International Tournal of Soft Computing 13 (1): 25-30, 2018
ISSN: 1816-9503
© Medwell Journals, 2018

A Novel Shorten Erasure Based Reed Solomon Fault Tolerance Code for
Road Traffic Data Fault Tolerance

"Md. Rafeeq, *C. Sunil Kumar and *N. Subhash Chandra
"Department of CSE, CMR Technical Campus (CMRTC), Hyderabad, Telangana, India
*Department of IT, Sreenidhi Institute of Science and Technology (SNIST), Yamnampet,
Ghatkesar, Hyderabad, Telangana, India
*Department of CSE, CV Raman College of Engineering (CVRCE), Manglapalli,
Ibrahimpatnam R.R (D), Telangana, India

Abstract: The massive growth in road traffic and subsequence generation of traffic related data insisting the
researcher to proceed for the analytical research on the traffic prediction. However, the gigantic size of the data
and chances of storage failure may cause the purpose inefficient. The advancement in technologies and high
demand for fault tolerant storage solutions most of the cloud based commercial storage service providers are
now equipped with erasure based Reed-Solomon fault tolerance mechanism. However, the additional cost for
replication is still an overhead for service providers and customers. In this research, we propose a novel erasure
based code and further optimization as shortening the proposedcode also for the digital storage formats. The
research also results into a comparative study of cost analysis for commercial cloud based storage service
providers. Finally, the research demonstrates the improvement in code shortening and making the performance
higher.

Key words: Erasure, Reed-Solomon, code shorteming, performance comparison, evolution application,
response time comparison, Dropbox, Google Drive, Hightail, OneDrive, SugarSyne

INTRODUCTION

In the past years, the high upcoming demand for
storage with lgh performance and reliability were been
understood (Mallikharjuna and Amuradha, 2015, 2016;
Rao and Anuradha, 2016). The industry was approaching
towards a phase where the lack of standardization of
digital storage was limiting the applications to make
storage more reliable for commercial storage providers.
The major bottleneck for the standardization was the
non-standard storage solutions used by different service
providers. In the early 80’s, the industty adopted cloud
computing for distributed storage solutions. The effort
was well recognized and multiple companies came
together to form aconsortium in order to frame the
standardization for digital storage.

As far as data storage 18 concerned, there are multiple
schemes are available to improve file and data
compression. The other most influencing parameters for
instance, a data file that is uploaded and accessed on the
server may seriously be effected by the network
bandwidth as well as the server workload. This will
degrade the efficiency (Mallikharjuna and Anuradha,
2015, 2016). Moreover, the cloud storage services deals
with a great scope and domain of the data being storage
and retrieved along with the frequency of access varying
depending on the mode of the operation performed on the

data (Kubiatowicz et al., 2000). Offering unlimited storage
container space might cause a high economic drawback
on the cloud storage provider and as well as the users due
to mefficient storage (Druschel and Rowstron, 2001).
Hence, a techmque or automation is needed to find the
best swutable storage structure based on cost and other
influencing factors. There are many free offerings of the
cloud storage services; however, they may not suite the
application requirement to the best always (Adya ef al.,
2002).

Two major companies, Philips and Sony took the
major imtiative to define the standard storage formats in
digital media. The standard is well accepted today and
been referred as compact storage format. This standard
format is majorly used for achieving any data
which also reduces the storage cost compared to
the early storage formats. However, the compact
storage format has limitations in order to achieve high
availability. Tt is difficult to predict how a storage
media gets corrupted. Tn the earlier studies we have
understood the reasons for storage device failure.
Henceforth, we realise the following errors for storage
failures as:

¢+ The additional noise affecting the storage during
transmission or during retrieval
¢ Mishandling of the removable devices

Corresponding Author: Md. Rafeeq, Department of CSE, CMR Technical Campus (CMRTC), Hyderabad, Telangana, India

Int. J. Soft Comput., 13 (1): 25-30, 2018

Table 1: Cost comparison for Dropbox (data load in GB)

