International Tournal of Soft Computing 12 (5-6): 329-336, 2017

ISSN: 1816-9503
© Medwell Journals, 2017

Data Retention and Efficiency of Information Retrieval

Romani Farid Ibrahim
High Institute of Computer Science and Information,
City of Culture and Science, 6 October City, Egypt

Abstract: Over the years, the size of data is increasing in organizations information systems. The value of
mformation/data depends on its accuracy and timeliness. When it becomes obsolete or there 15 no need to use
1t, it becomes a burden on the system. In this study, our concern 18 improving the performance of data retrieval
from relational database systems and to determine how long data should be retained on the system. We
classified transaction data mto two classes: basic data class and historical data class. We proposed new
properties for data item and an algorithm for data management that help in data analysis and transferring data
among system components automatically until it removed from the system. We implemented a prototype for
the algorithm and measured data retrieval performance, we found that by reducing a table size the data retrieval
performance is increased approximately by the same ratio.

Key words: Database, transaction, query optimization, mformation retrieval, indexing, concurrency control,
data warehouse, load balancing, cloud computing

INTRODUCTION

Information 1s defined as the processed data to make
it meaningful and useful. The value of information
depends on its accuracy, completeness and its availability
on the required time. When this information become
obsolete or there 1s no need for use it, it becomes a
burden on the system and it costs space, increases
processing time and retrieval time and complicates
maintenance process. Logically, it 15 not acceptable that
the system keeps historical transactions data and unused
old data forever because there 1s available disk space and
the ncrease of hardware speed and the performance of
searching algorithms and indexing techniques.

Data are classified into three different kinds: fully
structured, semi-structured and unstructured. Fully
structured data follows a predefined schema. The schema
defines the type and structure of data and its relations. A
typical example for fully structured data 1s a relational
database system. Unstructured refers to the fact that no
identifiable structure within this kind of data is available.
Unstructured data 1s also described as data that cannot be
stored mn rows and columns in a relational database. An
example for unstructured data is a document that is
archived in a file folder. Other examples are videos and
umages. Semi-structured data 13 often explamned as
schemaless or self-describing, terms that indicate that
there is no separate description of the type or structure of
the data, it does not require a schema definition. A typical
example of semi-structured data 13 XML and JSON
documents (Sint ef al., 2009).

329

Information Retrieval (IR) deals with the
representation, storage of and access to mformation
items. The representation and orgamization of the
information items should provide the user with easy
access to the information in which he is interested
(Yates and Neto, 1999). Another definmition for information
retrieval from the view of web search 1s finding material
(usually documents) of unstructured nature (usually text)
that satisfies an information need from within large
collections (Manning ef al., 2008).

Query optimization is the activity of choosing an
efficient execution strategy for processing a query to
minimizes resource usage. Query optimization tries to
reduce the total execution time of the query which 1s the
sum of the execution times of all individual operations that
make up the query (Connelly and Begg, 2003). A query
optimizer chooses whether or not to use indexes for a
given query and which join techmiques to use when
joining multiple tables. These decisions have a
tremendous effect on SQL performance (Anonymous,
2003).

DBMSs use mdexing techmiques for making the
retrieval of data more efficient. An mdex 1s a data structure
that allows the DBMS to locate particular records in
a file more quickly and thereby speed response to user
queries.

Transaction 13 defined as a means by which an
application programmer can package together a sequence
of database operations so that the database can provide
a number of guarantees, known as the ACID (Atomicity,
Consistency, Isolation and Durability) (O’neil and O’nell,

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

2001). We defined transaction as a program in execution
in which each write-set satisfies the ACTD properties.
Simple transaction 1s a transaction that cannot be divided
mto subtransactions and all ACID properties are
achieved.

Load balancing is a computer network method
for distnbuting workloads across multiple computing
resources to optimize resource use maximize throughput,
minimize response time and evade overload of any one of
the resources by the use of multiple components with
load balancing instead of a smngle component may
mcrease rehiability through redundancy (Haryeni and
Tagli, 2014).

