
Moderating Characteristics of Requirements Management Tools Between Factors of Rework
and Project Success

1Faisal Adnan and 2Imran Haider Naqvi
1Department of Information Technology, University of Education, Lahore, Pakistan
2CIF, COMSATS Institute of Information Technology, Lahore, Pakistan

Key words: Factors of rework, corrective rework,
software requirements management tools, retrospective
rework, evolutionary rework, project success

Corresponding Author:
Faisal Adnan
Department of Information Technology, University of
Education, Lahore, Pakistan

Page No.: 123-131
Volume: 14, Issue 6, 2019
ISSN: 1816-9503
International Journal of Soft Computing
Copy Right: Medwell Publications

Abstract: This study quantified the underlying
associations and critical moderating role of using software
requirements management tools between factors of
rework (including project planning, software requirements
specifications document quality, software testing,
maturity of software development life cycle approach,
scope creep) and project success. The study contributed in
determining the type of rework which could be avoided
and how it could be avoided. The study quantified the
magnitude of rework increased/reduced by factors of
rework. The study dogged the underlying association of
rework with project completion duration along with
underlying associations of factors of rework and using
software requirements management tools with rework and
project success were also quantified. The study focused
on using critical features of software requirements
management tools to determine their role as an effective
methodology for reducing the identified causes of
unsuccessful software projects and rework to achieve
project success.

INTRODUCTION

Well-structured Requirements Engineering (RE)
process improved overall software productivity
(Damian et al., 2005). While Project Success (PS) is
ensured with RE which is a legitimate phase of Software
Development Life Cycle (SDLC). RE process consists of
Requirement Definition (RD) and Software Requirements
Management (SRM) phases (Hennicker and Koch, 2000).
RD phase leads to Software Requirements Specification
document (SRS). SRM consists of software requirements
documentation, Changing Requirements (CR)
management and Software Requirements Traceability
(SRT) (Gorschek, 2006). While software requirements
consistency and completeness is associated with PS
(Osmundson et al., 2003). Rework is caused due rapidly

CR and its impact is measured on the basis of total
number of artefacts affected, priority of change, number
of resources required and SDLC phase which requires the
change (Sharif et al., 2012). SRM controls CR based on
SRS document which acts as an agreement of
understanding between project stakeholders. Post-delivery
maintenance work is traced down to poorly described
SRS (Lang and Duggan, 2001). SRS contains functional
details including what the system will do; system
expected performance details, reliability and response
time of software. SRS quality is critical for PS
(Bokhari and Siddiqui, 2010). Software project teams
want SRS to be precisely accurate while users expect SRS
to be more flexible to accommodate all CR. SRS grows
dynamically throughout SDLC and requires collaborative
effort while traceable and modifiable SRS is key to PS

123

Int. J. Soft Comput., 14 (6): 123-131, 2019

(Hofmann and Lehner, 2001). Moreover, failure to define
project scope boundaries and rapidly CR whether
small/large outside initially defined scope parameters
cause Scope Creep (SC) and it is an important factors in
PS (Madhuri et al., 2014; Agarwal and Rathod, 2006).
Project scope defines the boundaries of what is
included/excluded from the project. Further, most critical
aspect of SC is project scope definition and verification to
avoid rework (Burke, 2009; Schwalbe, 2014). Inadequate
Software Testing (ST) increases rework and leads to
project failure. The past project performance data shows
that rework adversely affects PS and it is a major cause of
project failure in 40% of software projects (Standish
Group, 1999). During initial stages of SDLC, rework
magnitude/cost associated with fixing software bugs is
comparatively low and manageable as compared to fixing
bugs at final stages of SDLC.

