International Tournal of Soft Computing 11 (6): 427-436, 2016

ISSN: 1816-9503
© Medwell Journals, 2016

A Comparative Taxonomy of Parallel Algorithms for
Crowd Dynamics Models and their Simulators

'Khalid Mohammad Jaber, Mohammed Mahmod Shuaib,
'"Randa Maraga and *Osama Moch’d Alia
"Faculty of Science and Information Technology,
Al-Zavtoonah University of Jordan, Amman, Jordan
*Department of Computer Sciences, College of Sharia and Islamic Studies in Al Ahsaa, Al-Imam
Muhammad Ibn Saud Islamic University (IMSIU), 31982 Al Ahsaa, Saudi Arabia
*Department of Computer Science, Faculty of Computers and Information Technology,
University of Tabuk, P.O. Box 741, 71491 Tabuk, Kingdom of Saudi Arabia

Abstract: Massive congestion 1s a very serious concern that can lead to disasters. The development of crowd
dynamics models and crowd simulation tools 13 essential to better represent congestion aspects as well as to
evaluate proposed solutions. However, model development normally involves mcreasing the mathematical
complexity, imposing higher computational demands. This has led researchers to investigate solutions that can
reduce or mimmize the computational demands of such models where among them 1s the parallel computing
approaches. In this study we highlight the application of parallel computing in reducing computational demands
for crowd dynamic simulators while simultaneously improving their performances. This study also includes a
comprehensive overview of the state-of-the-art parallel computing approaches used i crowd dynamic

simulators.

Key words: Crowd dynamics models, crow dynamics simulators, parallel computing, performances,

computational

INTRODUCTION

Over the last few decades, much attention has been
devoted to pedestrian dynamics studies to provide
solutions for problems such as massive congestion.
Besides efforts on introducing better pedestrian facilities
and to provide protection for these facilities (e.g., fire
safety (Lo, 1999, Zhao ef al, 2004), contiuous
development of crowd dynamics models has also become
a main agenda. Model-based simulators Pelechano and
Badler, 2006, Silverman et al., 2006) have become a
deswred tool for engineers, architects and emergency
management and transportation agencies in examimng the
pedestrian facilities for pedestrian flow in both emergency
and non-emergency situations.

Various key aspects are crucial for effective
simulators. Basically, most sunulators are based on
mathematical models of pedestrian dynamic flow,
therefore, establishing a good representative model 1s
crucial to obtam more realistic performance of such
simulators.

A pedestrian 1s considered a major mass during
congestion. Understanding thewr behavior durng

interactions with other pedestrians 1s important as realistic
aspect mteractions can be considered or mcorporated into
the models when developing simulator tools.
Consideration and subsequent mmplementation of the
different aspects of evacuation in such tools is also
essential to allow designers to achieve the desired
evacuation results for different situations and physical
environment layouts. Accordingly, for the evacuation
process, modifying an evacuation model-based sunulators
have become the main goal for researchers m order to
provide protection for pedestrian facilities (e.g., EGRESS
(Ketchell ef af., 1993), EXODUS (Galea and Galparsoro,
1993; Thompson and Marchant, 1995), SGEM and
FDSH+EVAC (Korhonen ef al., 2010; Lo ef al., 2004).
One of the main challenges of simulator development
15 the optimization of computational time. Where it 1s
expected that when the simulated mathematical model 15
complex and time consuming, then the corresponding
simulator 1s also complex and time consuming. The main
challenge for the simulator development is normally to
decrease the model computational time. And this mn tum
depends the approaches used by the models where they
are crucial m determining the computational efficiency of

Corresponding Author: Osama Moh’d Alia, Department of Computer Science,
Faculty of Computers and Information Technology, University of Tabuk, P.O. Box 741,71491 Tabuk,

Kingdom of Saudi Arabia

Int. J. Soft Comput., 11 (6): 427-436, 2016

to that,
large-scale simulations of both normal and evacuation
movements (Sarmady ef al., 2011), especially involving 2D
or 3D ammations, demand high computational resources.
This has led researchers to search for better solutions,
where, among the ones considered is the use of parallel
computing approaches. Parallel Computing (PC) basically
entails the simultaneous execution of the same task on
multiple processors in order to increase the processing
power (Jordan and Alaghband, 2002). Due to this division
of tasks into many sub-tasks performed by many
processors, significant reduction in response time can be
expected.

In this study we about PC-based
approaches m the context of reducing computational
demands for crowd dynamic simulators. This study also
mcludes a comprehensive overview of state-of-the-art PC
approaches as well as evaluations of the techmiques
employed mn crowd dynamic simulators.

