International Tournal of Soft Computing 11 (4): 270-275, 2016

ISSN: 1816-9503
© Medwell Journals, 2016
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Abstract: In this study, we present and analyze an iterative method of three steps using predictor corrector
technique for solving systems of nonlinear equations. Our aim is to achieve high order of convergence with
few Jacobian and functional evaluations. The analysis of convergence demonstrates that the order of
convergence for this method is twelve. We use the concerned the flops-like efficiency index and the classical
efficiency index m order to compare the obtained method with the previous literature. In addition, the proposed
method has been tested on a series of examples and has shown good results when compared it with the

previous literature.
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INTRODUCTION

Suppose we have system of nonlinear equations of
the following form:

Jilxxp.x,,)=0
Jo(a. a0, x) =0

fm(xlaJICZa"':xm) =0

where and f: R™-R the functions f is differentiable up to
any desired order can be thought of as mapping a vector
X =(X,, X ..., %) of the n-dimensional space R™ into the
real line R. The system can alternatively be represented by
defining a functional F;R"-R" by
F(X,, X e X, ) =6 ()5 X 500X, Dyenes T (X0 %00 X, 0]

Using vector notation to represent the variables, the

previous system then assumes the form:

F(x)=0

In recent years, there are many approaches to solve
the system (Mohamed and Hafiz, 2012; Hafiz and Alamir,
2014; Hafiz and Bahgat, 2012a, b) modified Householder
and Halley iterative methods for sclving systems of
nonlinear equations. He also shows that this new method
includes two famous cases of Newton’s metho (Hafiz
and Bahgat, 201 2a, b;, Khirallah and Hafiz, 2012, 2013a, b)
modified some iterative schemes to get new classes of
Jarratt-type methods for solving systems of nonlinear
equations. Consequently, Hafiz and Alamir (2014)

combined the Halley method with Householder method
and used the predictor-corrector technique to construct
new high-order iterative methods for solving systems of
nonlinear equations.

In quest of more fast algorithms, researchers have
also proposed fifth, sixth and ligher order methods in
cost of applying further functional evaluations alongside
the computation of further matrix inverses per computing
cycle. Motivated by the recent developments in this area
we here propose an efficient method with higher
convergence orders. In numerical analysis, an iterative
method is regarded as computationally efficient if it
attams high computational speed using minimal
computational cost. The mam elements which contribute
towards the total computational cost are the evaluations
of functions, derivatives and inverse operators. Among
the evaluations, the evaluation of an inverse operator 1s
the most obvious barrer in the development of an
efficient iterative scheme since it is expensive from a
computational point of view. Therefore, it will turn out to
be judicious if we use as small possible number of
such In this work, we present and
analyze an iterative method of 3 steps and use the
predictor-corrector technique for solving systems of
nonlinear equations. Our aim 15 to achieve high order of
convergence with few
evaluations. Some 1illustrative examples have been
presented 1n order to demonstrate our methods and the
results are compared with those derived from the previous
methods. All test problems reveals the accuracy and fast
convergence of the new methods. With these
considerations, we here construct iterative schemes for
nonlinear systems.

nversions.

Jacobian and functional

Corresponding Author: M.A. Hafiz, Department of Mathematics, Faculty of Science and Arts, Najran University, Saudi Arabia



Int. J. Soft Comput., 11 (4): 270-275, 2016

Keeping in view the features of a computationally
efficient method for nonlinear systems, we begin with the
following iterative two-step Jarratt type of the fourth order
method, proposed in (Khattri and Abbasbandy, 2011,
Chun et al., 2012):

y1 = X1 - % F’(Xi )_l F(Xi )

Xp =% — %[3FJ(Y1) - F’(X1)I1
[3F(y)+ Fix) JF(x) ' Fix,)

(3)

Darvishi and Barati (2007) developed the third-order
method which 1s written as:
Xy =%~ FO) RO+ FOC, ) (6)
Where:
X =% —F ) Fx,)

