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Abstract: In this study, a modifiable 2-qubit quantum block encryption algorithm employing the idea of
superdense coding will be proposed. One of the most fascinating properties of this algorithm is that after a step
of analysis we can decide when to change the operations of the algorithm whenever it 1s statistically necessary.
The underlying operations in this algorithm are unitary operators which can be represented using rotation
matrices. The parameters for the combination of the rotation matrices can be generated using a quantum random
number generator and transmitted safely taking advantage of the BB84 protocol, to generate the needed umtary
operators for decryption. The message, being transmitted over an msecure channel, will be encrypted using
the modifiable 2-qubit block encryption algorithm developed in this study. The keys are created using a
quantum random number generator are also transmitted securely applying the BB84 algorithm. The security
analysis and an example illustrating how the algorithm works rounds off this study. An overview of the
complete process from the generation of the algorithm to the decryption of the message 1s illustrated explicitly.
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INTRODUCTION

Advances m quantum computation are always
considered as threats to classical encryption systems.
The most comprehensive summary in the field of quantum
computation was given by Nielsen and Chuang (2010). Let
us consider the first block encryption algorithms. These
algorithms are very easy to implement but depend
significantly on the key length to ensure an appropriate
level of security. Obviously, the length of the key 1s
important to make a brute force aftack very difficult
(Schneier, 2007) However, of course, longer keys also
mcrease the number of operations for encryption and
decryption. What 1s the difference m using a quantum bit
using the same computational basis {0}, |1} As any
quantum bit can be written as a superposition of the
computational basis vectors, we get:

SY= a0y + B (1

where, &, p € Cand|a || B|* = 1. If we look at this infinite
set, we can easily see that every pomt on this circle 15 an
accumulation point. Tf, in an open interval around the
point x of a set, there are infinitely many points, we call
this an accumulation point. Whereas the set of integers
has no accumulation pomt. So evidently one qubit 1s
sufficient to store a key that is combinatorial inaccessible.

The only restriction in this case is that every transmission
channel has a certain amount of noise. Therefore, the
noise level and the associated error correction are the
only limiting characteristics for the key and its
transmission. If we neglect this, one qubit 1s sufficient to
prevent any combinatorial motivated brute force attack, as
the number of possible keys is infinite, because of every
point in the set is an accumulation point. The
mathematical theory is telling us that the key space is
infinite but the according to Bekenstein, there is an
upper bound to the mformation m the umverse
contradicting the mathematical claim. So, despitethe
mathematical reasons, we can say that the quantum key
space is congiderably large but not infinite which is also
inline with the limitation caused by the noise. From the
birth of the idea quantum computation, it was clear that
the nature of quantum measurement plays an important
role in the secure transmission of information. So, it 1s
obvious that one of the first significant contributions
to quantum computation would be a way to prevent
eavesdropping. The BB84 protocol proposed by
Bennett and Weisner (1992) allows secure quantum key
distribution over an msecure channel. There are many
aspects of quantum computation related to security.
Another aspect was illuminated by Shor (1994) by his
ground breaking works on  polynomial time
algonthms for prime munber factorization. These works
show how vulnerable classical public key encryption
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Fig. 1: Encryption,transmission and decryption process. QNG: Quantum Random Number Generator, QKG: Quantum
Key Generator, QHA: Quantum Half Adder, CPE: Classical Pre-Encryption, QEA: Quantum Encryption Algorithim,
QDA: Quantum Decryption Algorithm, CPD: Classical Pre-Decryption: a) Generation and distribution of the
algorithm; b) Encryption process; ¢) Transmission of the cipher text keys; d) Decryption process

algorithms become if the prime number factorization can
be accomplished in polynomial time. We would like to
refer to the quantum encryption algorithm proposed in 206
by Zhou where a classical plaintext message 1s encrypted
using a quantum computational algorithm employing six
quantum keys divided into four groups. The output is a
quantum ciphertext composed of three qubits. So in this
algorithm a classical bit 1s encrypted three quits.
Moreover, we would like to refer to the algorithms. All of
them in common can apply under certain circumstances
self-inverse unitary operations to a message
encrypt a message. Other encryption algorithms like

