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Abstract: A better synonym of “green transportation” is “sustainable transportation”. The word “sustainable’
clearly means activities that support the long term livelihood of our society. Even, the transportation system
1s very umportant because 1t represents the physical connection between the companies in the supply chamn,
this system 1s a major contributor to greenhouse gas emissions, as well as mereased costs. This study
discusses problem of routing freight vehicles, according to the criteria of the CO, emissions and the costs,
named Multi-objective Green Vehicle Routing Problem (MGVRP) in the context of green transportation. The
MGVRP presents the problem of finding routes for vehicles to serve a set of customers while minimizing the
total cost and the total CO, emissions which can be formulated as combinatorial optimization problems. Tn this
research, we propose, to solve the MGVRP, a mathematical model and a simulated hybrid metaheuristic based
on the ant colony system algorithm which shows good performance on both the traditional CVRP and the
MGVRP interms of the cost and the emissions.

Key words: Vehicle routing problem, multi-objective optimization, greenhouse emissions, ant colony system,
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all IS greenhouse gas emissions from human activities

1975 1960 1985 1990 1995 2000 2005 2010 2015

(Fig. 1).

The CO, growth rate has increased over this period,
averaging about 1.4 ppm per year before 1995 and 2.0 ppm
per year thereafter, according weekly data using to create
a smoothed north-south latitude profile from which a
global average is calculated (Fig. 2) (Dlugokencky et al.,
1998, 2003).

This study shows that the growth rate of CO, has
averaged about 1.74 ppm per year over the past 36 years

Fig. 1: Overview of greenhouse gases, inventory of US
greenhouse gas emissions and sinks: 1990B2013
(April 2015)

and has increased over this period, averaging about 1.4
ppm per year before 1995 and 2.0 ppm per year thereafter.

The most contributor sectors of dioxide carbon
emissions (resulting from the combustion of petroleum-
based products, like gasoline in internal combustion
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Table 1: Strategies for reduce green house gas emissions

Type How emissions are reduced

Examples

Fuel switching

C(y-intensive than the fuels that they replace
Tmproving Fuel

Using fuels that emit less ., than fuels currently being used.
Altemative sources can include biofirels; hydrogen; electricity firom
renewable sources such as wind and solar or fossil fuels that are less

Using advanced technologies, design and materials to develop more

Efficiency with fuel-efficient vehicles

Advanced design,

Materials and

technologies

Improving operating Adopting practices that minimize fuel use’

Practices Improving driving practices and vehicle maintenance

Reducing travel demand

Employing urban planning to reduce the number of miles that people
drive each day. Reducing the need for driving through travel efficiency
measures such as commuter, biking and pedestrian programs

Using electric or hybrid automobiles, provided that the
energy is generated from lower-carbon or non-fossil fuels
Using renewable fuels such as low-carbon biofuels

Developing advanced vehicle technologies such as hybrid
vehicles and electric vehicles that can store energy from
braking and use it for power later

Reducing the weight of materials used to build vehicles

Reducing the average taxi time for aircraft

Driving sensibly (avoiding rapid acceleration and braking
, observing the speed limit). Reducing engine-idling,
Improved voyage planning for ships, such as through
improved weather routing, to increase fuel efficiency.
Building public transportation, sidewalks and bike paths
to increase lower-ermission transp ortation choices

Zoning tor mixed use areas, so that residences, schools,
stores and businesses are close together, reducing the
need for driving

Fluorinat Mitrus
ed gases - mguide

Fig. 2. Global average abundances of the major, well
mixed, long-lived

engines) 1s the transportation sector, where the largest
sources of transportation GHGs m 2006 were passenger
cars (34%) and light duty trucks which include sport
utility vehicles, pickup trucks and mimivans (28%) (US
Department of transportation).

To achieve the objectives of the sustamnable
transportation, there are a variety of strategies to reduce
greenhouse gas emissions associated with transportation.
Some examples are shown in Table 1.

