International Tournal of Soft Computing 11 (6): 391-396, 2016
ISSN: 1816-9503
© Medwell Journals, 2016

GA Factor: A Generic Automated Refactoring Tool for the Legacy Software Systems

'M. Srinivas, 'G. Rama Krishna and °K. Rajasekhara Rao
'Department of CSE, KLEF, K L University, Andhra Pradesh, India
*3ri Prakash College of Engineering, Andhra Pradesh, India

Abstract: Over the last two decades, many business organizations had noticed that a generous amount of non-
trivial legacy software frame works fail due to unstructured architectural design. Moreover, refactoring 1s
professional procedure for managing the software systems. Indeed, programmers practice regularly with
refactoring tools in two different occasions-normal program development phase whenever and wherever design
problems arise. Secondly these toolsare needed at the time of code duplication, specifically when adding a new
feature, the programmer need to remove the duplication using the re-factor tool. Based on level of automation,
refactoring can be classified mnto three categories-fully manual refactoring, semi-automatic refactoring and
automatic refactoring. However, fully manual refactoring and semi-automatic refactoring tools are underused,
because sometimes fails to recognize the legacy code and chasing the error messages that leads to
more error-prone. This study proposed a novel refactoring tool called GA factor. The GA factor system detects
a developer’s legacy code, reminds to the programmer that the automatic refactoring 1s available and if the
programmer accepts then GA factor complete the refactoring automatically. GA factor automatically performs
static analysis for analyzing the flowof knowledgeof the code that saves the software engineer from doing
erring

Key words: Legacy system, refactoring, GA factor, switch, engineer

INTRODUCTTON semi-automatic refactoring tools are underused

because these two refactoring techmque sometimes

Refactormng 1s that the method of improving the fails to recogmze the legacy code and chasing the
inner structure of the code in such how that’s error messages that leads to more error-prone. In this
doesn’t alter the external behavior of the system study, we proposed a novel refactoring tool
(Srinivas et al., 2016a, b). Over the last two decades, called GA factor. This GA factor system detects a
many business organizations had noticed that a developer’s legacy code, reminds to the programmer

generous amount of non-trivial legacy software that the automatic refactoring is available and if the
frameworks fail due to unstructured architectural — programmer accepts then GA factor complete the
design. Moreover, research suggests that refactoring refactoring automatically. GA factor automatically
15 considered a best-method for managing the performs static analysis for analyzing the flow of data
software system. Indeed, programmers practice of the code that saves the programmer from doing
regularly with refactoring tools in two different error-prone work. Second, the GA factor is applicable
occasions-normal program development phase, for both application programmers and developers.
whenever and wherever design problems arise. Third, the GA factor keeps the 90% of configuration

Another is at the time of code duplication, when defaults and will not be changed when programmers
adding a feature, then the programmer need to use the tools until the application programmers
remove that duplication using re-factor tool. In 1invokes the commit within the tool m Fig. 1.
addition the key advantages of refactoring are

making software easier to understand to find defects, Literature review: Many researchers studied
improves the design of software and helpsuser to refactoring and analyze the impact of refactoring on
program faster. software quality. Few of them are discussed below.

Based on level of automation, refactoring can be {(Tourwe and Mens, 2003) described three phases of
categorized into three categories-fully manual refactoring perceiving when the refactoring should
refactoring, semi-automatic refactoring and automatic be applied, identifying which methodology to apply
refactoring. However, fully manual refactoring and and finally carrying out therefactoring process. The

Corresponding Author: M. Srinivas, Department of CSE, KLEF, K L University, Andhra Pradesh, India
391

Int. J. Soft Comput., 11 (6): 391-396, 2016

——
. —

:: v : !

) 1 T;) ;

Eg : Transformation W Assessment

{ f: ; - '

i | '

i it .

H 1 T

' L - g & f— Refactoring | H;::r:

9 IR : ' (Switch)

N | R

" 3 LS -

5 ik

| Al /

! Vi IR 7 SR .
g g : i Consuming Application :
T | 11 i
o ! . ! R P
;.U ! Bumessmcesm S ——

'
et

Fig. 1. Architecture of the GA refactoring system

steps in this simpler model correspond tothe 1dentafy,
mitiate and execute, respectively. Demeyer (2005)
shows that refactoring can have avaluable influence
software performance (e.g., compilerscan
optimize better on polymorphism than on simple
ifelsestatements). Mens and Tourwe (2004) develop
a frame workfor investigating the effects of
refactoring on internal qualitymetrics but again, they
have not provided an sexperimentalsubstantiation n
an mndustrial environment.