When a database table grows in size to the hundreds
of gigabytes or more it can become more difficult to load
new data, remove old data and mamtam indexes. Just the
sheer size of the table causes such operations to take
much longer. Even the data that must be loaded or
removed can be very sizable, making INSERT and
DELETE operations on the table impractical. The
Microsoft® SQL Server® 2008 database software
provides table partitioning to make such operations more
manageable (Talmage, 2009).

Based on the concepts that we are mentioned in the
previous sections, we designed a data transfer algorithm
that helps in managing data in the databases
automatically and improve the data retrieval performance.

Literature review: Most researchers assume that data
retained in the system forever and it is the
responsibility of database administrators to manage their
organizations databases according to their business rules
and their experiences but there is no one approach that
manage this task automatically. To improve the
performance of data retrieval, researches have done much
work in many areas such as data partitioning, query
optimization, indexing, etc.

Talmage (2009) introduce a partition-aware SQL query
optimizer to generate efficient plans for SQL queries over
partitioned tables. Alsultanmy (2010) introduce a method
to use RATD levell with vertical partitioning to improve
the database retrieval. Agrawal et al. (2004) introduce
techniques to enable a scalable solution to the integrated
physical design problem of mdexes, materialized views,
vertical and horizontal partitioning for both performance
and manageability. Chu et al. (1999) introduce an
algorithm for choosing the least expected cost plan for
query execution. Gupta et al. (2015) present a summary of
query optimisation techniques. Geng (2015) introduce a
mechanism to achieve the purpose of optimizing the
performance of massive data retrieval through the study
of the Oracle database mdexing technology. Bertino et al.

is

330

(1997) present summary of indexing techniques for
advanced database applications such as parallel and
distributed databases, mobile computing, data
warehousing and the web. Mamun et af. (2012) introduce
a compression algorithm to compress the inverted file
index by compressing the document number in the
inverted file entries using a new coding techmque based
on run-length encoding.

MATERIALS AND METHODS

Transaction data classifications and data item
properties: In this study, we present a classification of
data that output from transaction processing and suggest
new data item properties to help in the evaluation if the
data item 1s needed to be retamn on the system or not.

Transaction data classification: Transactional data can be
classified mto two classes basic data class and historical
data class. Basic data class consists of the basic data of
an organization information system and it is used
frequently to perform update and insertion transactions
on this data class. Example of this data class 1s a products
table that stores data about the available quantities of
products and update transactions are performed to
increase or decrease the value of the available quantity of
a product. Insertion transactions are performed to add
new basic class data items for example, a new product is
added to the product table. Historical, data class stores
data about transactions on the basic data class and is
usually stored in transactions tables. It stores data about
daily transactions of an organization and data 1s usually
added only to the transactions tables. This type of data
class 1s usually retrieved for the purpose of analysis or as
inputs for summary transactions for example a summary
transaction that calculates the total sold amount of all
products or the total sold amount for a specific customer.
Usually, number of retrieval of the historical data is very
small compared to number of retrieval of the basic data.
After specific period of time historical data may be never
retrieved but it is still stored in the database.

The values of historical data class are unchangeable
after its transaction 18 committed because of the durability
characteristic of transactions. Also, old basic data class
items are rarely or never used after specific period of time
and becomes a burden on the system. An example of the
old basic data class 13 a university graduated students
data that still stored in the database of the current
undergraduate students, although students were
graduated from long time such as 10 or 20 years or more.
The system admimstrators solve the problem of
increasing the size of data by increasing the sizes and

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

mumbers of their hard disks but it is not logic to keep
student data i the same database from the date of lus or
her registration in the university to forever. The same 1dea
15 applied on all old basic data class m mformation
systems of different organizations such as old medical
products that are not currently produced or old model of
a device that currently not produced Also, many
organizations don’t have and don’t use a data warehouse
subsystem to analysis old data and get the benefits of
data warehousing.

Data items properties: All electronic data are usually
stored as files of different types (text, image, web
page, audio, video, database) and share common
characteristics such as date and tume of creation, last
modified (save) date and time and last access (moving)
date and time. Operating systems such as windows 10
does not store information about the last read time and
the number of reads. In some MS office applications such
as MS Word, it stores numbers of versicns which means
the number of modification of a document. All these
characteristics don’t give indication about the frequency
of use of a document or if there is a need to keep it on the
system or not.