the corresponding simulators. In addition

elaborate

MATERIALS AND METHODS

Crowd dynamic models and computational efficiency:
Two main classifications of Crowd Dynamics Models
(CDM) are the macroscopic and microscopic models.
Macroscopic models are more concerned with the
macroscopic properties (variables) of a whole crowd such
as its density (p), mean speed (V) and pedestrian flow (f)
(Haight, 1963). These models are often based on traffic
flow, queuing theory or fluid or contimuum mechanics
(Hughes, 2002). The latter models, namely microscopic
models detailed
mteractions between the pedestrians and their effect on
motion. A variety of models have been proposed n
microscopic studies, among them the cellular automata
models, discrete choice models (Antonini et «al., 2006;
Robin et al., 2009) and the social force model (Helbing and
Molnr, 1995; Helbing et al., 0000, Lakoba ef al., 2005).
To determine the computational efficiency in the
macroscopic models, close attention needs to be provided
for the mampulation of the macroscopic variables. This 1s
done by applymg rules or processes for calculating the
mentioned macroscopic variables which are to be
assigned to each particle at each time-step in the
corresponding simulators. Accordingly, in a macroscopic
simulation, the estimation of steps number to be executed
for calculating and assigning one variable (e.g. velocity)
to N particles within one step of motion is K + N steps. K
here is the number of steps required for calculating the

are more concerned with the

rules or processes assigned to this varable. The

microscopic models, on the other hand, assume the

428

detailed interactions among the particles. For each
particle, the mechamism representing the interactions
requires its own computational processes. Therefore,
based on microscopic simnulation we have KN steps
required to be executed while performing the same
In view of that, the
computational processes are higher than what 1s required
in the macroscopic models, whatever the number of
simulated pedestrians.

Another important CDM classification is the nature of
the basic variables used for the description of the particle
system, namely space, time and state (e.g., velocity). Each
of these variables can either be discrete or continuous
(1.e., a real number). Although, the models with discrete
variables are often an approximation (cellular automata
models (Blue and Adler, 1999, Burstedde et al., 2001) and
discrete choice models (Antomm et al., 2006; Robin et al.,
2009), they have the advantage of being more
time-efficient. For example, the physical environment in
the Cellular Automata Models is usually considered as a
floor area, divided into a lattice of cells of equal sizes. The
cells from areas that can be occupied by obstacles,
particles (pedestrians) or may remain as empty spaces.
The size of the cell is governed by the chosen velocity,
but limited by the size of the particle. Thereby, the particle
moves from one cell to the adjacent cell, in one-step
movements which should achieve the distance required
for this movement. Hence, the value of the time step
chosen for the simultaneous update process of the
particle motion inside the environment is relatively high.

On the other hand, there are real situations that can
only be reproduced using continuous variables. For
example, a continuous space such as n the Social Force
Model (SFM) generates more realistic pedestrian motion.
Most equations of the forces of motion in this model
require very small step-sizes in time (this by the way is
required, else the simulation enters into an unstable
regime (Lakoba et al, 2005) where it would falsely
produce showing
behaviors such as overlapping among particles).
Therefore, the simulator has to resolve the motion of the
particles on shorter time scales (which requires higher
computational demand) as compared to discrete models.
For comparison, a typical value for the time step used in
most Cellular Automata Models is t,, .. = 0.5s whereas in
the SFM, the time step value that is >t.,, = 0.001s it would
be most likely result in counterintuitive behaviors such as
stated in (Lakoba et al, 2005). In principle and for
efficiency examination we can consider the ratio ty, e/t

scenario mentioned above.

results mnvasive countermtuitive

of the average number of steps needed with discrete

model versus the number of steps needed with

Int. J. Soft Comput., 11 (6): 427-436, 2016

continuous model for one step of motion. This is with
makig some oversimplification that the step of motion
takes the same time to be executed i both models.

Implementations of the interactions among particles
could be classified into two, namely rule-based and
force-based approaches. Particle’s motion in rule-based
models are generated by decisions based on the
mteractions between the particles and their current
situation (the surrounding particles and the physical
environment) as well as their goals and so on In
force-based models, the interactions between particles are
represented as forces responsible for their motion. The
computation of the physical forces in the code mostly
requires the implementation of numerical algorithms that
unfortunately consumes more tune than the
mnplementation of decisions (the time required in
performing if-statement, for example) in the rule-based
models.

Another factor influencing computational efficiency
1s the incorporation of more mechamsms into the model to
reproduce realism, such as the behavioral level of
pedestrians. According to Hoogendoom ef al. (2002),
pedestrian behavior can theoretically be divided into three
mterrelated levels. First 1s the strategic level where
pedestrian activities and their order are determined.
Second, the tactical level where decisions are made while
pedestrians perform the activities (e.g., choosing a route
(exit) to an intermediate target among alternative routes
(exits) based on utility maximization). Third, the
operational level where the instantaneous behaviors that
mvolve most activities resulting from the interactions
among pedestrians such as avoiding collisions,
deviations, acceleration and deceleration are described.
Daamen (2004) and Asano et al., (2010) pointed out the
importance of obtaining integrated models comprised of
two complementary levels: the operational and the tactical
levels. Accordingly, integrating a route/exit choice model
(a form of intelligence on the part of the simulated
pedestrians) the operational-level
grant the pedestrians of the existing microscopic model

nto models to
far-sighted decisions is an essential factor for obtamung
more realistic models (Zainuddin and Shuaib, 2010a, b;
Loet al, 2006, Ehtamo ef al., 2010, Huang and Guo, 2008;
Zaimuddin and Shuaib, 2011). However, such integrations
and modifications for normal and evacuation situations
the computation
Reasonably, assume we have N processes performed in

mcrease simulators processes.
the operational level and M processes performed at the
tactical level we have at least, due to the independence of
these levels, N+M computational processes performed at

each time step.