Table 3: Cost comparison for Google Drive (coast 60-9600)

Data load (GB) Closts (US$)
100 99

200 99

300 99

400 499

500 499

1000 Mot available
1000 Mot available

Table 2: Support for mobile based cloud applications in Dropbox

Data load (GB) Costs (US$)
100 60

200 120

300 120

400 240

500 240

1000 600

=>1000 1200-9600

Table 4: Suppoit for mobile based cloud applications in Google Drive

Client OS types Support Client OS types Support
Apple iPhone operating systems Available Apple iPhone operating systems Awvailable
Android mobile operating sy stemns Available Android mobile operating sy stems Available
Blackberry operating systems Available Blackberry operating systemns Not Available
Microsoft mobile operating systermn Available Microsoft mobile operating svstem Not Available
600 1 1400 =
5001 499 499 1200 -
1000 4
4001
@ = 300 4
-% 300 1 ;5'
= 600
2001
400
100- 99 99 99 200
110
0 T T L] L] 1 U T T T L] T T 1
1 2 3 4 5 100 200 300 400 500 1000 >1000
Cost price Cost price

Fig. 1: Cost comparison for Dropbox

The most mmportant improvement in the recent
time for fault tolerance in digital media storages
15 the Reed-Solomon code. The basic benefit of the
Reed-Solomon codes is to rearrange, so that, the timely
restoration can be achieved for storage devices. Thus, in
this research, we concentrate on further enhancement of
the erasure based fault telerance mechanism.

Commercial cloud storage services: As the choice of
storage services from cloud is not limited and most of
those are configured to give best advantages for specific
type of data and operation, we compare most of the
services here (Adya et al., 2002, Haeberlen et al., 2005,
Tang, 2008).

Dropbox: The Dropbox is a storage service which is
available for client side access for windows systems,
Linux systems, Macintosh systems, Blackberry mobile
operating systems android mobile operation systems and
finally the iPhone operating systems. The free basic
account comes with a paltty 2 GB of storage. For
document based applications this is huge. The storage
service i3 good choice for applications using the
container for read only data (Table 1 and 2). Here, we
provide a graphical representation of the cost price
comparison (Fig. 1).

26

Fig. 2: Cost comparison for Google Drive

Google Drive: The most popular cloud storage service 1s
drive storage from Google. The basic account comes with
15 GB of storage for a new customer account or an
existing account created with Google email. The highest
rated benefit of the Google Drive is the service can be also
be mtegrated with other existing Google services for
storing various types of data from other services
(Table 3 and 4). Here, we provide a graphical
representation of the cost price comparison (Fig. 2).

Hightail: The previous version of business cloud
storage of Hightail was popular by name of YouSendIt.
The basic reason for creating the name was the core of the
features that Hightail provides. Hightail 1s majorly known
for sharing files which can be digitally signed for
verifications. The core technology behind this provider is
link sharing where the sender can upload a file and the
link to that same file can be shared with the recipient. The
recipient can click on the link to download the same. This
service 1s popular for business users as it provides the
private cloud storage and the desktop version of the
client which can be used for syncing local files to the
cloud storage (Table 5 and 6).

OneDrive: The OneDrive was previously popular as
SkyDrive. The functionalities are mostly same as Dropbox.

Int. J. Soft Comput., 13 (1): 25-30, 2018

Table 5: Cost comparison for Hightail

Table 9: Cost comparison for SugerSync (data load)

Data load (GB) Costs (US$) Data load (GB) Costs (US$)
100 Free 100 99

200 Free 200 250

300 Free 300 250

400 Free 400 250

500 Free 500 250

1000 Free 1000 550

>1000 195 =1000 Pay per use

Table 6: Support for mobile based cloud applications in Hightail

Table 10: Support tor mobile based cloud applications in SugerSync

Client OS types Support
Apple iPhone operating systems Available
Android mobile operating sy stemns Not available
Blackberry operating systems Not available
Microsoft mobile operating systermn Not available
Table 7: Cost comparison for OneDrive (data load)