We suggest to add new properties for data files that
can give indication about the usage frequency of a
document. For database applications, these properties can
be added to records or tuples. It can be used for data
analysis, data transferring among components of the
system or removing it from the system. Every data item
(record or file) can include the following properties:

Last read time
Last write time
Number of read
Number of write
Lifetime

The first four properties give mdication about the
usage frequency of data item and can be used for different
data analysis. These properties should be maintained
automatically by the system. The fifth property is an
expectation about the lifetime of the data item in a system.
The default value of this property 13 determined by the
system admimstrator according to the application type
and the busmess rules. The lifetime property can be used
for transferring data items among components of the
system or removing it from the system.

Data Transfer Algorithm (DTA): In this study, we
present suggested data classes and how DTA will
transfer data among these data classes, then we present
the data transfer algorithm and a flow chart as a graphical
representation for it.

331

Data classes and description of the data transfer
algorithm: As an example, we assume an umiversity
information system that stores students data such as
registration data, grades data, payments fees data, books
purchasing data, etc. The system administrator specifies
the different data classes for the system which are: basic
data class table, historical data class table, level 1 data
class table, level 2 data class table, basic-archive data
class table and historical-archive data class table. Every
data item (record) has a lifetime period in its class before
transferring to the next class. Default lifetime for each data
class is assigned by the system administrator according
to the application type and the business rules. Basic data
are transferred among three level of tables before deleting.
We assume basic data class contamns the current data that
are usually used, we call it basic active data. The level 1
data class contains semi-active data that are used from
time to time but not frequently and are called semi-active
data. Level 2 data class contains data that are rarely used
and are called semi-passive data. Archive class contains
data that approximately never used and are called passive
data. Also, historical data class contains recently
transaction data before transferring to archive and
become passive data (Fig. 1).

The system checks the data item properties every
period (for example daily) as set by the system
admimstrator. It checks if the current date equals the
end of lifetime date and the data item 1s never accessed
(read or write) for 1 year (366 days) or more, if the
evaluation of these conditions is true then the data item
is transferred to the next level data class. Historical, data
will be transferred to the lustorical data archive. The
purpose of checking the data are never accessed for
1 year or more is to be sure that the lifetime period that is
assigned by the system admimstrator is well expected and
1s suitable for the data item, otherwise the system will not
transfer the data to next level data class. The data that is
stored n the data archives for specific period of time
according to law rules or orgamization rules before
deleting 1t, the system requests a permission from the
system administrator to delete it, if the permission is
granted data will be deleted, otherwise data remains as it
is in the archive.

Pseudo and flow chart for data transfer algorithm: The
following algorithm can be put as a part of the database
management system or as a separate program that can be
used as a tool by database administrators to help them in
managing their organizations databases. The system
performs the check automatically and regularly as
specified by the system administrator for example daily.
The DBMS rebuilds indexes automatically after the
transfer of data from the source table to the destination
table.

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

Begin transaction Begin transaction
move data to level 1 move data to hieratical-
tables assign lifetime2 archive tables assign
end transaction legal time end transaction

No
End of file
Yes

No
ilifeéﬁl?; Current date
>=lifetime3
Yes Yes
No s A
s> o L
LST>+366
Yes Yes
Begin transaction
move data to level2 Begin transaction
tables assign lifetime3 move data to basic-
end transaction archive tables assign
legal time end transaction]