429

Parallel processing: This study gives an overview of
parallel computing and their mechanisms. In addition to
the techniques used to evaluate the performance of
parallel computing methods.

Parallel mechanisms: Parallel computing is critical in
many applications that require processing of large
amounts of data. These are such as weather forecasting,
data visualization, computational biology and engimeering
(Taber et al., 2014).

Parallel processing can conventionally have two
classifications, namely mmplicit and explicit parallelism.
Implicit parallelism is when the programming language can
decide which parts of the task to run in parallel. No
control scheduling of calculations is specified. The
explicit parallelism on the other hand is when the
programmer him/herself can allow or make certain parts of
the code to execute in parallel.

Flynn (1966, 1972) proposed a different classification
scheme that 1s based on mstruction and data streams. He
states that parallel processing can have a four-way
classification which are SISD (Single Instruction Single
Data), SIMD (Single Instruction Multiple Data), MISD
(Multiple Instructions Single Data) and MIMD (Multiple
Instructions Multiple Data).

JTohnson (1988) proposed a new taxonomy-based
memory structure, namely the shared/global memory and
distributed memory (Fig. 1). Communications are totally
involved between processors in parallel computation and
the mechanism used for communication/synchronization
15 called message passing. Fortunately, many
messages-passing libraries have been developed to
provide routines to initiate and configure the messaging
environment as well as to sendfreceive data packets
between processors. The two most popular message-
passing libraries are Parallel Virtual Machine (PVM) and
Message Passing Interface (MPT) while the most popular
routines as shared address space paradigms are the
POSIX Thread and OpenMP.

Recently, researchers tried to use General Purpose
computation on Graphics Processing Units (GPGPU) as a
parallel programming approach. The GPGPU approach
programs Graphics Processing Umits (GPU) clups using an
Application Programming Interface (API) functions such
as Open GL, Direct3D and CUDA (Compute Unified
Device Architecture) (Yong and Jun, 2010) in order to
obtain faster results. However, GPUs are lighly threaded
streaming multiprocessors of very high computation
and data throughput. Therefore in 2006, NVIDIA
developed CUDA, a parallel computing platform and
programming model implemented by the GPUs. CUDA has
been widely deployed in thousands of applications

It J Saft Comput, 11 (6) 427-436 2016

. General-Purpose Graphics Digtributed Memary
Hybrid Mods| rteesng Ut [GPGPL] Modal Sharad Mamory Madal |
1 1
i Threads Model

/\\ /

Massage Passing
Iterface (NP1}

Parallel Virtual

Fig 1:Parallel programming models

Designing Parallel
Programs

| Partitioning

L

Data Decomposition H

I

Functional
Decomposition

Hori tal 5 a 5 < -
[Di-:::::.l:i:n Vertical Distribution] | Hybrid “
| 1
Hybrid Model

Fig 2: Desigring patallel programs

and published research studys sach as astronomy,
biology, chemistry, physics and data mining. Supported
by an instdled basge of over 300 million CTUTD A- enahled
GPUs in notehooks, workstations, compute custers and
supercothniter s,

430

Two mechanism s worth menti oning to parallelize large
amounts of data are fonction decomposition and data
decomposition of both as shown in Figo 2. Data
decomposition itrrolves the horizontal distribation or
vertical distribation or both. Moreower, hvbrid parall elism

Int. J. Soft Comput., 11 (6): 427-436, 2016

merges both data parallelism with horizontal or vertical
distribution and function decomposition (Jaber et al.,
2014).

RESULTS AND DISCUSSION

Parallel evaluation techniques: Many quantitative
variables can be used to measure the parallel performance
of a given application such as Amdahl’s law, Speedup (3),
Efficiency (E) and Overhead (T,) (Jordan and Alaghband,
2002). The execution time (i.e., the serial runtime) of a
program is the elapsed-time (T,) between the beginning
and the end of the program execution on a sequential
machine. The parallel run time (T,) 1s the elapsed-time from
the moment a parallel computation starts to the moment
the last processor fimishes execution. Consequently,
Overhead (T,) or the total overhead of a parallel system,
is the total collective time spent by all processing
elements over and above that required by the fastest
known sequential algorithm for solving the same problem
on a single processing element (Eq. 1).

Overhead (T,) =pxT -T, (H

Speedup (8) captures the relative benefit of solving a
problem in parallel. Tt is defined as the ratio of the time

taken to solve a problem on a single processing element
T, to the time required to solve the same problem on a
parallel computer T, with identical processing elements p;
given by Eq. 2:

Speedup (3) =T, /T, (2)

The Efficiency (E) is a measure of the fraction of time
for which a processing element is usefully employed; it is
defined as the ratio of speedup S as calculated in Eq. 2 to
the number of processing elements p. The formula 1s
shown in Eq. 3:

Efficiency (E) = S/p (3)

Parallel crowd dynamics models: Different parallel
methods were mtroduced in order to address issues in
computational complexities of crowd dynamic simulations.
Substantial efforts were focused on using:

s Multicore programming based on multithreading
*+ GPGPU
» MPI libraries

In the remaiming parts of this section, existing parallel
methods for crowd dynamic simulation are discussed,
with a summary given in Table 1.