Motivated and nspired by the on-gomng activities in
this direction, we construct a modification (based on the
above Darvishi and Barati’s method) of Jarratt’s method
with higher-order convergence for solving the
norlinear system of equations. It has been shown that
this 3-step iterative method is twelfth-order convergence.
Several numerical examples are given to illustrate the
efficiency and the performance of the new iterative
methods. Our results can be viewed as an improvement

and refinement of the previously known results.
MATERIALS AND METHODS

The proposed method and analysis of convergence: This
section contains the new method of this study. We aim at
having an iteration method to have high order of
convergence with an acceptable efficiency index. Hence,
in order to reach the twelfth order of convergence without
imposing the computation of further frechet derivatives let
us introduce now a new Jarratt-type scheme of three steps
which we denote as M12. From Khirallah and Hafiz (201 3a,
b) and Hafiz and Alamir (2012), we construct a novel
iterative method:

Y. =% -2 F(x)'Fex)

=X - %[3F’(Y1) - F’(Xi )Il '
[3F(y)+ Fix) JF(x) ' Fix,)

(7
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Xin =%~ F’(Zi I {F(z )+ Flz, - F’(Zi I F(z )]}

Per computing step of the new method (Khattri and
Abbasbandy, 2011) for not large-scale problems, we may
use the LU decomposition to prevent the computation of
the matrix inversion which 1s costly. Simplifying method
(Khattri and Abbasbandy, 2011) for the sake of
implementation yields in:

Z
=% ——V({x
Yo =%~ VX))

(8)

z

1

X —%M(XI)V(XJ

XHrl = Z1 o W(Z1)

F’(Xi )V(Xi) = F(Xi)
Where 1n:
[3F(y) - F(x) M(x,) = 3F(y,) + F(x,)

and:
Fiz"W(z)=F(z)+ Flz, - V(z)]

The convergence-order of (Khattri and Abbasbandy,
2011) is twelve and the whole scheme requires two
functional evaluations of F, three evaluations of Jacobian
and their inversions at different points.

In the next result, we prove the local order of
convergence of the M12 method by using the Taylor
expansions and obtaimng the error equation.

The method (Khattri
Abbasbandy, 2011) has a local order of convergence at
least nine with the following error equation:

Theorem 1: iterative and

3,12

2
—cl(9c] —9c,¢, +c, Vel + Ole’)

729

Proof: The proof of this theorem can be followed by
writing the Taylor expansions of F around the simple root
x of Eq. 1. Using a same methodology of (Cordero et ai.,
2009, 2010) for x'+ heQ lying in the neighborhood of a
solution X" of and assume that, F*(x) # 0, we first have;

F(x" +h) =F(x") {h + FEI C,h ()

3=2

}+ Of(h™)

where, ¢, = L[F(x)] " FW(x"),q > 2 we observe that C)h'e

Q, Since F9 (x*) 2, (Qx.. xQ) and [F'x™)]'eL(YQ). In
addition, we can express the Jacobian matrix F' as:
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p-1
I+ E chhq’1

g=2

F(x' + 1) = F'(x*){ } om®), (10

where, 1 is the identity matrix. Therefore gch™e? (Y) L(Y.
). From (Darvishi and Barati, 2007), we assume

p-1
I+ quhq’l

q=2

[Fix +m]" = { }[F'(X*)]l +o), dD

s ¥ L ¥ _
Taking into account that [Fix +h)] Fix +h)=
Fix + h[F +h]' =1

where x,=1. We remark that if we denote e,=x,-x* the error
n the n th iteration, the equation:

e, =Me’ +0(el™),

where M 1s a p-linear function MeL (£ x .. x £, Y) 18
called the error equation and p i1s the order of

b
e

(e ,e e

FEL T

)

convergence. Notice that 1s p
n

v, -X :%[I+ 2c,e, — el —c,)ef + 2(4e) —Te,c, +

3e,)e] — 4(4c] —10cie, + 3¢ + 5c,¢, — 2¢.)e |+ O(e] )

2% =(6} o0, el 1O(e])

6 = 5 106, ~900, o) el + Ofel)

