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Abstract: A common problem in applied sciences 1s multicollinearity between variables. Multicollinearity is
frequently encountered problems in practice that produce undesirable effects on classical Ordinary
Least-Scuares (OLS) regression estimator. The ridge estimation is an important tool to reduce the effects of
multicollinearity. Also, it is suspected that some additional linear constraints may hold on to the whole
parameter space. This restriction 1s based on either additional nformation or prior knowledge. The proposed
estimators based on restricted estimator performs fairly well than the other estimators based on ordinary
least-squares estimator. In this study, by some theorems, necessary and sufficient conditions for the superiority
of the new estimator over the restricted least-squares estimator for selecting the ridge parameter k are derived.
For illustrating the usefulness of the proposed result, the performance of this estimator 1s compared to the
classic estimator via a simulation study in restricted partial linear regression models.
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INTRODUCTION

Consider the partial linear model given by:

y=Xp+f+¢ (1)

where, y = (v, ..., v), X =(x,, ..., x), £ = (f(u)), ....{ (u))’
e = (g, ..., £). We assume that in general, f (-) 13 an
unknown function, the u’s ave bounded support, say the
unit interval and have been reordered so that u,<...< u,.
In our study, € 13 a n-vector of disturbances with the
characteristics E(g) = 0 and the dispersion matrix D(e) = ¢’
where, ¢° is an unknown parameter. Partial linear model
is more flexible than standard linear model since it has a
parametric and a nonparametric component. It can be a
suitable choice when one suspects that the response y
linearly depends on x but that it is nonlinearly related to
u. This model is first considered by Engle et al. (1986) to
study the effect of weather on electricity demand in which
they assumed that the mean relationship between
temperature and electricity usage was unknown while
other related factors such as income and price were
parameterized linearly.

For the mam purposes of this study we will employ
the ridge regression concept that was proposed in the
1970°s to combat the multicollinearity in the partial linear
model. The existence of multicollinearity may lead to wide
confidence mtervals for mdividual parameters or linear
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combination of the parameters and may produce estimates
with wrong signs, etc. Most of the literature judges the
performance of ridge regression estimators on the basis of
the concentration of estimates around the true value of
the parameter (Grob, 2003; Kibrnia and Saleh, 2004;
Tabakan and Akdenmiz, 2010, Akdeniz ei al, 2015,
Roozbeh et al., 2010, Arashi et al., 2015, Arashi and
Valizadeh, 2015; Roozbeh, 2015).

The difference-based estimation procedure 1s optimal
in the sense that the estimator of the linear component is
asymptotically efficient and the estimator of the
nonparametric component 18 asymptotically mmimax rate
optimal for the semiparametric model (Wang et af., 2011).

In what follows, researchers present an explanation
made by Akdemiz et al. (2015), demonstrating how the
approximation works. Let d = (d,, ..., d,) be a (m+1) vector
where m 18 the order of differencing and d,, ..., d,, are
differencing weights satisfying the conditions:

Yd =0and =1 (2)
i=0

>4
i=0

A differencing matrix denoted by D 1s a (n-m)xn
known matrix with the elements satisfymg Eq. 2 (Yatchew,
2003). Imposmg the differencing matrix tothe model Eq. 1,
permits direct estimation of the parametric effect. In
particular, it takes:

Dy =DXp + Df + De (3)
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Since, the data have been reordered so that the u’s
are close, the application of the differencing matrix D in
model Eg. 3 removes the nonparametric effect in large
samples. Thus, the underlying model is rewritten as:

F=Xp+e 4)

where, =Dy, X=DX md §=Ds
MATERIALS AND METHODS

Restricted difference-based ridge estimator: It 15 well
known that adopting the linear model (1.4), the unbiased
estimator of P 1s the following difference-based estimator
given by:
BD :C;j('yacD =X'X )
It 13 observed from Eq. 5 that the properties of the
difference-based estimator of [ depends heavily on the
characteristics of the mformation matrix Cp. Ifthe Cpmatrix
15 1ll-conditioned, then some of the regression coefficients
may be statistically insignificant with wrong sign and
meamngful statistical inference become difficult for the
researcher. As a remedy following by Hoerl and Kennard
(1970) we suggest to use the following estimator, namely,
difference-based ridge estumator:

B ) = TR, T = (k7 + 1, ) ©

where, k>0 is the shrinking parameter. Now we consider
the linear non-stochastic constraint:

RPp=r (7
for a given q»p matrix R with rank q<p and a given gx1
vector r. The full row rank assumption is chosen for
convenience and can be justified by the fact that every
consistent linear equation can be transformed mto an
equivalent equation with a coefficient matrix of full row
rank. Subject to the linear restriction Eq. 7, the restricted
difference-based estimator 1s given by:

-1

Bu =Bo ~CoR'(RCIR') ' (RA, 1) ®)

So, the restricted difference-based ridge estimator
can be written as:

Bro (06 =B, () — C, () R(RC, (k) R)” (R, (1) -]

©)
C,(k)=C, +kI, and B, (k) =C, (k)" Xy
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RESULTS AND DISCUSSION

Evaluation of risk functions: In this researchers calculate
the risk function for the proposed estimator given in
previous section. Before deriving the risk function of
Brp = (k) we propose a new formula for By = (k) which
simplifies the calculation of risk function as follows:

Bro (k) = N (X' § = N ()T, (KB, +B, 10

B, =R’(RR’) "1

and:
N (k) =C, (k)" - Cp(ky 'R'(RC, (k) R’)'1 RC, (k)™

Thus, the risk functions of the proposed estimators

MSE(BRD (k)) =N, (k) — ks N (k) + KN, (KIBB'N , (k)
(11)

and:

MSE (B, | = *N,, (0) (12)

Theorem 1: There exists at least a k>0 such that Pa(k)
dominates Pyr(k) in the sense of MSE.

Proof: It is enough to show that there exists k>0 such
that:

MSE(Bap ) = MSE( Bres () >0
The partial derivative of Eq. 11 with respect to I is:

Since, 00 and N,(0)* is non zerc we conclude
that the MSE(Py(k)) has decreasing trend at k = 0.
This implies that there exists at least k=0, satisfying
MSE(Pgar) = MSE(Br(k))>0. Therefore researchers can
select a suitable positive number k to let the estimator
Broll) performs better than By, in the sense of MSE.

MSE-superiority of the difference-based ridge estimator
over the differencing estimator: In this reserchers

provide necessary and sufficient conditions for which the
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Table 1: Evaluation of estimators at different values k for simulated model

k coefficients 0 1 2 3 4 5

B -1.499217 -1.499220 -1.499223 -1.499226 -1.499229 -1.499233
B2 -2.008458 -2.008424 -2.008390 -2.008356 -2.008321 -2.008287
s -3.005952 -3.005928 -3.005904 -3.005880 -3.005856 -3.005832
By 4.996084 4.996100 4.996116 4.996132 4.996147 4.996163

Bs -3.999217 -3.999220 -3.999223 -3.999226 -3.999229 -3.999233
tr (MSE) 0.0001915 0.00019155 0.00019154 0.00019153 0.00019153 0.00019153
A 0 1.614e-08 2.78%-08 3.523e-08 3.818e-08 3.673e-08

k coefficients 6 7 8 9 10 1

B -1.499236 -1.499239 -1.499242 -1.499245 -1.499249 -1.499252
B2 -2.008253 -2.008219 -2.008185 -2.008150 -2.008116 -2.008082
s -3.005808 -3.005784 -3.005759 -3.005735 -3.005711 -3.005687
By 4.996179 4.996195 4.996211 4.996227 4.996243 4.996258