Table 1: Summary of the state-of-the-art parallel computing approaches used in crowd dynamic simulators

Shared/

Parallelism distributed Parallelism Serial Parallel
Authors (vear) data function memory model complexity complexity Dataset
Clayton et af (2009) Data parallelism Shared/global Multithreading - - 200 agents
Vigueras et al. (2008a) memory - - 23000 agents
Vigueras et al. (2008b) - - 23000 agents
Vigueras - - 8000 agents
Vigueras et al. (2008) - - 8000 agents
Lozano et af. (2007) - - 8000 agents

Stephen - 3.8X speedup 5000 and 25000agents
Richmond and Data parallelismn Shared/global GPU om?) - 4000 and 32000 agents
Romano MEmory

o(m®) - 4000 and 32000 agents
Joselli et ad. (2009) On?) - 1 thousand to 1 million boids
MINTL (2012) CPU 100000 ms GPU 1000 ms 2000=2000 distance matrix
MINTL (2013) - - Town square and building
Ugo et al. (2009) On?) 0.25X 8192 and 65536 individuals
Lysenko and Souza (2008) O(nlogn) - 16 million concurrent agents
Erdal et ai. (2009) 6,282.52 ms 61.20-ms one million virtual people
Alessandro On?) - 1024-65536 Boids
Quinn et al. (2003) Data parallelism Distributed MPT 1 worker 5 updates 10 worker 30 updates/sec Airport eva. 10,000
Pedestrians

Bo and Suiping
Porte

Solar et af. (2010)
Solar et af. (2011)
Solar et af. (2012)
Solar et af. (2013)

Armstrong et al. (2008)

On?)

3 works, 61 cycles/sec
16 works, 1.2 cycles/sec

-O(nz)
On?)

Proc=1t=25.24,
Proc=16,t=3.36
10,000 Pedestrian

O (nm)

O (nm)

Speedup 12.39, 16.30
and 21.60

0.25X speedup

512 Boids

80000, 320000 individuals
524288, 1048576 individuals
262144, 524288 individuals
131.072, 262.144 and 24.288
5 individuals

2 million agents

431

Int. J. Soft Comput., 11 (6): 427-436, 2016

Multicore programming based on multithreading:
Clayton et al. (2009) implemented a multi agent-based
design pattern developed by the CoSMoS research group
at Edmnburgh Napier University, Merchiston Campus.
Given the nature of Multi Agent Systems (MAR), parallel
processing techniques were used in their implementation.
The CoSMoS design patterns are based on
Communicating Sequential Processes (CSP). Processes
have their own thread of control and entirely encapsulate
their data and maintain their own state. However, this
approach did not clearly explamn the parallel technique
used and the experiments were performed when the
number of agents was increased. The researchers also did
not mention the changing number of threads, number of
processors and their time. Evolutions were also not
performed usmg standard measurements
speedup, overhead and etc.

Vigueras et al. (2008a, b) proposed an architecture for
parallelizing the action server for crowd simulation and the

such as

distribution of the semantic database. The action server
parallelization techmque was based on agent-based
modeling. However, the researchers used multithreading
to parallelize the action server where the action server was
divided nto a set of processes so that each process is
executed in parallel on different computers to solve
system bottleneck issues by Vigueras et al (2008).
Vigueras at el. (2008) demonstrated a partitioning method
for distributed crowds using wregular shape regions. This
approach finds the near optinal partition of regions of
agents that minimizes the number of agents near the
borders of the regions. However, this researcher did not
mention clearly the parallel techmique that was used.

Guy at el (2009) presented a parallel collision
avoldance approach for multi agent real-time simulation
called ClearPath, where they used data decomposition for
parallelization. However, multicore programming based on
multithreading was used to implement the algorithm.

General-Purpose Computation on Graphics Processing
Units (GPGPU): Richmond and Romano proposed an
agent-based pedestrian dynamics model on the GPU.
However, the researchers used the OpenGL programming
to mapping the agent data.

Joselli ar el. (2009) proposed a 2D and 3D data
structure which they termed neighborhood grid. This was
used for massive crowd simulation on a GPU using CUDA
programming. In this data structure, each cell fits only one
entity of position. However, the CUDA thread 1s executed
in parallel for each entity. The researchers used the data
decomposition techniques to divide the task among GPU
threads.

432

Mintl (2012) presented the distance matrix calculation
for modelling pedestrian movement implemented using the
GPU. Two pedestrian simulation models were combined,
namely the cellular automata and social force model. Data
decomposition was used to divide the distance matrix into
cells. Cells can be calculated in parallel in one step.
Another work by the same research (Mintal, 2014)
implemented a multi-agent simulation architecture on GPU
using OpenGL.

Presented a GPU implementation of an individual
based smnulation model for fish schools and animal
groups based on CUDA programming. Their researcher
allows the simulation of the collective motion of
high-density individual groups. The simulation uses grid
cells to keep track of the mdividuals’ positions and
offloads the sorting to build up the data grid structure to
the GPU. The sorting is performed inside the cells to
optimize the search and then to quickly obtain information
about neighbors for each individual, mn parallel.