The classical efficiency index: Using the definition of
classical efficiency indexes p"" due to Ostrowski (1966),
where “p” 1s the order of convergence and “C” stands for
the total computational cost per iteration m terms of the
mumber of functional evaluations. For a system of m
equations in m unknown, the first Frechet derivative AF
is a matrix with m’ evaluations. Atm = 2, we compare our
proposed method MI12 which requires 8m function
evaluations and 3m® of its first Frechet derivative with
order of convergence which is twelve. Therefore, the
efficiency mdex of our proposed Method MI12 1s
121/18=1.14803 which 1s im-proved as compared to
efficiency index 3™ = 1.08163 of Noor and Waseem
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method (Noor and Waseem, 2009, Noor et al, 2013).
Darvishi and Barati (2007) obtained a fourth order
method which used 2 m function evaluation and 3(m)* of
its first Frechet derivative that has efficiency index 4" =
1.090508. Similarly, Hafiz and Alamir (2014) obtained a
fourth order method which used 2 m function evaluation
and 2(m)* of its first Frechet derivative and another
Frechet m+m?2 derivative which has efficiency index
411 08006, Cordero et al. (2009) obtained a fourth order
method which used 2 m function evaluation and 2(m)?
of its Frechet derivative which has efficiency index at
4V = 112246, We also notify a fact here that the
efficiency of our proposed method M12 is same as that of
Newton’s method but the order and efficiency have
improved. The proposed method M12 13 very easy to
work with as compared to other well-known iterations
methods for solving systems of nonlinear equations. Tt is
highly practical to use this scheme. Tt is also highly
practical to work with Newton’s method.

Concerning the Flops-Like efficiency index: Now the
implementation of Method M12 depends on the mvolved
linear algebra problems. For large-scale problems, one may
apply the GMRES iterative solver which is well known for
1ts efficiency for large sparse linear systems.

The interesting point in M12 is that three linear
systems should be solved per computing step but all have
the same coefficient matrix. Hence, one LU factorization
per full eycle is needed which reduces the computational
load of the method when implemented.

Generally speaking, the number of scalar products,
matrix products, LU decompositions of the first
derivatives and the resolution of the triangular linear
systems are of great importance in assessing the real
efficiency of such schemes. As a result we take into
account the mumber of main operations per cycle i.e., LU
decompositions along with the cost of solving two
triangular systems, based on flops. In this case, we remark
that the flops for obtaining the LU factorization 1s (2m*) /3

To solve two triangular systems, the flops would be
2m* Note that if the right hand side is a matrix, then the
cost (flops) of the two triangular systems is see 2m’
(Khan et al., 2015).

RESULTS AND DISCUSSION

Numerical results: Here and from now on, SM, HM and
M12 denote (Sharma et al., 2013; Homeier, 2005) and the
present method in (Chun et ad., 201 2), respectively. In this
study, we test MI12 with some sparse systems with m
unknown variables. Tn the examples 1-5, we compare the
SM  method with the proposed method HM focusing on
iteration numbers. Where Sharma’s method is:
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Table 1: Comparison of efficiency indices for different methods

Tterative methods SM HM MI12

Number of steps 2 2 3

Rate of convergence 4 3 12

Number of functional evaluations it 2m? mt2m? 3m+2m’

The classical efficiency Index 4/(2m?+2) 3(2m*+m) 124(3m*+3m)
Number of LU Factorizations 2 1 3

Cost of LU factorizations (based on flops) 13m0 1/3m? 1/3m?

Cost of linear systems (based on flops) 16/3m°+2m° 5/5mP+4m?2 4m2(mt1)
Flops-like efficiency Index 4/(16/3m*+4m*+m) 3! feBnd a2 ) 124 (4/m+4m>+3m)
Table 2: Number of iterations for different methods

c=10-13 F, F, F, F, F, F, F, F, F, F;
Nurmber of variables 3 7

SM 3] 7 51 5 4 3] 7 52 6 4
HM 4 4 27 4 4 4 4 27 4 4
Mi12 3 3 18 3 3 3 3 19 3 3

¥, =% = Fx) 'Fex,)

Koo =X = [T TP F )+ 2R
Fx) Fix,)

and Homey’s method is:

yi =%, ~F(x) Fx)

