=50% 76.1% while Rd=75 and SS have the lowest mean
scores of 73.8 and 71.3%, respectively.

Int. J. Soft Comput., 11 (4): 247-254, 2016

APFD

—; =
& l——-'-"'"f \‘\. ,-;:,"-' M-.

i —

Serceniage of fauk deacied

C1 o« i 1 BEs} BS3

Samp program

Fig. 2: Comparison of the fault detection rate across the
programs
Mean of APFD
1

q a2

| s

2

i

Fedux tion spproach

Fig. 3: Comparison of the average/mean of faults detected
by each approach

From the above results, we can say that there is
significant difference in the mean of rate of fault detection
mn using Same Severity (33) and different reduction of
fault severity (Rd =5%, Rd=10, Rd=50and Rd = 75%) to
compute fitness value of GA to prioritize selected test
cases.

Discussion: What we observed in the preceding section
are discussed m this section. The results of our
empirical study of the four reduction techniques (R = 5%,
Rd =10%, Rd = 30 and Rd = 75%) and SS drawn from the
nine programs show that Rd = 5% is able to provide
better results in term of APFD than the other four
approaches.

From the results, the values from the CC1 and CC2
programs for Rd = 5% and Rd = 10% have identical scores
and the highest rate of faults detection of 75.0% and
72.2% respectively, followed by Rd = 50%, Rd = 75 and 33
for CC1 with 65, 61.9, 59.6 and 56.7% for CC2 respectively.
This might be due to reduction of initial fault severity of
a fault if executed by the previous test case to a small
value 5 and 10% of the mutial severity of fault compared to
reduction to 50% and Rd = 75% where the mitial value 1s
only reduced to 1/2 and 3/4 respectively. Rd = 5% was
found to have the highest scores in CC3 compared to
Rd =101 CC1 and CC2 where they have identical values.
This might be due to the higher number of mutants in CC3

253

compared with the number in CC1 and CC2. So also in
other approaches, the values of APFD m CC3 are lugher
in CCl and CC2. The performance of Rd = 5%,
Rd = 10% and Rd = 50% obtained the same values of
66.5% while Rd = 75% and SS obtained the same values of
60.5%. Rd = 5% and Rd = 10% performed better mn BS3
than in BS1 and BS2, so also the other three approaches.
Rd = 5% and Rd = 10% performed better and identical in
all the three versions of AT compared to the other three
approaches.

From the results shown i Table 5, the four reduction
techniques and the same severity perform better in
version 2 than version 1 of the sample programs except for
CC2 and CC1 m some approaches. This shows that the
more the test cases and faults involved, the better the
performance of the prioritization technique. So also
version 3 of all the sample programs produced better
results compared with other two versions. This also
shows that the more test cases and faults, the better the
performances of prioritization techniques. In general, it
was observed that the more the percentages of reduction
approach, the less the performances of the approach.
Approach that does not reduce fault severity (S3) to any
percentage performed poorly compared with the four
reduction approaches.

This means that if the rate of fault detection 1s to be
considered mn using genetic algorithm for regression test
case prioritization of selected test cases, using approach
with reduced fault severity to compute the fitness value
would be better for regression testing.

CONCLUSION

A regression test case prioritization approach that
ordered selected test cases T" using GA with reduction in
fault severity when a statement is executed by the
preceding test cases was proposed. Given a set of
selected test cases that was identified based on the
affected statements, the coverage information and
affected statements, the proposed approach prioritize the
selected test cases using genetic algorithm with fault
severity reduction to 5% of the imtial fault severity.

The effectiveness of the approach was evaluated
using APFD metric. In this paper, three sample programs
with three different versions each are used for the
evaluation. From the results presented, Rd = 5% provides
better results in the nine programs in term of APFD. Based
on the measured performance obtained from the results,
GA with reduced severity of fault prioritize selected test
cases more effectively compared to using GA with the
same severity of fault. The more the effectiveness of test

Int. J. Soft Comput., 11 (4): 247-254, 2016

case prioritization technique, the better the technique and
the less cost of regression testing. Ouw proposed
approach 1s based on the codes of the software, which
might be time consuming when applied to software that
has very large number of LOC (line of codes) which
becomes its limitation. Also, if the test cases are very
small, there would be no need of ordering the selected test
cases. Another limitation is that it was assumed that all
test costs are the same and faults severities are uniform
except if already executed by the preceding test case. As
a feature worl,, a hybrid approach that will detects faults
at high level of abstraction and code level to be used for
larger programs will be propose.