Lysenko and Souza (2008) presented data parallel
algorithms for simulating agent-based models. These
include methods for handling environment updates and
agent mteractions on the GPU, Erra at el. (2009) proposed
the GPU implementation of crowd simulation for virtual
marathons using Visual CH+ and CUDA programming.
Their experiments involved more than one million virtual
people (32,768 runmers and 1,015,808 spectators).

Silva at el (2009) mplemented (on the GPU)
Reynolds Boids model for simulating large groups. They
tested their implementation using two GPU programming
languages: one using the Cg shader language and the
other using CUDA. The implementation uses global
memory to store several arrays representing Boids
information.

Message Passing Interface (MPI): Quirm implemented
the parallel SFM using the C programming language with
the MPI library. The researchers used the task/farm
parallelism model to manage the processors. This parallel
implementation of the SFM used eleven processors to
simulate 10,000 evacuating pedestrians on a cluster
commnected by a gigabit switch.

Zhou and Zhou (2004 presented a parallel algorithm
to simulate the flocking behavior of a large group using
MPI. They used the data decomposition mechanism to
partition the space. Dynamic load balancing scheme is
used to manage the partitiomng among processors.

Porte and Thalmann (2005) proposed a real time
simulation of a large crowd of 10,000 pedestrians on a
cluster of machines using the MPI mechanism. The
Workload-balancing algorithm used in their
implementation allowed best performance to be kept
during the simulation

Int. J. Soft Comput., 11 (6): 427-436, 2016

Solar at el. (2010), presented a proximity load
balancing approach for a distributed -cluster-based
individual-oriented fish school simulator. The researchers
implemented this algorithm using MPT with varying
number of processors, 1e., 1, 4, 8, 16, 32 and 64.

Armstrong at el. (2008) developed the Parallel Particle
Data Model (PPDM) for Agent-based modelling and
discrete event simulation by Message Passing Interface

(MPT) for Java.

Analysis and comparison: In this study we compare the
performances of the state-of-the-art parallel computing
approaches used in crowd dynamic simulators. A
summary is given in Table 1. Two evaluations are
performed, specifically relating to execution time and
computational complexity. Execution time refers to when
a program 1is running (executing) whereas computational
complexity (or also called the abstraction level) is the
count of the number of mstructions or statements
executed using a mathematical notation Big-O notation.
However, it is difficult to compare the algorithm execution
time using a real time measurement approach due to
different architectures, hardware and speed. Execution
times are specific to a particular computer because
different computers run at different speeds. Moreover,
most crowd dynamics models’ source codes are not
publicly available to researchers. This 1s where the
computational complexity comes in where it is used to
compare these algorithms. The size and type of dataset
used in these algorithms were also introduced in this
COIMpPAarison.

From Table 1, it can be noticed that the complexity of
the most sequential simulations is O(n®) such as
Toselli et al. (2009), Solar et al. (2011) while the case in
(Lysenko and Souza, 2008) is O(nlogn). Some of these
simulators mention their complexity improvement whle
most donot. Among works that mention improvement are
Solar et al. (2011), Solar et al. (2012) where the simulation
complexity improved form O(nm) te O(n’) as shown in
Table 1. By using 64-cores with workloads of 131072,
262144 and 523288 individuals, Solar af /. (2013) reported
that the speedup of their proposed parallel model were
12.39X, 16.30X and 21.60%X, respectively. On the other
hand, some researchers mentioned improvement gained
from implementing the parallel techniques in terms of time
speed such as. When they simulate 512 boids on one
processor, the total required time is 25.24 ms whereas
using 16 processors required 3.36 ms. Porte and Thalmann
(2005), the researcher simulated 10,000 pedestrians in 225
areas using 3 and 16 workers where the results were 61

433

and 1.2 cycles/sec, simultaneously. Frra et al. (2009), the
researchers simulated a virtual marathon with one million
virtual people (32768 runners and 1015808 spectators)
in 6,282.52 ms. They managed to improve that time to a
mere 62.20 ms with 100X speedup cna GPU using CUDA.
Guy et al. (2009) mentioned that the P-ClearPath achieves
around 3.8X parallel speedup on the quad-core using 5000
and 25000 agents. MINTL (2013) simulated a 2000x2000
distance matrix where the processing time using CPU was
100000-ms while GPU was 1000-ms. The researchers in
mentioned that the GPU-based implementation is 0.25X
better than the ABGPU-based implementation proposed
by. The researchers in reported that with 1 worker (1.e.
processor) the system is able to update the positions of
the 10,000 simulated pedestrians nearly 5 updates per
second while when they used 10 workers (11 processors
overall), the system 1s able to update these positions with
nearly 50 updates per second. Armstrong at el. (2008)
achieved fairly good scaling with the 64 nodes case within
twenty-five percent speedup of the ideal result.

For the rest, the researchers used charts to compare
their results. Therefore, extracting execution time, speedup
and other evaluation technicues are impossible.