No
End of file
Yes

No
End of file
Yes

Fig. 1: Flow chart for data transfer algorithm

332

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

Algorithm:
maing)
{
Tt basic data class table
{cal basic-class-transfer}
else if historical data class table
{call archive-class-transfer }
else if levell data class table
{call levell -class-transfer }
else if level2 data class table
{call evel2-class-transfer }
else archive data class table
{call archive-handling}}
BRasic-class-transter()
{
Tf the current date = = the lifetimel-date
{ Ifthe lifetimel-date- last-access-time >= 366
begin transaction
get exclusive lock on data item
copy data item to levell table
assign lifetime2-date to data item
delete data item fiom basic-class table
end transaction
}
}
Historical-class-transfer()
{
If the current date = = the life-timel-date
{ If the life-timel -date-last access time > = 366
Begin transaction
Get exclusive lock on data item
Copy data itern to historical-data archive table
Assign legal-period to data item
Delete data item from historical-data-class table
End transaction
}
}
Levell-class-transfer()
{
If the current date = the lifetime2-date
{ If the lifetime2-date-last-access-time > = 366
Begin transaction
Get exclusive lock on data item
Copy data itemn to level2 table
Assign lifetime3 to data item
Delete data itern from levell-class table
End transaction
}
}
Level2-class-transfer()
{
Tf the current date = = the lifetime3-date
{ If the lifetime3-date-last-access-time > = 366
Begin transaction
Get exclusive lock on data item
Copy data itern to basic-archive-class table
Assign legal-time to data item
Delete data itermn from level2-class table
End transaction

}

)
Archive-handling()
{
If the current date = = the legal-time-date
{ If the legal-time-date last-access-time > = 366
Request user permnission for deletion
If user accept deletion
{ Delete data items from archive-class table}
)
}

333

RESULTS AND DISCUSSION

Experimental evaluation: The purpose of this study 1s to
evaluate the performance of query processing when a
table size 1s reduced by distributing its data to the levels
tables and archive or remove old data from the system.
We started by a database that includes a basic data table
which contains 800000 records, then we distributed data
into levels tables and remove old data so the number of
records is decreased to 400000 records and the size of
basic data table 1s reduced. We repeated the process by
reducing the table size to the half to contain 200000
records and then 100000 records. The queries are used to
retrieve or update the same 1000 records that are
homogeneously distributed m the basic table. We
measured the performance of the data retrieval and the
data update because these processes don’t change the
number of records in a table. We used Microsoft SQL
server 2008 and Idera software (SQL Check and SQL
Statistics Aggregator). In order to measure the effect of
hardware speed on the query performance we performed
the tests in two different machines. The first machine is
Intel Core 17 with processors speed 2.10 GHz and 8 GB
RAM, the second machine is Intel Core 2 Duo with
processors speed 1.6 GHz and 1 GB RAM. We performed
the tests many times and excluded the outliers to give
more accurate results. Our concern 1s the CPU time that
the system is taken to execute the retrieval or the update
queries. The data retrieval CPU time results from the first
machine were summarized in Table 1 and Fig. 2 shows a
graph representation for the results.

From Table 1, we found that when the number of
records is decreased the CPU average time is decreased
approximately by the same ratio (in this example 50%). But
when the number of records is decreased by 50%, ie.,
from 400000-200000 records, the CPU average time is
decreased by 31%.

The data update CPU time results from the first
machine were summarized in Table 2 and Fig. 3 shows a
graph representation for the results.

From Table 2, we found that the CPU average time for
the update operation i1s bigger than the data retrieval
operation. When the munber of records 1s decreased the
CPU average time is decreased but not by the same ratio
and in some cases the CPU average time is increased such

Table 1: Data retrieval
Data retrieval CPU time (msec)

800000 400000 200000 100000
Measure records records records records
Minirmum 78.0 31.0 31.0 15.0
Maxium 94.0 47.0 32.0 16.0
Average 89.1 45.3 31.2 15.6

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

1001
D4 94 ——04-94 0404
90- /93/ \/
R 78 -- - 100K Ree
wd 200K Rec
—— 400K Rec
——= 800K Rec
rg 60+
E 50 -
§ 4 4= AF— 4744 4T
E 404
3031 ---32---32---31. .31 3. 3F- - H-- 3V 31
201
16 48-15 16~ 46 == ===~ -15-15
104
0 L]) L} L] T L] T 1 1
1 2 3 4 5 6 7 8 9 10
Tests
Fig. 2: Dataretrieval CPU time (msec)
Table 2: Data update
Data retrieval CPU time (msec)
800000 400000 200000 100000
Measure records records records records
Minirmum 93.0 47.0 62.0 31.0
Maxium 114.0 63.0 63.0 47.0
Average 98.9 53.2 62.3 42.3
Table 3: Machine 2 data retrieval
Data retrieval CPU time (msec)
800000 400000 200000 100000
Measure records records records records
Minirmum 202.0 93.0 62.0 32.0
Maxium 234.0 187.0 109.0 62.0
Average 218.5 127.7 81.2 46.8

as when number of records is decreased from the 400000
records to 200000 records the CPU average time 1s
increased from 53.2-62.3 msec.