Using Software Requirements Management Tools
(SRMT) helps in streamlining communication gap
between project stakeholders. SRMT helps in effective
manipulation of rework (Cass et al., 2009). SRMT ensure
that project team’s do not waste time on verification of
those requirements which were not critical for PS while
ensuring requirements transparent accessibility to all
stakeholders. PS is achieved through effective software
requirements management in Scope Management (SM)
knowledge area of Project Management (PM). Project
managers perform 47 processes including 24 PP
processes. Initial PP is the most prominent factor for PS
agreed and reported by 744 surveyed project respondents
(Besner and Hobbs, 2013). Time spent on PP activities
reduces project risk and increases magnitude of PS
(Wang and Gibson Jr., 2010). PP at initial stages of
project plays an important role in PS. Inadequate PP
eventually cause project failure (Thomas et al., 2008). PP
processes consists of almost 50% of overall PM
processes. PM ten knowledge areas (integration, scope,
time, cost, quality, human resource, communication,
risk, procurement and stakeholder management) and
five process groups (initiating, planning, executing,
monitoring and controlling along with closing) provide
adequate guidelines for PS. PS criteria is based on key
influencing factors (clearly defined project objectives,
top management support, stakeholder’s involvement
and project planning), project’s characteristics (like
nature/type of project, product deliverables, resources
constraints) and explicitly defined PS criteria
(schedule/budget/scope deadlines) (Marques et al.,
2013).

Rationale of study: Rework emerged as the most
frequent critical issue in SDLC. Literature does not
provide adequate guidelines for quantifying moderating
role of SRMT between factors of rework and PS.

Problem statement: Rework adversely affects PS and is
present at all stages of SDLC. Furthermore, maximum
intensity of rework (40-100%) is present during
requirements gathering phase (Focus, 2011). An empirical
research to quantify the role of SRMT between factors of
rework (like PP, SRS document quality (SRSDQ), ST,
maturity of SDLC approach (MSDLCA), SC) and PS is
required.

Literature review: Requirements analysis is a key
process area of SC knowledge area in planning process
group (PMI., 2013). An optimum amount of effort and
resources are required to be spent for PP. Extensive time
spent in PP is associated with poor project performance
and cause lack of resources which force project managers
to crash projects to meet schedule/budget constraints.
Crashing of project cause extensive rework. Scope
management knowledge area of PMBOK related to PP is
critical for PS (Zwikael, 2009). Software practitioners
disagreed that too much PP was always better for PS
(Collyer and Warren, 2009). Rework is a sign of
insufficient ST of the product and stakeholder’s lack of
interest in product features (Fairley and Willshire,
2005). Among three major types of rework, the
Retrospective Rework (RR) is performed to achieve the
work left in previous version of software product while
Corrective Rework (COR) is performed to fix critical
software bugs. Further Evolutionary Rework (ER) is
performed to modify previous version of software’s
functionality, structure/quality. Extensive rework
indicates problems in developer’s skills and technology
used in product development described in Fig. 1.
Rework effort does not depend on size of CR rather it
depends on complexity of CR, project size/nature and
resource requirements (schedule, budget, technical skills,
knowledge and experience) required for rework. SC is
another factor for critical software applications relative to
non-critical. Scope verification needs to be performed
thoroughly to deliver according to customer needs.SC
results due to poorly defined SRS with conflicting needs,
wrong assumptions from customers, unwillingness to say
no to customer, over delivering/gold plating. Further, SC
is managed through a formalized Change Control Board
(CCB) to grant scope changes, associating relevant cost of
scope changes, communicating scope changes impact
analysis with customer, ensuring customers to sign off
scope change documents. In addition, SC is a critical
source of projects cost creep while forcing clients to pay
additional cost. Rework is work performed again because
it is not properly done for first time. In consequence the
cost associated with rework is not only limited to extra
wastage of time/money on resources, it extends to
schedule delays, crushes customer’s confidence, damages
brand image and return on investment.

124

Int. J. Soft Comput., 14 (6): 123-131, 2019

Fig. 1: Rework categories adopted from (Fairley and Willshire, 2005)

Fig. 2: Theoretical framework

Objectives of study/research questions: Based on
literature review the following objectives and research
questions are proposed for this study:

C What’s role of SRMT between factors of rework and
PS?