Regarding the type of the dataset used m the parallel
computing-based crowd dynamic simulators, actually,
different types were used such as human agents
movement, fish schooling, flocking simulation, virtual
marathon, airport evacuation, etc. The size of the dataset
varies from small to medium to large and very large.
Clayton et al. (2009), the researchers used a very small
dataset consisting of 200 agents and the average time per
agent tends to settle at around 0.78 ms. Also, in the
with 512 Boids. The
researchers by Vigueras et al. (2008), simulated a small
dataset consisting of 8000 agents while (Yilmaz et al.,
2009) sunulated 23000 agents. Researchers in and
simulated 4000 and 32000 agents. Simulated a school of
fish with about 8192 and 65536 individuals. Silva ef al
(2009) simulated Reynolds Boids model that had a range
of boids from 1024-65536. Mintal (2014) simulated town
square and building floor (pedestrian movement
simulation). An airport evacuation simulation with 10,000
pedestrians were studied by Porte and Thalmann (2005)
used 10,000 pedestrians in their simulation. Solar at el.
(2010} used a fish school model in their simulation with a
large dataset consisting of 80,000 fishes and 320,000
fishes while the same researchers in (Solar et al., 2011)
increasedthe dataset to 524,288 and 1,048, 576 mdividuals.
The same researchers by Solar et al. (2013) used 131072,
262144 and 524288 individuals. A very large dataset was

researchers simmulate flocks

Int. J. Soft Comput., 11 (6): 427-436, 2016

simulated in Joselli et al. (2009), Lysenko and Souza,
(200%) and Erra et al. (2009). Joselli et al. (2009) simulated
flocking boids with a very large dataset ranged from 1
thousand to 1 million beids. Lysenko and Souza (2008)
simulated SugarScape and StupidModel (benchmark for
agent based modeling toolkits) with 16 million concurrent
agents on grid sizes of up to 4096x4096. The Virtual
Marathon with one million virtual people (32,768 runners
and 1,015,808 spectators) was simulated by Erra et al.
(2009). Armstrong ef al. (2008) sumulated 2 million agents
on 16 processors.

CONCLUSION

In this review, we underlined the origin sources of the
problem of the high computational demands of the crowd
dynamic models and their effects on the performance of
their simulators. In addition to that we also underlined
research efforts at solving this problem, specifically to use
parallel computing approaches. We also conducted a
review of the many published state-of-the-art approaches
which hopes to form the direction of future research in the
area. We also hope that solutions can be offered based on
this review, to the problem using multiple methods of
parallel computing approaches in order to reduce
complexity, in both time and memory storage
requirements. It can be concluded from thus study that, in
spite of some limitations in the existing parallel-based
crowd dynamic models presented mn this study, the
parallel processing methods are able to provide practical
solutions. The need for further research in utilizing parallel
computing methods to solve this problem is still much
desired. Future efforts can possibly be directed to the
umplementation of parallel techniques such hybridization
between distributed and shared memory models,
hybridization between GPU and CPU methods or
hybridization between data decomposition and function

decomposition.
ACKNOWLEDGEMENT

Researchers would like to thank the Deanship of
Scientific Research, University of Tabuk for their financial
support (Grant no. S183-1434).

REFERENCES
Antonini, G., M. Bierlaire and M. Weber, 2006. Discrete

choice models of pedestrian walking behavior.
Transport.Res. Part B: Methodol., 40: 667-687.

434

Armstrong, R., B. Allan, M. Goldsby, 7. Heath and
M. Shneider et al, 2008. Parallel computing in
enterprise modeling. Sandia National Laboratories,
Livermore, http://s3.amazonaws.com/
academia.edudocuments/43531331/Parallel Compu
ting i Enterprise Modelin20160308-23401-17wkfx
h.pdf? AWSAccessKeyld=AKIATS6TQIRTWSMT
NPEA&Expires=1484198465& Signature=ol Xr21s1T,
%62Fyx

Asano, M., T. Iryo and M. Kuwahara, 2010. Microscopic
pedestrian simulation model combined with a tactical
model for route choice behaviour. Trans. Res. Part C:
Emerging Technol., 18: 842-855.

Blue, V. and J. Adler, 1999. Cellular automata
microsimulation of bidirectional pedestrian flows.
Transp. Res. Record J. Transp. Res. Board, 1678:
135-141.

Burstedde, C., K. Klauck, A. Schadschneider and
1. Zittartz, 2001. Simulation of pedestrian dynamics
using a two-dimensional cellular automaton. Physica
A: Stat. Mech. Appl., 295: 507-525.

Clayton, 5., N. Urquhard and J. Kernidge, 2009
Application of CoSMoS parallel design pattemns to a
pedestrian simulation. Parallel Processing and
Applied Mathematics, Wyrzykowski, R., I. Dongarra,

California.

K. Karczewski and T. Wasmewski (Eds.). Springer,
Berlin, Germany, ISBIN:978-3-642-14402-8, pp: 505-512.
Daamen, W., 2004. Modelling passenger flows in public
transport facilities. Ph.D Thesis, TU Delft, Delft
University of Technology, Delft, Netherlands.

Ehtamo, H., S. Heliovaara, S. Hostikka and T. Korhonen,
2010. Modeling Evacuees' Exit Selection with Best
Response Dynamics. In: Pedestrian and Evacuation
Dynamics 2008, Klingsch, WW.F., C. Rogsch, A.
Schadschneider and M. Schreckenberg (Eds.).
Springer, Berlin, Germany, ISBN: 978-3-642-04503-5,
pp: 309-319.