In this study, we are interested in the organization of
the transport process, more specifically on green
transport within the framework of green logistics for
satisfying some strategies indicated above for reducing
the amount of dioxide of carbon and total cost. These two
objectives are not necessarily positively correlated and
for some cases they are completely conflicting.
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The basic transportation model generally used to
represent the problem of finding routes for vehlicles to
serve a set of customers is the Vehicle Routing Problem
(VRP) (Toth and Vigo, 2001). In this study, the scope 15
the definition and the study of the Multi-objective
Green Vehicle Routing Problem (MGVRP) where the
multi-objective VRP was defined to represent a class of
multi-objective optimization problem. The MGVRP asks
for designing vehicle routes to serve set of customers
while minimizing the total travelled distance and the total
CQ, emissions with respect to classical routing
constraints mainly capacity constraints. Consequently,
we will implement the ant colony system to solve the
MGVRP model with an aggregation method that
solves non-convex and non-smooth multi-objective
optimization problems. In the next study, we present the
Multi-objective Green Vehicle Routing Problem (MG VRP):
the literature review and the difference between VRP,
GVRP and MGVRP.

Literature review

The Multi-objective Green Vehicle Routing Problem
(MGVRP): Optimizing the amount of emissions of the
vehicle generally relies on solutions to the Velicle
Routing Problem (VRP). The VRP is an extension of the
Traveling Salesman Problem (TSP), the goal is to find the
shortest route for visiting a number of destinations before
returning to the origin. The VRP extends the TSP to
consider multiple routes over a fleet of vehicles and the
green vehicle routing problem extends the VRP with
the objective of reducing consumption level and
consequently reducing the o, emissions from road
transportation. In general, this class of problems
minimizes a particular amount of emissions for a fleet of
vehicles picking-up or delivering goods.
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Few researchers have developed tools to optimize the
emissions for the VRP. Seemingly, the awareness with the
contribution of VRP to green transportation was mitiated
with the studies by Shilu and Eglese (2007) and Palmer
(2007). Shihi and Eglese (2007) considers the basic Vehicle
Routing and Scheduling Problem (VRSP) models that
relate to environmental 1ssues including the time
dependent, the transportation of hazardous materials and
dynamic VRSP models.

Palmer suggests an integration of logistical and
environmental aspects mto one freight demand model
with the aim of enhancing policy analysis. Bektas and
Laporte (2011) develops the pollution routing problem as
an extension of the classical VRP with a broader and more
comprehensive objective function that accounts not only
the travel distance but also the amount of greenhouse
emissions, fuel, travel times and their costs. Bouzekri and
Alaoui (2014), Bouzekri and Elhilali (2013) and regard
emissions matrix as a load dependant function and add it
to the classical CVRP to extend traditional studies on
CVRP with the objective of minimizing the total emissions
produced by the vehicle. Figliozzi has developed an
Emissions Mimmization Vehicle Routing Problem (EVRP)
solution which explicitly includes emissions in the cost
minimization of a traditional vehicle routing problem with
time windows. In this model, emissions are directly related
to travel speed.

With regard to the works that take mto account
several objectives; for example, we can cite the Jemai ef al.
(2012) which developed the bi-objective green vehicle
routing problem while mimmizing the total traveled
distance and the ., emissions. Also, Benedek and Rilett
(1998) developed a traditional passenger assighment
model by user equilibrium and system optimal cost
functions to optimize the .q,, finding minimal change in
time or emissions between scenarios optimized for one or
the other, their model did not consider routes with
multiple stops, time windows or vehicle capacity and did
not mclude the resulting costs for various routes.
Wygonik and Goodchild modeled as an emissions
minimization vehicle routing problem with time windows.
The analyses of the different external policies and the
mtermnal operational changes provide msight into the
unpact of these changes m the cost, the service quality
and the emissions. In the last, we cite the work by
Bouzekri and Elhilali (201 4) where the objective is to find
routing and transportation policies that give the best
compromise between the travelling costs and the CO,
emissions, using the genetic algorithm. In this study, we
propose a mathematic model and an ant colony system to
simulate the multi-objective green vehicle routing
problem.