Data load (GB) Costs (US$)
100 50

200 100

300 Mot available
400 Not available
500 Not available
1000 Not available
=1000 Mot available

Table 8: Support for mobile based cloud applications in OneDrive

Client OS types Support
Apple iPhone operating systems Available
Android mobile operating sy stems Available
Blackberry operating systems Available
Microsoft mobile operating system Available
250 1
200 195
g 150 1
100 ~
50 1
4] O - O e ia) 61 1
100 200 300 400 500 1000 >1000
Cost price

Fig. 3: Cost comparison OneDrive

The most mmportant factor for this storage service
15 that the client version 1s available for wmdows
systems, Linux systems, Macintosh systems,
Blackberry mobile operating systems android mobile
operation systems and finally the i1Phone operating

systems. Moreover, the supports for social media
plug-ins are also available here. This feature makes
the applicaion more compatible with other

applications to access data directly. Here, we provide a

graphical representation of the cost price comparison
(Fig. 3).

27

Client OS types Support
Apple iPhone operating systems Available
Android mobile operating sy stems Available
Blackberry operating sy sterns Available
Microsoft mobile operating svstem Available
600 1
550
500
400
]
=
300
= 29 290 290 /oo
200
100 99
0 1 L] L] T T 1
1 2 3 4 5 6
Cost price

Fig. 4: Cost cmparison for SugarSync

SugarSync: The SugarSync is majorly popular among
business users for its effective and fast online backup
solutions. The service can also be used for complete
folder and individual file syncing with multiple
applications and multiple users. Moreover, the service
provides a unique function to share the stored content
over multiple devices at same point of time but with
different permission levels. The most important factor for
this storage service is that the client version is available
for android mobile operation systems and also the iPhone
operating systems (Table 9 and 10). Here, we provide a
graphical representation of the cost price comparison

(Fig. 4).

Reed-Solomon code for fault tolerance: The most
important factor that makes Reed-Solomon framework to
implement 15 the simplicity. Here, in this research we
consider the scenario to compare the performance of
Reed-Solomon and proposed encoding technique. We
consider there will be K storage devices each hold n bytes
of data such that:

(1)

D=¥D.D,.D,,...D,

where D 1s the collection of storage devices. Also, there
will be L storage devices each hold n bytes of check sum
data such that:

Int. J. Soft Comput., 13 (1): 25-30, 2018

C=¥0.0,.C, .0 (2)

where C 13 the collection of Checksum devices. The
checksum devices will hold the calculated values from
each respective data storage devices.

The goal is to restore the values if any device
from the C collection fails using the non-failed devices.
The Reed-Solomon deploys a fimetion G 1 order to
calculate the checksum content for every device in C.
Here, for thus study, we understand the example of the
calculation with the values as K = 8 and I, = 2 for the
devices C, and C, with G, and G,, respectively (Shao and
Cao, 2009).

The core functionalities of Reed-Solomon is to break
the collection of storage devices in number of words
(Zhang et al, 2013; Bellorado and Kavcic, 2010,
Garcia-Herrero et al., 2011, Tiang and Narayanan, 2008).
Here, in this example, we understand the each number of
words is of u bits randomly. Hence, the words in each
device can be assumed as v where v 1s defined as:

v=in byt&s){g bits }{ 1 wc.)rdj (3)
byte u bits
Furthermore, v 15 defined as:
yo5n (4)
u

Henceforth, we understand the
checksum for each storage device as:

formulation for

C, = Wx(D,,D,,D,,... D) (3

where the coding function W is defined to operate on
each word. After the detail understanding of the erasure
fault tolerance scheme, we have identified the limitations
of the applicability to the cloud storage services and
propose the novel scheme for fault tolerance mn this
research in the next study.