to
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Leung are relying on entanglement where the entangled
key is sent over an insecure quantum channel. A
generalisation of 1s given by Boykin and Vwam
Roychowdhury. Furthermore, in a classical binary bit 1s
encrypted using keys in a non-orthogonal quantum state
which was extended by Zhou to a new quantum
encryption algorithm. Horcas ef al. (2007) proposed
standard one-time pad encryption algorithm for classical
messages without a pre-shared or stored key (Fig. 1).
Cao and Liu refined this algorithm to a probabilistic
algorithm. Khalaf and Abdullah (2014) proposed a novel
quantum encryption algorithm that can be used to encrypt
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classical messages based on quantum shift register.
Recently, Zhou present a new quantum image encryption
algorithm based on generalized Amold transform and
double random-phase encoding and this 13 open new filed
to developed the quantum encryption algorithm. All the
ideas in Khalaf and Abdullah (2014) and Abdullah et al.
(2015) discuss the quantum block encryption algorithm
with hybrid keys and we are using same concept but with
a novel scheme. In this study, we present the complete
encryption process as depicted in Fig. 1.

First we have to generate the angles and parameters
for the generation of the unitary operators as in Eq. 2.
Then using the quantum random number generator a pair
of quantum keys are generated. The ciphertext to be
transmitted is composed of the quantum padding bit and
the quantum encrypted message. This message can be
transmitted via an insecure quantum channel. In every
mstance, the measured keys or the algorithms that need
to be changed, two messages have to be sent over a
quantum secure channel. The first one 18 a two-qubit
message for the measured values of the key using the
BBRg4 algorithm; the second 13 a message incorporating
the parameters of each operator for the encryption So
with these parameter changes we can also transmit the
change of the encryption algorithm and it means that we
use an unlimited number of operators in the algorithm, a
new and unique feature which is different from others
algorithms that were submitted previously. Thus, after
receiving three messages from the sender, two messages
over a secure channel, 1.e. the key pair and the parameter
list and one over an msecure quantum channel, we will
discuss the decryption mn study V.3 as an inverse
operation of the encryption. Finally, we close the study
with a security analysis and the conclusions.

Quantum Key Generator (QKG): For the quantum key
generation, we could think of many physical processes
that underly the quantum random number generation.
However, as owr main focus will on the encryption
algorithm, we want to mention just a simple method for the
generation of a quantum key as superposition state in the
computational basis. The Quantum Random Number
Generators (QRNG) currently available are used as mput
to our key generator. So a short overview of the QRNG 1s
given in the following section and showing how thus
QRING can be used for the generation of a quantum key.

Quantum Random Number Generator (QRNG): The
probabilistic nature of quantum processes obviously
makes quantum processes a strong candidate for quantum
mumber generation. For a long period, one of the best
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random number generators was based on radicactive
decay. Furthermore, the arrival of photons in a
photodetector, statistical white noise and other processes
were also used for random number generation. All these
methods based on quantum processes have a
non-measurable correlation. There are numerous articles
on quantum random number generation or processes
that can be utilized to create QRNGs. We would like
to refer some of the publications of this still hot topic
(Boixo et al., 2014; Abellan et al., 2014; Jennewein et al.,
2000, Stefanov et «l, 2000, Katsoprinakis et al.,
2008). There are also registered patents for QNRG

available as:

WETe

Unitary operators: Umnitary operators form the foumdation
of the encryption algorithm being presented in this study.
Unitary operators can be written in the form:

U =e"R,(BR,_(7)R,(5) (2)
Where:
R,(©)=¢"* and 0, = Being the Pauli matrices and
o, B,y = Or alternatively we can write every

unitary operatoras

U =eAxBxC withABC =1 (3)

We start with the transmission the parameters for all
unitary operators over a secure channel. For long cypher
texts it is appropriate to change the parameters of the
unitary gates and therefore the encryption algorithm, in
order to facilitate greater security.