Table 2: Data used in the example

Variables m Coordinate Dermnand
Depat 0 1,1 0
Customer 1 1 2,3 10000
Customer 2 2 4.2 7000
Customer 3 3 (5.5 8000
Table 3: The details of the solution presented in Fig. 3a

Route in Fig. 3a

i d; y Ej
(0,1) 2.236 25000 2,450
(1,2) 2,236 15000 2,160
(2,3 3.162 8000 2,768
(3.0) 5,657 0 4,367
D; =13.291 Km, E; =11,745 Kg CO,

Table 4: The details of the solution presented in Fig. 3b

Route in Fig. 3b

i d; y By
(0,1) 2.236 25000 2,450
(1,3) 3.606 15000 3,484
(3,2 3.162 7000 2,728
2.00 3.162 0 2441
Dy=12.166 Km, E~11,104 Kg CO,

Table 5: The details of the solution presented in the Fig. 3(c)

Route in Fig. 3¢

L] d; Q; E;
(0,2) 3.162 25000 3,465
(2,3 3.162 17000 3,137
(3.1 3.606 10000 3,251
{1,0) 2,236 0 1,726

D= 12.166 Km, F; = 11,580 Kg co,

Difference between VRP, GVRP and MGVRP: In this
study we present the difference in decisions made by
CVRP and GVRP. We suppose there are three customers
served by one vehicle departing and returning at the
depot denoted by 0; e; is the CO, emissions of a fully
loaded (by weight) vehicle which is e; = 1.096 kg/km for
HDV truck; e, 1s the CO, emissions of an empty vehlicle
which is e,= 0.772 kg km ™' for HDV truck and Q = 25000
kg is the volume capacity of a vehicle. The demands and
the locations of the customers/depots are shown in
Table 2.

It is not difficult to find the shortest total
distance (0-1-3-2-0) in Fig. 3a, b or (0-2-3-1-0) in Fig. 3¢,
these two routes as they have identical distances of
12.166 Kim. However, these routes are different in terms of
the emissions produced (b): E; = 11.104, (c): E; = 11.580).
Moreover, we can find in Fig. 3a, the route (0-1-2-3-0) with
a higher emissions produced (11.745) and a longer
distance (13.291) (Table 3-5). The best solution is found
with the route of Fig. 3b because the vehicle first serves
the customers with the larger demands and the shortest
distance, so that emissions produced can be lowered later
in the route after the heavier goods have been unloaded.
This example shows that it is necessary to develop a new
optimization algorithm with lower emissions and shortest
distance as objectives to optimize.



Int. J. Soft Comput., 11 (6): 409-417, 2016

(b)

i

1 o~
o
et

‘@

f O

'
s @ s 3
Ll [

1 / ' 1)

(7

Fig. 3: Routes of the example with the shortest distance and the lowest emissions: a) D; = 13.291 Km, E,=11,745 Kg CO,;
b)D; = 12166 Km, E; = 11,104 Kg CO, and ¢) D; = 12166 Km E; = 11,580 Kg CO,

MATERIALS AND METHODS

Mathematical formulation of MGVRP: Let G=(V, A) be
a directed graph with V = {0, 1, 2, Y, n} as the set of
vertices and the set of are A = {(1, 1)/, 1€V, 1#]}. A distance
d; and driving time t ;between the nodes i and j are
associated with each are (i, j)eA. Each customer i has a
certain amount of demand and a service time S. A set of
m 1dentical vehicles of capacity Q and maximum allowable
driving time T are available at depot O to visit the
customers.

The MGVRP problem consists in finding the minimum
total distance and the minimurm volume of emitted CO, for
the tours which start and end at the depot, such that each
customer should be visited exactly once, where the sum
of all the demands of any tour (route) does not exceed the
capacity of the vehicle Q.