MATERIALS AND METHODS

Proposed mnovel fault tolerance scheme: With the
understanding of the limitations of existing erasure codes
to be applied on the cloud based storage systems as the
complex calculations with erasure codes will reduce the
performance of availability measures significantly. Thus,
we make an attempt to reduce the calculation complexities
with simple mathematical operations in the standard
erasure scheme,

The checksum for storage devices are considered as
C, from the Eq. 5. We propose the enhancement as the
following formulation for checksum calculation:

28

C =Wx(D,D,D,,...D,) =W(D, &D,®D,,.., ®D,)
(6)
Here, the XOR operation being the standard
mathematical operation most suitable for logical circuits
used in all standard hardware makes it faster to be
calculated. Also, we redefine the function to be applied on
each word for the storage devices D as following:

W1 WL

>

(7

WK1 5 WKL KL

The proposed matrix will be stored on one of the
devices and will be recalculated only once. As the
modified checksum formulation 1s an XOR operation, thus
which will automatically notify in case of any change.
Furthermore, we optimize the proposed code framework in
the next study.

Optimizing proposed novel fault tolerance scheme: The
Reed-Solomon code 1s expressed by the power of
coefficient denoted by n for the data blocks where n is
expressed as:

n=2"%1 (8)

And the code blocks are represented as:

k=2"-1-2t
Where:
m = The number of bits per data
t = The capability of correcting errors

In general the Reed-Sclomon code considers an 8 bit
data and 2 bit code, the error correcting code can be
represented as 255,251 code.

Here, in this part of the research, we try to optimize
the code length further to reduce the replication cost. The
steps of the optimization algorithm are explained here:

Optimization algorithm:

Step 1; first, we consider the effective code in (255,251) block where the
code is consisting of zero and non-zero codes

Step 2; then, we find the number of zero codes in the segment. For instance
the numbers of zero codes are 227 in the code block. These codes will not
have any effect in the error correction and fault tolerance mechanism

Step 3; then, we find the effective block of the code as (28, 24) for a 2 bit
error correction code

Step 4; hence, as a final outcome of the optimization technique, we got the
optimized code block

RESULTS AND DISCUSSION

To simulate and understand the improvement 1n the
outcomes we implement the Reed-Solomon code with the

Int. J. Soft Comput., 13 (1): 25-30, 2018

Table 11: Tnitial data block

Decimal BCD

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
Table 12: Addition table

Addition a’ al a’ a' 2 a° a

0|0 a at a’ a at a’ a

al 2 at 2 at al alt al
al al 4 2 & o 2 all
a2 22 28 2% £ all al 2

a3 a3 a14 a? aﬁD a? all a2

a4 a4 al aEI alEI a’.fEI aX a12
2 2 a0 . al all 2 &

28 o al? alt 2 a2 a2 20
Table 13: Multiplication table

Multiplication a° al a2 a° at 2’ al a’

0/0 0 0 0 0 0 0 0 0

a0 a° al a2 a° at @ al a’

aljo a! a* a’ at & a a o

a0 a? 2 a @ a a’ a® i

a%0 2 2 2 o o a8 2 410
40 a4 25 2 o7 o 2 all 4l
aj‘o aj aﬁ a? a@ ag alD all alZ
aﬁ‘o aﬁ a7 ag a? alEI all alZ a13
Table 14: Fault tolerance results

Parameters Generic RS Proposed optimized RS
Initial polynomial ala’a’ ala’ &

Encoded data a’a’a'a’a‘a’a’ 000 a a* a® a

Fault tolerance code aa’a'a®a‘a’l adata’l

Optimization 0% 57%

reduction

enhancement and optimization proposed in this research.
We accept any random data as the imtial data block
for the testing (Table 11). Based on the modified
fault tolerance scheme, we realise the addition and
multiplication table (Table 12 and 13).

Henceforth, we compare the results of the generic
Reed-Solomon coding and the proposed fault tolerance
technique (Table 14) based on the initial code.