Quantum key generator algorithm: Using a quantum
random generator for integer numbers as discussed in the
previous section, we generate two mteger random
numbers n and m for each quantum key X; and X, =X and
¥, are quantum keys in the form

X} =0, 0)+B; |1} with je (0.}

As the primary focus 13 on the block encryption
algorithm and not on the quantum key generation, we just
propose two trivial quantum key generation algorithms
based on two integer random numbers n and m from a
QRNG. For each key, we need to generate one pair of
random numbers n, and m. So the question is the
following; how can we convert n, and m; into o and f,?
Assuming that |0) and |1} are equally likely, we can
convert the random numbers n and m:
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Fig. 2: First quantum Half Adder for two quantum bits
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Alternatively, we can also use:

LR, mod3(n,)|-1) (5)

2

1
X ) “ A mod3({m, }|-0)+
where, R(&) denotes the Rotation operator with respect to
the axis 1. Of cowrse, one can think of many more
processes to generate quantum keys.

The Quantum Half-Adder (QHA): In classical
computation, the half adder circuit randomises
pseudo-random numbers but here the quantum half
adder is used to generate padding bits. The quantum half
adder circuit for two qubits, depicted in the figure below,
is used for the generation of the padding qubit which is
part of the ciphertext (Fig. 2).

The quantum half-adder circuit consists of quantum
Control-Control-Not Gate (CCNOT -Gate or Toffoli-Gate)
and quantum Control-Not Gate (CNOT-gate). This circuit
takes three input qubits |3{;}, |X,} and |0} and returns
three output qubits |X,}, | Q) and |Cy). The qubits |Q, Cp)
form the two-bit quantum padding state |P}.

In the Lterature, one can find various physical
umplementations of the quantum half-adder. Exemplarily,
we would like to refer to Murali et al. (2002) for the
NMR-based implementation and to (Barbosa, 2006) for the
optical implementation.

Let us determine the output qubits |-} and |-Cy} of
the quantum half-adder circuit 1 the case that the input
states |-X,» and |-X,} are either just the basis states {-|0},
-|1} or superposition states of the basis states. If |3
and |X,} are either |0} or |1}, then we get for the output
qubits:
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Fig. 3: Quantum half-Adder for two quantum bits and
measurement for | X} and |X,)

|Q>:|XU®X1>
|C o) =X x X, @0)

If |X,) and |X,} are both superposition states, i.e., | X} =
o |O3+HB |1} and | X,) = v |034D |1} then the cutput is a three
qubit entangled state:

| P)=|X,.Q.C, =0 [000)+ 8| 010)
+By[110)+ B3| 101}

This state will be used as the padding qubits.

Classical Pre-Encryption (CPE) and Classical
Pre-Decryption (CPD) with measured Keys X; and X;:
For the classical pre-encryption, we first perform a
measurement of the keys |X;) and |X) in the
computational basis at the end of the application of
the QHA as shown in Fig. 3. Getting X and X,e{o, 1}.
Where:

_ |0 with probability]cr, | )
" | 1 with probability|g,|’
and:
0 with probability|ct,| 7

.

These values of X; and X, are used for the following

‘ 2

1 with probability |,

classical pre-encryption as shown mn Fig. 4. Let MM, be
a 2-bit classical message. Then the classical message in
quantum notation |MM,) will be first encrypted
according to the circuit depicted in Fig. 4.

For the decryption of the message |EM,, EM,}, the
keys X; and X, have to be transferred securely to the
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(My) —D |EMg)
|My) & |[EMy)
X . Xp

Xy
Fig. 4: First level encryption of the classical message

|[EMg) —® |Mp)

EM;y) 5 |My)
XU L Xﬂ
Xl & Xl

Fig. 5: First level decryption of the quantum encryption
message

recewer. The pre-encrypted message and the transferred
keys 3{; and X, serve as input for the classical decryption
algorithm depicted in Fig. 5 which de facto is the classical
pre-encryption algorithm depicted in Fig. 4 applied in
reverse order.