Bs -3.999236 -3.999239 -3.999242 -3.999245 -3.999249 -3.999252
tr (MSE) 0.00019153 0.00019154 0.00019156 0.00019158 0.00019160 0.00019163
A 3.088e-08 2.063e-08 5.993e-09 -1.304e-08 -3.646e-08 -5.428e-08

estimator Ppp(k) performs better than P, in the sense of
MSE(Bro(k))<MSE(Byp). From Eq. 11 and 12, the difference
matrix DM = MSEP,-MSE(B;(k)) 1s given by:

DM =N, (0)—s *N, (k) + ks 2N (k)* —k*N_ (K)BB'N , (k)

Theorem 2: Let the estimator Bz (k) given by under the
linear regression model with true restrictions Rp =r. If k=0,
then the MSE difference DM is nonnegative definite if
and only if:

k(s B8 ~(PC,P)") <P (13)

where, P = [-R(RR"Y'R. Note that by a “+” superscript we
denote the unique Moore-Penrose inverse (Roozbeh and
Arashi, 2013).

Choice of the biasing parameter: In the process of
determining k, on one side we must control the condition
number of C(k) to a lesser level if we want to avoid the
instability of estimated coefficients brought by the
morbidity of C;. Hence, we must do our best to let the
ridge parameter k be big. As stated in Theorem 2 we do
not need to find out the best k in the practice. That is to
say we just need to find a k which can make P (k) be
superior to the Py in the sense of MSE.

Although, the criterion mentioned above is simple,
our problem to select k is not yet completely solved.
Therefore, we give a range to select k in Theorem 2.

Theorem 3: Let us be given the estimator Py(k) under the
linear regression model with true restrictions Rp = r and
B#P. The MSE difference matrix DM is nonnegative
defimte 1if:

2
0“‘“52;5 (14)

Roozbeh and Arashi (2013).
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Numerical study: Tn this researchers proceed with the
comparison of the proposed estimators by some numerical
computations. Tn the scalar comparison, the trace of MSE.
That is we will compare the trace of MSEP,(k) and MSE
Broll)r and define scalar A as:

A =tr{DM) = s *tr{ N, (0)) — s *tr (N, (k) +

ks “tr(Np (k) ) - kBN, (k)8

In this study we sumulate the response for n = 5000
from the following models:

2.1n
u+0.05

y=XB+f{u)+ e,f(u)z,/u(l—u sin{ }ue(o,l)

where p=1(-1.5,-2, -3, 5, -47, e= N(0, ¢’L,) which ¢° = 4 that
1s called the Doppler function and x;=N(p, X.) with:

2.5 19 18 18 10 1.0
2.0 18 18 18 10 1.0
M, =| 30 L2, =/18 18 425 10 10 |
1.0 1.0 1.0 1.0 249 1.0
-1.0 10 10 10 10 225
1 -2 1 4 5
R - -1 2 -1 3 0
1 2 -1 -2 3
2 -1 3 20

Table 1 gives several results including Pgy(k),
tr(MSE(Pp (k) and A for different values of k. From this
table, the A increases EMBED Eq. 3 decreases at first and
then decreases (increases). Furthermore, the maximum of
A mimmum of the EMBED Eq. 3 1s obtained when k equals
to median range of Eq. 14 which 1s approximately equal to
4.17 m sunulated model.
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CONCLUSION

Grob (2003) considered restricted ridge estimator in
regression model while Tabakan and Akdeniz (2010)
studied unrestricted estimator in partial regression model.
In this study, combimng these approaches we proposed
two new estimators in a partial linear model when some
additional linear constraints held on the whole parameter
space (. In the presence of multicollinearity in a partial
linear model we mtroduced the restricted difference-based
ridge regression estimator Prn(k) versus the non-ridge
version under Py, dependency among column vectors of
the design matrix. The MSE functions of proposed
estimators are driven. In this regard we continued the
comparison study by some simulation strategy and
graphical results. The experiment was taken for different
values of ridge parameter k and nonparametric fimctions.
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RECOMMENDATIONS
As some future works, one can consider:

Restricted ridge estimator in ligh-dimensional partial
regression model

Ridge estimator in high-dimensional partial regression
model under stochastic constraints
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