The following tables and figures show the results of
the tests that performed on the second machine. In
general the retrieval time and the update time are bigger
than the first machine. The data retrieval CPU time
and the update CP1J time are increased approximately by
250%.

The data retrieval CPU tine results from the second
machine were summarized in Table 3 and Fig. 4 shows a
graph representation for the results.

From Table 3, we found that when the number of
records 1s decreased the data retrieval CPU average time
15 decreased approximately by the same ratio (mn this
example 50%). But when the number of records is
decreased by 50%, ie., from 400000-200000 records,
the CPU average time 1s decreased by 36%.

334

120+
114
109 109
100 /\
o -4 94 —et——o5 O
801
T
=663 1A B3 G G T el T ..53..
‘g‘ 50% \, 52' \ 62’ .
= 77 47 *4‘?---4---46----4-7- -47 - -4?—-f-+1--
- /
P2 -33—
—-100 K Rec
20q -—-200KRec
='-400 K Rec
—=-800 K Rec
0 L) L) L) T T ¥ L] T 1
1 2 3 4 5 6 7 8 5 10
Tests
Fig. 3: Data update CPU time (msec)
250+
23,4’ “~ 23:, "
928" s, 219,219~ 219~
~
2001 ooy ~202-"
-- 100K Rec
-—-200 K Rec 137/\
— 400K Rec
-—800 K Rec / \
150 1 I \
fg 140 | 140
p=2 1p5 =425 124 [’ 125
'E 109 109 109
100+
9B % 93 94
78 }8,—-7&—
63 “—63—-"62 62 ~ 062
" N /M
3232
U T 1 T 1 T T T T L]
1 2 3 4 5 6 7 E 9 10
Tests

Fig. 4: Second machine data retrieval CPU tune (msec)

The data update CPU time results from the second
machine were summarized in Table 4 and Fig. 5 shows a
graph representation for the results. From Table 4, we
found that the CPU average time for the update operation
is bigger than the data retrieval operation. When the
number of records is decreased the CPU average time is

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

350
312
312
300 1 ; 296
1 /
)
250 4 / 250 14 4
219 218 219
T 200302 20
87—
E __1_7 *")\15
2 1727156 _
£ 150 140
140
1ps.. 124 o 123 —
10010 T0s ™ 11 109
94 93 78
504 100K Rec
===200 K Rec
—— 400K Rec
—— 800 K Rec
0 E] L) T L] 1 E))) 1
1 2 3 4 5 6 7 8 9 10
Tests

Fig. 5: Second machine data update CPUJ time (msec)

Table 4: Second machine data
Data retrieval CPU time (msec)

800000 400000 200000 100000
Measure records records records records
Minirmum 219.0 110.0 171.0 78.0
Maxium 312.0 187.0 218.0 125.0
Average 260.1 138.6 188.6 104.7

decreased approximately by the same ratio. Also, as in
machine 1 in some cases the CPU average time is
mncreased when number of records 15 decreased such as
when the number of records 1s decreased from the
400000-200000 records the CPU average time 1s increased
from 138.6-188.6 msec. From the previous tests, we found
that decreasing the number of records m a table waill
decrease the data retrieval CPU time approximately by the
same ratio which increase the performance of the system.
For update operations in most cases the CPU time 1s also
decreased.

CONCLUSION

Everything on the system should have a lifetime
such as mternet web pages, documents on the cloud,
records in a database, etc. In this study, we classified
transaction data mto two classes basic data class and
historical data class. We proposed new properties for data
item and an algorithm for data management that help in
data analysis and transferring data among system
component’s until it removed from the system. We
implemented a prototype for the algorithm and measured
data retrieval performance, we found that by reducing a
table size the data retrieval performance 1s mcreased
approximately by the same ratio.