REFERENCES
Ahmed, AA., M. Shaheen and E. Kosba 2012.
Software testing suite prioritization using

multi-criteria fitness of
the 22nd International Conference on Computer
Theory and Applications (ICCTA), October 13-15,
2012, IEEE, Alexandria, Egypt, ISBN:
978-1-4673-2823-4, pp: 160-166.

Deitel, HM. and D.J. Paul, 2005. Java How to Program.
6th Edn., Pearson Education, Upper Saddle River,
New Jersey,.

Do, H., S. Elbaum and G. Rothermel, 2005. Supporting
controlled experimentation with testing techniques:

function. Proceedings

An infrastructure and its potential impact. Empirical
Software Eng., 10: 405-435.

Elbaum, 3., A. Malishevsky and G. Rothermel, 2002. Test
case prioritization: A family of empirical studies. TEEE
Trans. Software Eng., 28: 159-182.

Gupta, R. and A K. Yadav, 2013. Study of test case
prioritization technique using APFD. Int. T. Comput.
Technol., 10: 1475-1481.

Huang, Y.C., C.Y. Huang, IR. Changand T.Y. Chen, 2010.
Design and analysis of cost-cognizant test case
prioritization using genetic algorithm with test
history. Proceedings of the 2010 TEEE 34th Annual
Conference on Computer Software and Applications,
Tuly 19-23, 2010, TEEE, Seoul, Korea, ISBN:
978-1-4244-7512-4, pp: 413-418.

254

Kumar, H., V. Pal and N. Chauhan, 2013 A
hierarchical system test case prioritization
technique based on requirements. Proceedings

of the 13th Annual International Conference
on Software Testing, 4-5, 2013,
University of Science and Technolog, Bangalore,
India,-pp: 4.

Musa, S., A M. Sultan, A.B. Abd-Ghani and S. Baharom,
2014a. A regression test case selection and
prioritization for object-oriented programs using
dependency graph and genetic algorithm. Res.
Inventy: Int. J. Eng. Sci., 4: 54-64.

Musa, S., A M. Sultan, A.B. Abd-Gham and S. Baharom,
2014b. test selection and
prioritization using dependence graph and genetic
algorithm. Int. Organiz. Sci. Res.-J. Comput. Eng., 16:
38-47.

Purohitt GN. and AM. Sherry, 2014. Test suites
prioritization for regression testing using genetic
algorithm. Int. J. Emerging Technol. Comput. Appl.
Sci., 14: 255-259.

Raju, S. and G.V. Uma, 2012. Factors oriented test case
priorntization technique in regression testing using
genetic algorithm. Eur. T. Sci. Res., 74: 389-402.

Raperia, H. and S. Srivastava, 2013. An empirical
approach for test case prioritization. Int. J. Sci. Eng.
Res., 4: 1-3.

Rothermel, G., R H. Untch, C. Chu and M.T. Harrold, 2001.
Prioritizing test cases for regression testing. TEEE
Trans. Software Eng., 27: 929-948.

Singh, K. and P. Kaur, 2014. Efficient test cases of
regression testing using genetic algorithm. Int. T
Adv. Res. Comput. Commun. Eng., 3: 7504-7506.

Xu, Z, Y. Liu and K. Gao, 2013. A novel fuzzy
classification to enhance software regression testing.
Proceedings of the 2013 [EEE Symposium on
Computational Intelligence and Data Mimng (CIDM),
April 16-19, 2013, TEEE, Singapore, Asia, pp: 53-38.

You, L. and Y. Lu, 2012. A genetic algorithm for the
time-aware regression testing reduction problem.
Proceedings of the 2012 Eighth International
Conference on Natural Computation (ICNC), May
29-31, 2012, TEEE, Chongging, China, ISBN:
978-1-4577-2130-4, pp: 596-599.

December

Regression case

	247-254_Page_1
	247-254_Page_2
	247-254_Page_3
	247-254_Page_4
	247-254_Page_5
	247-254_Page_6
	247-254_Page_7
	247-254_Page_8