1 '3 —1 -1
Ko =X, = FO) Fox)+ F iy ) 'R |

Here, numerical results are performed by Maple 15
with 200 digits but only 3 digits are displayed. In
Table land 2, we list the results obtained by SM, HM,
MI12 which are introduced in the present study. The
following stopping criterion i3 used for computer
programs;

%0 %, [+ FGx, )< 107

where, n denoted to the number of iterations and (COC),

the computational order of convergence can be
approximated using in equation below:
cop o 0% %1 1%, x4 )
][, =%, 17 1%, =% )
Table 2 shows the number of iterations, the

Computational Order of Convergence (COC) [13,,,-Xland
the norm of the function F(x,) which are also shown in
Table 2 for various methods.

Example 1: Consider the following system of nonlinear
equations (Hafiz and Bahgat, 2012a, b):

F:f =e®-1 i=12,.,m
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The exact solution of this system is x* = [0,0,...,0]". To
solve this system, we setx,=[0.5,0.5,...., 0.5]" as an initial
value.

Example 2: Consider the following system of nonlinear
equations:

F,:f =x' —cosix, -1), i=12...m

One of the exact solutions of this system is
x =[1,1,..,1]". To solve this system, we setx, = [2.2.,...2]"
as an initial value.

Example 3: Consider the following system of nonlinear
equations:

E:fi=cosx, -1, i=12,..m

One of the exact solutions of this system is
x =[0,0,...,0]". To salve this system, we setx, = [2.2.,...2]"
as an initial guess.

Example 4: Consider the following system of nonlinear
equations: One of the exact solutions of this system is
x =[L1,..,1]" Tosolve this system, wesetx, =[1.2,1.2, ...,
1.2]" as an initial value:

Fp:ff = Xj41%) cos(xj — 1),

1=1L2,. . I ;Xm+] = X1

Example 5: Consider the following system of nonlinear
equations:
F . f=x

f,=%x,%x -1

oox. -1

wX —L 1=12,..m-1,;

Form odd; one of the exact solutions of this system 1s
x =[1.1,..,17" Tosclve this system, we set x,=[22.,...,.2]"
as an initial value.



Table 3: Numerical results for Examples 1-5, m =3
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Methods and functions T CcoC g3, |l IF(x) |
F
SM 6 2.001 1.09E-18 0
HM 4 3.001 3.44E-20 1.13E-64
Mi12 3 4.000 8.89E-46 0
F,
SM 7 2.000 1.61E-22 0
HM 4 3.990 1.02E-23 1.68E-99
Mi12 3 4.000 5.75E-22 0
B,
SM 51 1.000 6.66E-14 0
HM 27 1.000 4.82E-14 7.44E31
Mi12 18 1.000 8.33E-14 0
E,
SM 5 2.000 T15E-15 0
HM 4 4.000 1.37E-55 2.42E-197
M12 3 4.000 5.89E-55 0
Fs
SM 4 3.99 T.03E-24 0
HM 4 3.99 1.01E-28 4.98E-120
MI12 3 4.00 1.01E-28 0
LM . o CONCLUSION

Fig. 1: The curves of the efficiency indices for different
methods whenm=2,---.,5

Fig. 2: Efficiency index of the different methods for
different sizes of the system

In Tables 2 and 3, we list the results obtained by the
modified M12 iteration method. As we see from these
tables, 1t 1s clear that the result obtamned by M12 1s very
superior to that obtained by HM and SM. Tn Table 4 the
results show that M12 is promising in contrast to the
compared methods. Figures 1 and 2 show that M12 with
only one matrix inversion per cycle beats its other
competitors.
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The twelfth-order method continues to be an
important subject of investigation. In our study we extend
the standard iteration in order to obtamn robust algorithms
based on Darvishi's method to construct a new twelfth-
order iterative method using the predictor—corrector
techmque. This method is applied for solving nonlinear
systems of equations. The numerical examples show that
our method is very effective and efficient. Moreover, our
proposed method provides highly accurate results in a
less number of iterations as compaered with Sharma's
method and Homeier’s method.
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