In order to model the GMVRP as an integer
programming problem, we consider a very large number L

and we define the variables of.xf andas y¢ follows:

k

q: The quantity transported by the vehicle k
between nodes i and j

|

. |1ifvehicle k visits customer i after customer

XIJ

Ootherwise

|

In our model, we consider two different objectives:

. 1if vehicle k visits customer 1

Yi© 0 otherwise

The mimmization of the total distance of transport:

nom

M)

i=0 =0 k=1

d, . (M

k
Xi]
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The mmmization of the total emissions for all
vehicles:

— eel

}x qs +(e, ® XE):| (2)

Our objective function 1s composed by two different
objectives which aren’t on the same scale. To optimize
these objectives, we used the aggregation method which
combines the various fimctions of the problem mto a
single function; so the problem is to minimize:

el el

where, [, reflects the relative importance of the objectives,
f* and g* are the optimal solutions associated with the
only objective function f and g, respectively. Our
objective is minimized under the following constraints:

(3)

Exk <1 vke [L,...m} )
gx}; :é‘axg vke {1,..,m} (5)
gﬁSL.gx; vke{l,..,m} (6)
g;xﬁzl vje {1,...n} (7)
iﬂxﬁ :2;4; vkell,...m}pvie [1,..n} (8)
= =
i <3 vije fon.a] ©)
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Y- ¥ —dvielLny (10
k=1 j=0 k=1 j=0
nn%xﬁ+i&ﬁ§TW&ﬂwm} an
1=0 =0 1=1
xte {01} vke {L...m};vije{0,..n}  (I2)
yre{o,1} vke{l,...m};vje {L,..,n} (13)
qi 20 vke {L..,m}:vije {0...n} (14)

The constramnts (4-6) ensure that each vehicle tour
begins and ends at the depot while the constraint (7)
guarantees that each node, except the depot, 1s visited by
a single vehicle. Furthermore, the constraint (8) assures
that each node, except the depot, 1s linked only with a pair
of nodes, one preceding it and the other following it. The
constraint (9) ensures that each vehicle cannot exceed its
capacity and that the values of are null if there is n’t any
tour which visits j just after 1. The constraint (10) ensures
that the difference between the quantity transported
before and after visiting a client 1 18 exactly the demand of
this customer. The maximum route duration is limited by
the constraint (11). The constramts (12) and (13)
guarantee the binary of the decision variables. Finally, the
constraint (14) ensures that the load of each vehicle is
always positive.

The hybrid ant colony system for MGVRP: The aim of
this section is to propose a hybrid Ant Colony System
(ACS) to solve the MGVRP formulated m the previous
section through two phases.

Phase of route construction: To solve our problem, an
individual ant constructs a solution by incrementally
selecting customers until all customers have been visited.
Whenever the choice of another customer would lead to
an mfeasible solution for reasons of vehicle capacity or
total route length, the depot is chosen and a new tour is
started.

At each step, every ant k computes a set of feasible
expansions to its current partial solution and selects one
of these probabilistically where an ant k positioned on
customer 1 chooses the customer j to move, by applymng
the rule given by the equation (Taguchi et al., 1987).

argmax [tf‘u(t)x (‘?m)B ]if qfq,

I otherwise

i= (15)
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where, T, i equal to the amount of pheromone on the
path between the current location i and possible locations
u which is initialized:

Lo 1
*  nxObj

where, n is the number of customers and objectif is
the value of the objective produced by the execution
ACS the
component, it can make good initial pheromone trails on

of one iteration  without pheromone

the are:

T, = Is a heuristic mformation:
1

'n =
- le em + BZde

NFis a set of customers unvisited

¢ is the importance of our objective in comparison to
pheromone quantity

Determines the relative influence of heuristic
mformation

q 18 a random uniform variable [0, 1]

qp 1s a parameter of the algorithm

T 13 a random variable selected according to the

probability distribution given in Eq. 16

@B
Ty XMy

B ol 16)
Do T ¥

k
Pi,]7

If the constraints of capacity and dwration are
achieved, the ant will return to the depot before
selecting the next customer. This selection process
continues until each customer is visited and the tour is
complete.