Erra, U, B. Frola, V. Scarano and I. Couzin, 2009. An
efficient GPU implementation for large
individual-based simulation of collective behavior.
Proceeding of the 2009 HIBI'09 International
Workshop on High Performance Computational
Systems Biology, October 14-16, 2009, IEEE, Salemo,
Ttaly, ISBN:978-0-7693-3809-9, pp: 51-38.

Flynn, M.J., 1966. Very high-speed computing systems.
Proe. IEEE., 54: 1901-1909.

Flynn, M.1., 1972. Some computer organizations and their
effectiveness. TEEE. Trans. Comput., 100: 948-960.

Galea, ER. and J.P. Galparsoro, 1993. Exodus: An
evacuation model for mass transport vehicles. Civil
Aviation Authority, 22: 341-366.

scale

Int. J. Soft Comput., 11 (6): 427-436, 2016

Guy, 3.7, J. Chhugani, C. Kim, N. Satish and M. Lin et al.,
2009. Clearpath: Highly parallel collision avoidance
for multi-agent simulation. Proceedings of the 2009
ACM SIGGRAPH-Ewographics Symposium on
Computer Animation, August 01-02, 2009, ACM, New
York, USA., [SBN:978-1-60558-610-6, pp: 177-187.

Haight, F A, 1963. Mathematical Theories of Traffic Flow.
Academic Press, New York, USA...

Helbing, D., I. Farkas and T. Vicsek, 2000. Simulating
dynamical features of escape pamc. Nature, 407:
487-490.

Hoogendoorn, S.P., P.H. Bovy and W. Daamen, 2002.
Microscopic pedestrian wayfinding and dynamics
modelling. Pedestrian Evacuation Dyn., 2002: 123-154.

Huang, HI. and RY. Guo, 2008. Static floor field and exit
choice for pedestrian evacuation in rooms with
internal obstacles and multiple exits. Phys. Rev. H.,
Vol. 78.

Hughes, R.L., 2002. A continuum theory for the flow of
pedestrians. Transport. Res. Part B: Methodol., 36:
507-535,

Jaber, K M., R. Abdullah and N.A A. Rasind, 2014. Fast
decision tree-based method large
DNA-protein sequence databases using hybrid
distributed-shared memory programming model. Int.
I. Biomf. Res. Applic., 10: 321-340.

Johnson, E.E., 1988. Completing an MIMD multiprocessor
taxonomy. ACM. Sigarch Comput. Archit. News, 16:
44-47.

Jordan, L.E. and G. Alaghband, 2002, Fundamentals of
Parallel Processing. Prentice Hall, Upper Saddle River,
New Jersey, ISBN:0139011587,.

Josell, M., EB. Passos, M. Zamith, E. Clua and
A, Montenegro et al., 2009. A neighborhood grid
data structure for massive 3d crowd smnulation on
GPU. Proceeding of the 2009 VIII Brazilian
Symposium on Games and Digital Entertainment,
October 8-10, 2009, IEEE, Niteroy,
ISBN:978-1-4244-6011-3, pp: 121-131.

Ketchell, N., S. Cole, D.M. Webber, C.A. Marriott and
P.J. Stephens et al., 1993. The EGRESS Code for
Human Movement and Behaviour in Emergency
Evacuations. In: Engmeering for Crowd Safety, Smith,
R.A. and I.F. Dickie (Eds.). University of Edinburgh,
Edinburgh, Scotland, pp: 361-370.

Keoerhonen, T., 8. Hostikka, S. Heliovaara and H. Ehtamo,
2010. FDS3+ Evac: An Agent Based Fire Evacuation
Model. In: Pedestrian and Evacuation Dynamics 2008,
Klingsch, W.W.F., C. Rogsch, A. Schadschneider
and M. Schreckenberg (Eds.). Springer, Berlin,
Germany, ISBN:978-3-642-04503-5, pp: 109-120.

to index

Brazil,

435

Lakoba, T.I., D.J. Kaup and N.M. Finkelstein, 2005.
Modifications of the helbing-molnar-farkas-vicsek
social force model for pedestrian
Simulation, 81: 339-352.

Leopold, C., 2001. Parallel and Distributed Computing: A
Survey of Models, Paradigms and Approaches. John
Wiley & Sons, New York, USA. ISBN:0471358312,.

Lo, SM., 1999. A fire safety assessment system for
existing buildings. Fire Technol., 35: 131-152.

Lo, SM.,, Z. Fang, P. Lin and G.3. Zlu, 2004. An
evacuation model: The SGEM package. Fire Saf
J.,39:169-190.

Lozano, M., P. Morillo, I M. Orduna and V. Cavero, 2007.
On the design of an efficient architecture for
supporting large crowds of autonomous agents.
Proceeding of the 21st International Conference on
Advanced Information Networking and Applications
(ATNA'O7), May 21-23, 2007, TEEE, Valencia, Spain,
ISBN: 0-7605-2846-5, pp: 716-723.

Lysenko, M. and D.R.M. Souza, 2008. A framework for
megascale agent based model siumulations on
graphics processing umts. J. Artif. Societies Soc.
Simul, 11: 10-27.