Stroggylos and Spinellis (2007) evaluated source
code versioncontrol system logs of popular open
source software systems to detect changesmarked as
refactoring’s and examined how the software metrics
are affected by this process. DuBois studied the
impact of refactoring on cohesionand coupling
metrics in and 1dentified the benefits that can follow
and defined the application of refactoring could
improve selected quality characteristics (Bois, 2006).
Fontana and Spinelli (2011) studied the effect of
refactoring applied to reducecode smells on the
quality assessment of the system Kataoka et al.
(2002) and colleague’s introduced a 3-step model
identification of refactoring candidates, validation of
refactoringeffect and application of refactoring. This
corresponds to the identify, mterpret results and
execute steps, respectively. Vakilian proposed a
compositional model for refactoring (automate
individual steps and let programmers manually
compose the steps mnto a complex change) and

on

392

implemented a tool to support it. Henkel
implemented a framework which captures and replays
refactoring actions.

Simon et al. (2001) investigated how metrics were
affected and found that size and coupling metrics of
their system decreased after the refactoring
process. Mens and Tourwe (2004) studied the effects
of refactoring on internal quality metrics based on a
formalism to describe the impact of a representative
number of refactoring’s on an AST representation of
the source code. Bois proposed refactoring
guidelines for enhancing cohesion and coupling
metrics; they obtained promising results by applying
these transformations to an open-source project.
Moser studied the impact on quality and productivity
as observed small teams working in similar, highly
volatile and assessed the umpact of
refactoring in a close to industrial environment. Their
results indicate that refactoring not onlyincreases

domains

software quality but also improves productivity in
Fig. 2.

MATERIALS AND METHODS

Modeling a Generic Automatic refactoring (GA
factor) tool: We designed a novel refactoring tool
called GA factor. Thus GA factor system detects a
developer’s legacy code, reminds to the programmer
that the automatic refactoring is available and if the
programmer accepts then GA factor complete the

Int. J. Soft Comput., 11 (6): 391-396, 2016

DashBoard

| | |) e
=

Router

Lagacy ;
System

R

T

I

F

I

C

A

T

I

O

Refactored n
Facade System

Fig. 2: Working scenario of a network switch barrier components

refactoring automatically. GA factor will overcome
the burden of underuse problem that occurs in both
manual and semi-automatic refactoring. To use a GA
factor refactoring tool, a developer must recognize
that GA factor tool is available and should select the
Network Barrier (switching key) to perform refactor
the legacy code. The advantage of using GA factor
refactoring tool over manual refactoring first, the GA
factor automatically performs static analysis for
analyzing the flow of data of the code that saves the
programmer from doing error-prone work. Second,
The GA factor 1s applicable for both application
programmers and developers. Third, the GA factor
keeps the 90% of configuration defaults and will not
be changed when programmers use the tools until
the applicationprogrammers presses the commit
within the tool.

This proposed GA factor tool uses a component
called Switch which helps in toggling between legacy
and refactored systems m a convement and effective
manner providing service certification and allowing
the client to migrate from legacy to refactored system.
The mam functionality of this switch component 1s to
muigrate from legacy systems to services and provides
backward compatibility. Moreover, if the developer
want to invoke or to undo the entire legacy code that
has already made then he can use same switching as
depicted in Fig. 3.

The network barrier (Switch) components has
several sub components such as Router, Dashboard,
Facade, Messenger, Certification, Metrics which
helps mn achieving different functionalities of

393

Transsstion
Batk

]
i
1

L]

Constant
Valua (0, 1)

Fig. 3: GA factor refactoring process

GA factor as depicted in Fig. 3. Let us give brief each
sub-component-router 1s the heart of the switch
which 1s responsible mamly for routing the requests
to either legacy or refactored systems. Moreover,
Router will identify the transaction path based on the
defined mappings at the dash board level. We will

Int. J. Soft Comput., 11 (6)

Application
developers

<<7.Certification>>

2 391-39, 2016

Frame work

ad

v

b | << 2. Detected issues
B
L
<<4.Refactored Code>> i - - '
<<3.Sdlect e
IDE >> - -7 - -
- il
- -
b 4 h - il B
<<5. Refactored
Request
L
<< 6. Refacroed §
Commit >>
" Source code
IDE Plugins r tory

Fig. 4: Working process of a router
I S'.:-sm-rn.iint:ar Dauell:;vpmenl: 1\1
Classi .