CONCLUSION

In this study, the commercial cloud storage services
are been compared based on the cost and performance
factors. The result of the comparative measures provided
the understanding of the demand for lughly reliable and
cost effective fault tolerance system. Henceforth, mn this
research, we study the core Reed-Scolomon fault tolerance

mechanism based on erasure codes. The research
contributes towards the improved performance code for
fault tolerance for digital storage devices rather than
magnetic. Also the research enhanced the performance of
the proposed techmique by applying the improvement in
terms of optimization The result of the proposed
optimization technique 1s 57% reduction in the storage
cost without negotiating with the fault tolerance
reliability.

REFERENCES

Adva, A, W.I. Bolosky, M. Castro, G. Cermak and
G. Cermak et al., 2002. Farsite: Federated, available
and reliable storage for an incompletely trusted
environment. Proceedings of the 5th symposium on
Operating systems design and 1mplementation,
Volume, 36, December 9-11, 2002, Boston,
Massachusetts, USA., pp: 1-14.

Bellorado, J. and A. Kavcic, 2010. Low-complexity

algorithms for reed-solomon
codes-Part T. An algebraic soft-in hard-out chase
decoder. TEEE. Trans. Inf. Theory, 56: 945-959.

Druschel, P. and A. Rowstron, 2001. PAST: A large-scale,
persistent peer-to-peer storage utility. Proceedings of
the 8th Workshop on Hot Topics in Operating
Systems, May 20-22, 2001, TEEE, Elmau, Germany,
ISBN:0-7695-1040-X, pp: 75-80.

Garcia-Herrero, F., I Valls and PK. Meher, 2011.
High-speed RS (255, 239) decoder based on
LCC decoding. Circuits Syst. Signal Process.,
30: 1643-1669.

Haeberlen, A., A. Mislove and P. Druschel, 2005. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. Proceedings of the 2nd
Conference on Symposium on Networked Systems
Design and Implementation Volume 2, May 2-4, 2005,
USENTX Association, Berkeley, California, TJSA.,
pp: 143-158.

Hang, J and K.R. Narayanan, 2008. Algebraic
soft-decision decoding of reed-solomon codes
using bit-level soft information. IEEE. Trans. Inf.
Theory, 54: 3907-3928.

Kubiatowicz, J.,D. Bmdel, Y. Chen, S. Czerwinski, P. Eaton
and D. Geels, 2000. Oceanstore: An architecture for
global-scale persistent ACM Sigplan
Notices, 28: 190-201.

Mallikharjuna, K.R. and K. Anuradha, 2015. An efficient
method for software reliability growth model selection
using modified particle swarm optimization technicue.
Intl. Rev. Comput. Software, 10: 1169-1178.

soft-decoding

storage.

Int. J. Soft Comput., 13 (1): 25-30, 2018

Mallikharjuna, RK. and A. Kodali, 2017. An efficient
method for enhancing reliability and selection of
software reliability growth model through
optimization techmques. J. Software, 12: 1-8.

Mallikharjuna, RK. and K. Anuradha, 2016, A
new method to optimize the reliability of
software reliability growth models using modified
genetic swarm optimization. Intl. J. Comput. Appl.,
145 1-8.

Rao, KM. and K. Anuradha, 2016. Performance
evaluation of software reliability growth models
using optimization techmques. Intl. J. Comput. Sci.
Inf. Secur., 14: 355-362.

30

Shao, J. and Z. Cao, 2009. CCA-secure proxy re-
encryption without pairings. Proceedings of the 12th
International Conference on Practice and Theory i
Public Key Cryptography, Vol. 5443, March 18-20,
2009, Springer, Tivine, California, TISA., pp: 357-376.

Tang, Q., 2008. Type-based proxy re-encryption and its
construction. Proceedings of the Sth International
Conference on Cryptology in India Vol. 8, December
14-17, 2008, Springer, Kharagpur, India, pp: 130-144.

Zhang, W., H. Wang and B. Pan, 2013
Reduced-complexity LCC reed-solomon decoder
based on umfied syndrome computation IEEE.
Trans. Very Large Scale Integr. Syst., 21: 974-978.

	25-30_Page_1
	25-30_Page_2
	25-30_Page_3
	25-30_Page_4
	25-30_Page_5
	25-30_Page_6