Quantum Block Encryption Algorithm (QBEA) process
and Quantum Block Decryption Algorithm (QBDA)
Process: The idea of the algorithm is straightforward. For
the encryption of each qubit we need one umtary
operator; therefore, at least two distinect unitary operators
become necessary for the encryption process. Following
the idea of superdense coding, two out of four generated
distinct umitary operators are selected according to the bit
sequence of the measured quantum keys, as described
below. Therefore, we first propose how the umtary
operators are generated using a set of parameters being
transmitted to the receiver using the BB84 algorithm. The
generation of the operators allows us to send the
parameters, responsible for the generation of the
operators over a secure channel to change the
algorithm, whenever i1t i1s necessary. The encryption
algorithm is designed based on these operators. As we
have generated two keys and we have a two bits message,
we need to generate quantum ciphertext with three
quantum bits.
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EM;) e |QEM, )
|EMz) Ug |QEM,)
|P) P}

Fig. 6: Quantum block of encryption algorithm with
T =—w,i=—pand v, ne {0,1}

Tablel: Correspondencetableforencryption

X, X1) Uy,
(0,0 U
©, 1 Unt
(1,0 Uiy
a,n Unt

Quantum encryption: The idea for the Quantum
Encryption Algorithm (QEA) is very straightforward.
We will use the same principle as in the super dense
coding presented by Benmett and Wiesner (1992). Based
on the combination of the two measured key bits X and
X, we will select the operation on |EM). As we have two
bitsof consideration, we can have four different
So for each of the
unique

combinations of these two bits.
be
operation assigned, i.e., Un=#Usifv#iandu 5 resulting in
the Table 1.

Let ¥,=0X =1P=1,EM, =1, EM, =0 Then, we compare
the pair (34, %) = (0, 1) with the bit pairs inthe Table 1, to
assign the unitary operation Uy, for the encoding of EM,

combmation there must a unitary

and U,; for the encoding of EM,. So finally, we apply the
following operation on |EM,|EM,} (Fig. 6):

|EM1) :(I®Uul) :Uu1|EM1> :‘QEM1>
|EM2> :(I ®Ulu):U1u|EMz :‘QEM2>

Resulting in the quantum cipher text | QEM,, QEM,}
of the two bit message.

MATERIALS AND METHODS

Transmission: We transmit the parameters for the
unitary Gates over a quantum secure chamnel and
send the two keys X; and X, using a quantum
channel by BB84. For the quantum ciphertext which 1s
insert |QEM,} and |QEM,} between are send over an
insecure channel.
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Table 2: Comespondencetablefordecryption

X X)) u,!
0,0 Up?
©.1) Uy
(1,0 Uyy?
a1y uy,!
|QEM;) - Uy | |EMy)
|QEMz) Uss |[EM,)
|P) |P)

Fig. 7: Quantum block of decryption algorithm

Decryption: The idea for the Quantum Decryption
Algorithm (QDA) is same quantum encryption algorithm
but with opposite direction Where based on the
combination of the two measured key bits X and ¥, that
we received by secure chammel we will select the
operation on |QEM,}. As we have two bits of
consideration, we can have four  different
of these two bits. So, far each of the
combination there must be a unique inverse unitary

combinations

operation assigned, ie., Uj=1U;ify=iand p=j resulting in
the Table 2.

At the end we apply the quantum cipher text to the
mverse of the umtary to get the decryption message
Dm; as shown in Fig. 7. And then we apply the
mverse of the classical first level decryption to decrypt
DM and get M.

RESULTS AND DISCUSSION
Example: In the following example we discuss how our
algorithm work, where the sender send all the parameter to
the receiver to set all the umitary operations before

starting the encryption process and where we assume
that the value of the unitary are:

U, =Z,U, =H U =¢*R,(B)
R, (7)R,(8).,U, =1

And the parameters for the U ; are:

(00=90°B=74°1=1,v=0°m=2,3=106°)

We apply the parameter to compute the U

c0574 ><Ifisin7'4 xX
2 2
U, =¢™"| (cos0°XI —isin0°x Y)

o] (o]
cos 106 xI—isinlO6 xX
L 2 2 .