Class3 o

=)

Fig. 5: Working process of a facade

use to constant values 0 and 1 to identify the route
for legacy and refactored systems respectively as
shown in Fig. 4. Second sub-component 1s facade
which provides backward compatibility for legacy
applications whenever there is a need to refactor the
legacy systems to services, there also definite need
to provide backward compatibility for existing legacy
applications. This operation can be performed by
fagade which 1s shown in Fig. 5. Moreover, this
fagade will interact with messenger to drop the
request to either legacy or refactored system and get
the response back from these system. Once the
response from the refactored system is received, it is

394

1 Existing Sub-System [

Exigling2

Existing5

Existing& |
TRl :\‘*; Existing®

j’['J _Eltlsiri'lgd- |

X

validated against the configuration file to check
whether there 13 a need to provide backward
compatibility, if yes apply the configurations on the
response received from the refactored system so that
1t will be apple to apple match to the legacy system.
Next, subcomponent 13 messenger which is used to
commumication between switch and the enterprise
communication systems and final one 1s dash board
which is mainly used by the switch for mapping that
identifies the transaction path of all the request that
are sent by the consumer/application programmer
shown in Algorithm 1.

Int. J. Soft Comput., 11 (6): 391-396, 2016

Algorithm 1:

Public Class Facade {

Public void m1 0

{//make all Calls into the existing System ,
/ / hiding the Comnplexity

Puublic String m2) {

// make all Calls into the existing System ,
// Converting the return

}

)

Transformation module: The main goal of the
Transformation phase in GA factor 1s to develop a
new system that has been improved in some way.
What that improvement goal 15 depends on the
mndividual project but it could include mnproved
quality attributes lhke higher modularity, lower
complexity, less replicated code), etc. As part of this
phase, the quality metrics must be determined both at
the begimmg of the transformation and then
through, out the iterative transformation steps. In
this way, it can be verified that the transformations
are making the desired improvements.

RESULTS AND DISCUSSION

Designing of GA factor tool using network switch
barrier: Network switch barrier has an interface that
1s very similar to that of legacy systems so that the
client applications don’t need to change any
connectivity logic. Each application programmer will
migrate from the legacy system to switch. Once
programmer connects with the switch, one has to
establish a mapping in the dashboard for each
application within switch. Upon the receiving the
request from the application programmer, switch
validates the application name agamst the dashboard
mappings and identify a route (legacy or refactored
system). If the route is to legacy application, switch
will then post a request directly to the legacy system.
If the route 1s to refactored system switch will post
the request to the fagade. This facade will do the
transformations needed and drops the request to the
messenger. The messenger will identify the transport
channel and the connection details from the runtime
variables and then post the request to the refactored
system using these transport details. Once the
request 18 served by the refactored system, the
messenger posts the response to the facade which in
turn apply backward compatibility configurations to
the response and sends the reply back to the switch
and switch will pass on the response to the
application programmer as shown m Fig. 2. Finally, a
switch is a temporary component which will be alive

395

only till the legacy systems are in place. Once the
legacy system is retired switch can also be retired.

Configuration information option: GA factor
automatically collects this information option from
the code deviations that the developer has already
made. To perform an automatic refactoring,
thisoption collects the information required.
However, it is always possible to gather complete
information essential to complete a refactoring.

Validation of GA factor tool: To validate this GA
factor, The following sample configuration for
account balance operation for bank application. In
this we need to define a config entry for each service
operation by using the identifiers service name and
operation name. Hvery config entry can perform three
actions namely-override, add, delete. Override used
to override the refactored service response. add is
used to add an object of simple type to the response.
delete can delete a field from the refactored response
in shown in the following code shown in
Algorithm 2.