SUGGESTIONS

In future work, we will investigate how to apply the
data transfer algorithm on unstructured data item such
web pages and cloud documents to improve the web data
retrieval performance.

REFERENCES

Agrawal, S., V. Narasayya and B. Yang, 2004. Integrating
vertical and horizontal partitioning inte automated
physical database design. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, June 13-18, 2004, Paris, France,
pp: 359-370.

Alsultanny, Y., 2010. Database management and

mprove database processing
performance. J. Database Marketing Customer
Strategy Manage., 17: 271-276.

Anonymous, 2005. Query optimization in oracle database
10g release 2. An oracle white paper. Oracle

partitioning to

Corporation, Redwood City, Califormia.

Bertino, E., BC. Oa, R.S. Davis, KL. Tan and
B.J. Zobel et al, 1997. Indexing Techniques for
Advanced Database Systems. Kluwer Academic
Publisher, Dordrecht, Netherlands, ISBN:
9780792399858, Pages: 250.

Chu, F., J.Y. Halpern and P. Seshadri, 1999. Least
expected cost query optunization: An exercise
in utility. Proceedings of the 18th ACM SIGMOD-
SIGACT-SIGART Symposium on Prnciples of
Database Systems, May 31-Tune 03, 1999, ACM,
Phuladelphia, Pemmsylvama, TUSA., ISBN:
1-58113-062-7, pp: 138-147.

Connolly, T.M. and C.E. Begg, 2005. Database Systems:
A Practical Approach to Design, Implementation and
Management. Pearson, London, England, UK.,.

Geng, L., 2015. Optimization of massive data retrieval
performance based B-tree index. Proceedings of the
International Conference on Automation, Mechanical
Control and Computational Engmeering (AMCCE),
October 24-25, 2015, Atlantis Press, Changsha, China,
ISBN: 9781510803084, pp: 352-357.

Gupta, 5., G.S. Tandel and U. Pandey, 2015. A survey on
query processing and optimization in relational
database management system. Intl. J. Latest Trends
Eng. Technol., 6 4094-4095.

Haryam, N. and D. JTagli, 2014. Dynamic method for load
balancing in cloud computing. TOSR. T. Comput. Eng.,
16: 23-28.

Int. J. Soft Comput., 12 (5-6): 329-336, 2017

Mamun, M.A A, M. Hanif, M.R. Uddm, T. Ahmed and
M.M. Tslam, 2012. A new compression based index
structure for efficient mformation retrieval. Intl. J. Sci.
Technol., 2: 10-14.

Manning, C.D., P. Raghavan and H. Schutze,
2008. Introduction to Information Retrieval. 1st
Edn., Cambridge University Press, Cambridge,
England, UK., ISBN-13.978-0521865715, Pages:
506.

O'meil, P. and E. O'nell, 2001. Database Principles
Programming Performance. Morgan Kaufmann
Publisher, Burlington, Massachusetts, TSBN:
9781558604384, Pages: 870.

336

Sint, R., S. Schaffert, S. Stroka and R. Ferstl, 2009.
Combining unstructured, fully structured and
semi-structured information in semantic wikis.
Proceedings of the 4th and 6th Jont Conference on
Semantic Wiki (SemWiki 2009) and Furopean
Semantic Web (ESWC 2009), June 1, 2009, Morgan
Kaufmann Publishers, Hersonissos, Greece, pp: 1-15.

Talmage, R., 2009. Partitioned Table and Index Strategies
using SQL Server 2008. MSDN Publisher, Woburn,
Massachusetts,.

Yates, A.B. and B.A R. Neto, 1999. Modern Information
Retrieval. Pearson, London, England, UK., ISBN:
978-81-317-0977-1, Pages: 322.

	329-336_Page_1
	329-336_Page_2
	329-336_Page_3
	329-336_Page_4
	329-336_Page_5
	329-336_Page_6
	329-336_Page_7
	329-336_Page_8