Phase of pheromone updating: An adaptive learning
technique in ACS is to update the pheromone to cause
improvement of new solutions. The colonies exchange
information through pheromone updating. This process
m ACS 1s conducted by reducing the amount of
pheromone on all edges, in order to simulate the natural
evaporation of the pheromone and to guarantee that no
path becomes too dominant in local updating (Eq. 17).
After every iteration, thus phase msists on the best
solution by maximizing the pheromone trail value in global
updating (Eq. 18):
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Input
m: the number of ants
Nbr_iter: the number

of iterations
= No I
BestObject = 0 Objective of the current Yes

kes et o e urent P BestObjective= Objectiveof the current
= = solution
i=0;j=0 v

v I BestSolution= current solution

t=to v

i=t0 Ant k has not completed its

v solution I <—

Yes
i++and i++ ‘ 1
No
v »
Update the trail level
tj;, according to (17)
No Y Yes
i=nandj=n . .
i=0:i=0
Yes
v | -
Select the next customer /f, (i.i) ? BestSolutior
- k=1 _> according to (15) and (1%_
No
. . ‘ Update the trace level
i++andi++ t; according to (18)
w A4
s I=nandj=n
\ A=
No
) iter< Nbr_iter ‘ Iter = iter+1
* e
OUTPUT
BestSolution

Fig. 4: Algorithm 1: ACS for the MGVRP

T (t+1)={1-p)xT,(t)+pxT, (17)

rlj(t+1):(1—p)><rij(t)+p><Aru(t) (18)

where, p 13 a parameter that controls the evaporation of
the pheromone trail. In addition, our approach implements
a Large Neighborhood Search Algorithm to improve the
quality of the feasible solutions. This algorithm uses
unplicitly a destroy and a repair method. A destroy
method destructs part of the current solution by removing
R customers. while a repair method rebuilds the destroyed
solution by inserting removed customers in the best
positions shown in Fig. 4.

RESULTS AND DISCUSSION

Computational results: To show the effectiveness of the
proposed approach, this later is tested on the set of

414

instances proposed by Elbouzekai ef af. (2013). In these
instanices, there 1s a depot point which coordinate 15 (0, 0),
a set of customer points which coordinates randomly
belong to the region (0, 100 Km) and an unlimited
homogenous fleet of vehicles, where the capacity of each
vehicle 13 25000 kg. The load volumes of customers
randomly belongs to the region (500, 2500 Kg) and the
service time of customers is fixed at 15 min. Suppose that
service period of a vehicle belongs to the region (08, 18 h)
and the average speed of vehicles is fixed at 80 km h™".
Our algorithm was coded in C++ and executed on a
MacBook Pro-Core 15/2.4 GHz- MacOS X 10.7 Lion.
The choice of parameters is so important for the
success of the Ant Colony System Algorithm. To optimize
the choice of these parameters, we apply the Taguchi
method which is an experimental design that analyzes the
effects of several variables (parameters) on the response
variable (objective function) (Taguchi et al.,, 1987). The
results obtained by the execution of the problem are
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Fig. 5. Graphic of main effects
evaluated by transforming the value of the objective

function (signal/moise). The S/N rate 1s calculated using
the formula of “minimum value” expressed as follows:

S/N = —1010g{r112 yf}
i=1

Table 6: Levels of the proposed approach’s parameters

Levels o B Nf qp s R Nbr_iter
1 2 10 0.8 0.1 10 500

2 2 3 20 0.9 0.2 15 1000

Table 7: The values of the proposed approach’s parameters

o 8 Nf [ o R Nbr_iter

1 3 10 0.9 0.1 10 1000

Where: Table 8: Numerical results of VRP for our approach compared to Bouzekri
- . and Elhilali (2014)
u B Thef nu_Inber of e.xecutlons . Bouzekri and Elhilali (2014)  Our approach
Y, = Objective function value of the solution found
during the execution I Instance Best Best Average
I1 358.53 352.07 352.07
. . . . 12 59375 582.57 602.11
Among the different exp.erun.ental designs that GX.ISt, s 1080.73 87939 501 22
we choose to use the Taguchi design at two levels which 21 1332.19 1202.13 1224,5
consists to define two levels for each factor. The goal is I5 1693.37 1463.23 1472.44
to define the effects of each factor on the response 16 1865.03 1764.34 1807.8
( ) 17 _ 2180.30 2199.65
¥) 18 _ 2682.14 2776.25
We apply Taguchi design for an instance, we use Io _ 3529.60 3580.92
110 4175.72 4184.37

Minitab software tool Mimitab (2003) to fix different
parameters of our approach. The influential factors results
in our study are &, B, m, g, p N R.

We define in the Table 6 a 2-level for the values of
parameters Fig. 5. Figure 5 shows that the best results are
obtamed using the followmng wvalues of different
parameters presented in Table 7.

To evaluate the proposed approach, we will present
firstly the numerical results by considering only the
classic objective which minimizes the total traveled
distance. Table & presents the results of our algorithm
which correspond to the best value and the average of 3
runs. Each run 1s guaranteed to be independent of others

by starting with different random seeds. Table 8 shows
the comparison of our approach with the results found by
genetic algorithm proposed by Bouzekri and Elhilali (2014)
(Table 8). Numerical results of VRP for our approach
compared to Bouzelri and Elhilali (2014). As we can see
owr approach is wvery competitive. Tt outperforms El
Bouzekri’s genetic algorithm on all benchmark instances
and 1t finds a feasible solution, unbke the genetic
algorithm which is not tested or feasible solutions cannot
be obtammed for the mstance 17, I8, I9 and I10. These
results allow us to say that our approach 1s effective and
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Table 9: Numerical results of MGVRP for our approach compared to
Bouzekri and Elhilali (2014)

Bouzekri and Elhilali, 2014 Our approach

Instance Distance CO, emissions  Distance CQ, emissions
11 317.73 350.64 352.07 324.96
12 629.74 617.15 598.09 511.11
13 940.5 1037.28 988.75 800.25
14 1244.37 1753.16 1303.79 1053.23
15 1615.6 2031.62 1573.61 1250.32
16 2600.65 2331.28 1909.18 1515.11
17 B B 2318.37 1828.51
18 2823.03 2221.47
19 _ 3500.92 2745.05
110 4119.16 3220.88

shows the wviability to generate very high quality
solutions for the VRP. Now, to evaluate our approach to
solve the MGVRP problem which minimize the total
distance and the total CO, emissions related to freight
transport, Table 9 shows our experimental results for this
problem compared to Bouzekri and Elhilali (2014) where
the weight of the emissions function (p = 60%) is higher
than the distance function ([, = 40%).

The results found present the best solution
generated by the proposed approach of 3 runs where we
found that the proposed algorithm 13 more powerful than
the genetic algorithm and this is evident in Table 9 where
we can see that the quality of the result given by Bouzekni
and Ellulali (2014) 1s bad compared to what we found in
terms of two objectives except for the instances T1, 13 and
14, In addition, our approach was able to find feasible
solutions for the mstances 17, I8, I9 and 110, where the
genetic algorithm which is not tested or feasible solutions
cammot be obtained for these instances. In general, the
routing cost 1s steadily decreased when the both
objectives are minimized which indicate the conflicting
behaviour between these objectives.

The experiments performed can show that our
algorithm gives satisfactory results for multi-objective
green vehicle routing problem.