Algorithm 2:

<BackwardCormpatability-Config=

<Config-entry Servicename=“Account”
operation_name="withdrawmoney” >
<override parent="Error” name="message”
Funds™ >

<delet parent="Error” name="shortmessage” =
<add paren="Frror” name="shorttex"value="ERROR"
</Config-entry=

</Backward Cormpatability=

Value="Tnsufficient

Here
configuration parameter

“Configuration Option file” 13 a
that the application
programmer can change. The data suggest that
refactoring tools are configured infrequently. The
actual message from refactored system for above
example was retrieved by applying the GA factor as
depicted 1n the following code shown in Algorithm 3.

Algorithm 3:

<error=

<message-id=H001 </message id>

<message=you hve insufficient finds to with draw</message>
<shortmessage=TNSF FND-</shortmessage=

<ferror=>

Transformed message after applying backward
compatibility configuration recovers the code to its
original state shown in Algorithm 4.

Algorithm 4:

<error=
<message_1d>6001</message_id>
<message>Insufficient Fund </message>
</ferror=

Int. J. Soft Comput., 11 (6): 391-396, 2016

CONCLUSION

This study proposes a novel refactoring tool
called GA factor. This GA factor system detects a
developer’s legacy code, reminds to the programmer
that the automatic refactoring is available and if the
programimer accepts then GA factor complete the
refactoring automatically. GA factor automatically
performs static analysis for analyzing the flow of data
of the code that saves the programmer from doing
error-prone work. As a future work, there is a need a
certification mechamsm to certify the refactored
system that meets the requirements of enterprise and
retaining the business logic of existing legacy
systems.

REFERENCES

Bois, B.D., 2006. A study of quality improvements by
refactoring. Ph.D Thesis, University of Antwerp,
Antwerp, Belgium.

Demeyer, 8., 2005 Refactor conditionals
polymorphism: Whats the performance cost of
introducing virtual calls?. Proceeding of the 21st
IEEE International Conference on Software
Maintenance (ICSM'05), September 26-29, 2005,
[EEE, Belgium, Europe, ISBN:0-7695-2368-4, pp:
627-630.

Fontana, F.A. and S. Spinelli, 2011. Tmpact of
refactoring quality
Proceedings of the 4th Workshop on Refactoring
Tools, May 22, 2011, ACM, New York, USA.,
ISBN:978-1-4503-0579-2, pp: 37-40.

into

on code evaluation.

396

Kataoka, Y., T. Tmai, H. Andouand T. Fukaya, 2002.
A quantitative evaluation of maintamability
enhancement by refactoring. Proceeding of the
International Conference on Software
Maintenance, 2002, October 3-6, 2002, IEEE,
Kanagawa, Japan, ISBN:0-7695-1819-2, pp:
576-585.

Mens, T. and T. Tourwe, 2004. A survey of software
refactoring. TEEE Trans. Softw. Eng., 30: 126-139.

Simon, F., F. Steinbruckner and C. Lewerentz, 2001.
Metrics based refactoring. Proceedings of 15th
European Conference on Software Maintenance
and Reengineering, March 14-16, 2001, Lisbon,
Portugal, pp: 30-38.

Srinivas, M., G. Ramakrishna, K.R. Rao and E.S.
Babu, 2016a. Analysis of legacy system in
software application development: A
comparative survey. Int. I. Electr. Comput. Eng.
(ITECE.), 6: 292-297.

Srimvas, M., G.R. Krishna, K.R. Rac and E.S. Babu,
2016b. Gatalss: A generic automated tool for
analysing the legacy software systems. Res. I.
Appl. Sci. Eng. Technol., 12: 361-365.

Stroggyles, K. and D. Spinellis, 2007.
Refactoring-does 1t improve software quality?
Proceedings of the 5th International Workshop
on Software Quality, May 20-26, 2007,
Washington, DC, USA., pp: 10-16.

Tourwe, T. and T. Mens, 2003 Tdentifying
refactoring opportunities using logic meta
programming. Proceedings of the 7th European
Conference on Software Mamtenance and
Reengineering, March 26-28, 2003, Benevento,
Italy, pp: 91-101.

	391-396 - Copy_Page_1
	391-396 - Copy_Page_2
	391-396 - Copy_Page_3
	391-396 - Copy_Page_4
	391-396 - Copy_Page_5
	391-396 - Copy_Page_6