Mintal, M., 2012. Accelerating distance matrix calculations
utilizing GPUL I. Inf. Control Manage. Syst., 10: 71-80.

Mintal, M., 2014. Framework for utilizing computational
devices within simulation. Acta Inf. Pragensia, 2:
59-67.

Pelechano, N. and N .I. Badler, 2006. Improving the realism
of agent movement for high density crowd
sinulation. Ph.D Thesis, Center for Human Modeling
and Sinulation, Umversity
Philadelphia, Pennsylvania.

Porte, P. and D. Thalmann, 2005. Real-Time Simulation of
a Large Crowd on a Cluster of Machines. VRLab
Publisher, San Francisco, California,.

Robin, T., G. Antonim, M. Bierlaire and I. Cruz, 2009.
Specification, estimation and validation of a
pedestrian walking behavior model. Transp. Res. Part
B Methodol., 43: 36-56.

Sarmady, 3., F. Haron and A.Z. Talib, 2011. A cellular

circular movements of
pedestrians during Tawaf. Simul. Modell. Pract.
Theory, 19: 969-985.

Silva, ARD., W.S. Lages and L. Chaimowicz, 2009. Boids
that see: Using self-occlusion for simulating large
groups on gpus. Comput. Entertamment CIE., 7: 1-20.

Silverman, B.G., M. Johns, I. Cornwell and ©.X. Brien,
2006. Human behavior models for agents in
simulators and games: Part I: Enabling science with
PMFserv. Presence Teleoperators Virtual Environ.,
15:139-162.

evolution.

of Pennsylvama,

automata model for

Int. J. Soft Comput., 11 (6): 427-436, 2016

Solar, R., F. Borges, R. Suppi and E. Luque, 2013.
Improving communication patterns for distributed
cluster-based individual-omented fish school
simulations. Procedia Comput. Sci., 18: 702-711.

Solar, R., R. Suppt and E. Luque, 2010. High performance
individual -oriented simulation using complex models.
Procedia Comput. Sci., 1: 447-456.

Solar, R., R. Suppt and E. Luque, 2011. High performance
distributed cluster-based individual-oriented fish
school simulation. Procedia Comput. Sci., 4: 76-85.

Solar, R., R. Suppi and E. Luque, 2012, Proximity load
balancing distributed
individual-oriented fish school simulations. Procedia
Comput. Sci., 9: 328-337.

Thompson, P.A. and EW. Marchant, 1995. Computer and
fluid modeling of evacuation. Saf. Sci., 18: 277-289.

Vigueras, G., JM. Orduna and M. Lozano, 2010.
Performance improvements

for cluster-based

of real-time crowd
of the 2010 IEEE
International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (TPDPSW),
April 19-23, 2010, IEEE, Valencia, Spain, ISBN:
978-1-4244-6534-7, pp: 1-4.
Vigueras, G., M. Lozano, J.M. Orduna and F. Grimaldo,
2008a. Improving the performance of partitioning

simulations. Proceeding

methods for crowd simulations. Proceeding of the
HIS'08 8th International Conference on Hybrid
Intelligent Systems, September 10-12, 2008, TEEE,
Valencia, Spain, [SBN:978-0-7695-3326-1, pp: 102-107.

436

Vigueras, G., M. Lozano, C. Perez and I.M. Orduna, 2008b.
A scalable architecture for crowd simulation:
Implementing a parallel action server. Proceeding of
the 2008 37th International Conference on Parallel
Processing, September 9-12, 2008, IEEE, Valencia,
Spain, ISBN:978-0-7695-3374-2, pp: 430-437.

Yilmaz, E., V. Isler and Y.Y. Cetin, 2009. The virtual
marathon: Parallel computing supports crowd
simulations. TEEE. Comput. Graphics Appl., 29: 26-33.

Yong, R.G. and H.H. Jun, 2010. Logit-based exit choice
model of evacuation in rooms with mternal obstacles
and multiple exits. Chin. Phys. B, Vol. 19,

Zainuddin, Z. and M. Shuaib, 201 0a. Modification of the
decision-making capability in the social force model
for the evacuation process. Transp. Theory Statist.
Phys., 39: 47-70.

Zamuddin, Z. and M. Shuaib, 2010b. Incorporating
decision making capability into the social force model
in unidirectional flow. Res. I. Applied Sci., 5: 388-393.

Zainuddin, 7. and M.M.A. Shuaib, 2011. Modelling the
independence factor and its effect on the preferred
force of the social force model in emergency and
non-emergency situations. Appl. Math. Inf. Sci., 5
53-64.

Zhao, C.M., SM. Lo, TA. Lu and 7. Fang, 2004. A
simulation approach for ranking of fire safety
attributes of existing buildings. Fire Saf. T., 39:
557-579.

Zhou, B. and 3. Zhou, 2004, Parallel simulation of group
behaviors. Proceedings of the 36th Conference on
Winter Simulation, December 05-08, 2004, ACM,
Washington, DC., ISBN:0-7803-8786-4, pp: 364-370.

	427-436_Page_01
	427-436_Page_02
	427-436_Page_03
	427-436_Page_04
	427-436_Page_05
	427-436_Page_06
	427-436_Page_07
	427-436_Page_08
	427-436_Page_09
	427-436_Page_10