CONCLUSION

In this study, a mathematical model and an ant
colony system algorithm was proposed to solve the
MGVRP. This algorithm seeks to construct the vehicle
routes by successively choosing customers to visit, until
each customer has been visited, minimizing the total
distance traveled and the total emissions of the vehicles.
The traffic in general and particularly goods transport has
a very complex effect on the environment, giving a range
of negative consequences which can be seen in air
pollution, water pollution, noise, energy consumption,
reduced safety, vibration and others.

Numerical experiments showed that this metaheuristic
perform well compared to genetic algorithm and that it can
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be used to solve large problem instances. The correlation
problems of distance mimmization with emissions
minimization allows to develop a wide range of tools to
improve living conditions in urban areas.

In this respect, the estimation and modeling of CO,
can be a powerful tool for air quality managers and
environmentalists in order to examine the impact of
different transport plans.

REFERENCES

Bektas, T. and G. Laporte, 2011. The pollution routing
problem. Transp. Res. Part B. Methodol, 45:
1232-1250.

Benedek, C.M. and L.R. Rilett, 1998. Equitable traffic
assighment with environmental cost functions. T.
Transp. Eng., 124: 16-22.

Bouzekri, E.A. and AE. Alaoui, 2014. Evolutionary
algorithm for the bi-objective green vehicle routing
problem. Int. J. Sci. Eng. Res., 5: 70-77.

Bouzekri, E.A.A. and A'Y.B. Elhilali, 2013. A genetic
algorithm for optimizing the amount of emissions of
greenhouse gaz for capacitated vehicle routing
problem in green transportation. Int. J. Soft Comput.,
8: 406-415.

Dlugokencky, E.J., KA. Masarie, P.M. Lang and
P.P. Tans, 1998. Continuing decline in the growth
rate of the atmospheric methane burden. Nat.,
393: 447-450.

Dlugokencky, E.J., 8. Houweling, 1. Bruhwiler,
K.A. Masarie and P.M. Lang, 2003. Atmospheric
methane levels off: Temporary pause or a new steady
state?.  Geophys. Res. Lett Vol. 30
10.1029/2003GL018126

Elbouzekri, A., MES.SAOQUD. Elhassania and
A EH. Alaoui, 2013. A hybrid ant colony system for
green capacitated vehicle routing problem in
sustainbale transport. . Theor. Appl. Inf. Technol,,
53: 198-208.

Temai, J., M. Zekri and K. Mellouli, 2012. An NSGA-II
Algorithm for the Green Vehicle Routing Problem. In:
Evolutionary  Computation in  Combinatorial
Optimization, Hao, J.K. and M. Middendorf (Eds.).
Springer, New Yorl, USA., TSBN: 9783642291241, pp:
37-48.

Palmer, A., 2007. The development of an integrated
routing and carbon dioxide emissions model for
goods wvehicles. PhD. Thesis, School of
Management, Cranfield University, Cranfield, UK

Sbhihi, A. and RW. Eglese, 2007. The Relationship
Between Vehicle Routing and Scheduling and Green
Logistics a Literature Survey. Lancaster University,
Lancester, England,.

] El



Int. J. Soft Comput., 11 (6): 409-417, 2016

Taguchi, G., 5. Konishi and S. Konishi, 1987. Taguchi Toth, P. and D. Vigo, 2001. The Vehicle Routing Problem.

Methods Orthogenal Arrays and Linear Graphs: SIAM: Philadelphia, Penqsylvania,. _

Tools for Quality Engineering. American Supplier Wygomk, _E' and A. GOOdChﬂ_d‘ 2011..Evaluat1ng CQZ

Institute, Nasr City, Cairo, Heypt, ISBN-13: emissions, cost and service quality trade-offs m
’ A ’ ’ ' an urban delivery system case study. latss Res,

9780941243018, pp: 8-35. 35:7.15.

417



	409-417_Page_1
	409-417_Page_2
	409-417_Page_3
	409-417_Page_4
	409-417_Page_5
	409-417_Page_6
	409-417_Page_7
	409-417_Page_8
	409-417_Page_9