4 3 3 4
U, =0+i|| == I-1=xX |(1)] =xI-i—xX
5 5 5 5

16 .9 12
i IX 1< IX X1
25 25 25

12
U, :l[(EXIZ

U, =i[-iIX]

So the final result for the unitary of Uy, 18 X. Now, if we
have the output of the first quantum key generator is:

1%,

:%\OW%U)

and the output of the second quantum key generator is:

|X1>—j50>+‘g|1>

and if we have the classical message is:
M = 11)

Before we make the classical pre-encryption we should
take the measurement to the values of X, and X,. Then we
make the classical pre-encryption between the classical
message and the output of the quantum key generator
after the measurement for them.After that we compute the
output of the quantum half-adder P and it 1s:

1 1 1 1
P:£\0>+$|O)+£\l>+£|0>

Now, we compute the quantum encryption message
after the unitary transformation The full encryption
process is in Table 3. After the encryption process we
transmit to the receiver the value of |X,, X} over public
channel and the value of ?over secure channel. The
receiver will make the decryptionprocess where all the
encryption process will invert to get the final the classical
message |M,}.

Security analysis: The security of the scheme is directly
based on BB84 protocol. In some sense, it is just the
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Table 3: The results of encryption process in the above example

X, X, P EM, U OEM, EM, U, . OEM, |GEM,. P, OEM,
0 0 0 1 U L 1 Uy, 11 -[101)

0 1 1 1 Uy, |-} 0 Uy [1} [-117

1 0 1 0 Uy |-} 1 Up |-} [-1-}

1 1 0 0 U, [0} 0 Uy [0} 1000}

generalization of BB84 protocol in the scenario of two
users communicating with the help of a shared key. We
now give a brief argument for the security of the improved
scheme. Givena ciphertext |QEM,, P, QEM,} an adversary
cannot derive M, M, without the information of (U, U,
U, Uy, ) because the qubit |EM,)|EM,), is constrained to
the two pairs of conjugate state (|0), |1}, [+, |-) Because
of the encryption transformation, the adversary cannot
determinewhich operator of the possible operators
Uy, =2,Uy =H, Uy, =R (B)R,, {¥)R,(8), U, =1 has been used. For
each bit of M, the probability is bounded by 1/4.
Suppose the length of the encrypted message block 1s n,
the probability 1s bounded by 1/4" which 1s negligible.
Furthermore, if the adversary can obtain the multiple
duplications of the first qubit and measure them, he
camnot determine the bit M, because the four states are
uniformly distributed in the first position. For example, if
the adversary obtains |1 and knows each qubit, he can still
not determine M, because there are two preimages, (Uy,,
U,,). Finally, the adversary cannot derive |M,} from the
qubit |P) since the padding bit P has no relation to M,.
This comes from the fact that all quantum operators are
performed on the first qubit. In the same way, we calculate
M,. For each bit of M, the probability 1s bounded by 1/4.
Suppose the length of the encrypted message block 1s n,
the probability is bounded by 1/4* which is negligible.
Furthermore, if the adversary can obtain the multiple
duplications of the third qubit and measure them, he
cannot determine the bit M, because the four states are
uniformly distributed in the first position. For example, if
the adversary obtains |1} and knows each qubit, he can
still not determine M, because there are two preimages,
(Uyg, Uy). Finally, the adversary cannot derive |M,)
from the qubit |P}, since the padding bit P has no relation
to M,.

CONCLUSION

The quantum technology 1s very important and being
umproved continuously, especially in the field of quantum
cryptography. At the same time, the most of the world is
challenging the fact that science and technology is in
constant progress and sooner or later, the quantum
computers will take their part in this world. So it is not
possible to treat or transfer all of the existing nformation
1n classical form which 1s more conventional to the people
in quantum and pre-shared classical technology since the
security cannot be guaranteed. Therefore, we present a
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new quantum block encryption algorithm based on
quantum half-adder, in this study we improved the
quantum encryption algorithm, entailing two key bits to
encrypt one message bit. The output of the algorithm is
just composed of two qubits and one padding bit. The
algorithm saves about half the cost without the loss of the
security and the security is further improved through
using the umtary operator without specifying the operator
but only through the parameter that 1s used in the umtary
where the sender and receiver generate the parameter for
the generation of the umtary operators and there 1s
agreement about these unitary operators before the
encryption process begins. This makes the algorithm
probabilistic rather than deterministic.
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