C How PP is associated with rework and PS?
C What’s underlying association of SRS document

quality with rework and PS?
C How ST impacts rework and PS?
C How rework is associated with MSDLCA and PS?
C Whether SC is associated with rework and PS?
C What’s underlying relation of rework with PS?
C Which type of rework could be avoided and how?

Theoretical framework: Adaptive, functional and
corrective CR caused evolutionary, retrospective and

corrective rework due to lack of well-defined SRS
(Chua and Verner, 2010). More than 40% of rework is
present in requirements gathering phase (Focus, 2011). In
consequence this study is aimed to quantify underlying
associations of factors of rework with rework and PS.
Theoretical framework depicted in Fig. 2 shows that
SRMT moderates the associations between rework
and PS and rework mediated between factors of rework
and PS.

MATERIALS AND METHODS

Self-administered questionnaire was distributed
among randomly selected 224 project teams from
eighteen software houses with an estimated population of
500 (Sekaran, 2000). Study population included project
teams from CMMI level II and above software houses. In

125

Project Planning

SRS Document Quality

Maturity of SDLC Approach

Scope Creep

Software Testing

Evolutionary

Retrospective

Corrective

Rework

SRMT

Factors of Rework

Project Success

Int. J. Soft Comput., 14 (6): 123-131, 2019

Table 1: Coding of data for analysis and interpretation
Variables Values
Strongly disagree/very little 1
Disagree/little 2
Neither agree nor disagree/neither little nor large 3
Agree/large 4
Strongly agree/very large 5

Table 2: Reliability analysis
Variables No. of items Cronbach’s alpha
Project planning 9 0.911
SRS document quality 6 0.769
Software testing 4 0.743
Maturity of SDLC approach 2 0.488
Scope creep 8 0.820
Rework 5 0.873
Project success 7 0.910

addition, it was a correlational study and research subjects
were project teams using linear software development
approach on both already completed and near to
completion software projects of previous 5 years having
documented evidence of rework and using SRMT.
Furthermore, study adopted valid, pretested measurement
scales. So, measurement scale for SRS document quality
was adopted from (Iqbal et al., 2012), ST was adopted
from (Kan, 2002), SC was adopted from (Mirza et al.,
2013), MSDLCA and rework was adopted from (Barry,
2011) while scale for PS was adopted from (Naqvi,
2007). Finally, responses were collected on a 5 point
Likert scale which was ranked 1-5 according to
Table 1.

Questionnaire reliability was evaluated by Cronbach’s
alpha and all values for factors of rework and PS were
within acceptable range and p<0.05 was considered
statistically significant as shown in Table 2.

RESULTS AND DISCUSSION

This study found that bug free ST is critical for PS
since majority of projects were poorly tested.
Consequently, its ripple effect propagates to previous
phases of SDLC and ultimately increases number of
artefacts and magnitude of rework. The magnitude of
software defects removed was low in 44% projects as
shown in Table 3.

Accordingly magnitude of software bugs found later
by end users was low in 59% projects. In addition, low
effort and project resources were used for software testing
which caused extensive rework. Firstly, overall high
magnitude of rework was present in 66% surveyed
projects. Secondly, in 64% of software projects high
intensity of COR was present due to poor programming/
logical errors in code. In addition, 56% of projects faced
high magnitude of RR, performed due to poor quality of
work. Finally, magnitude of ER performed to enhance
existing product features remained high as depicted in
Table 4. In 45% software projects overall very poor

quality of SRS documents was maintained. Since,
moderate level of bugs were present in SRS shown in
Table 5.

In consequence numbers of bugs removed/modified
from SRS were found low in 44% projects. Finally, in
48% projects very low effort was allocated to maintain
quality of SRS document which means low effort/project
resources were used to ensure quality of SRS documents.
Further study found that MSDLCA helped in rework
reduction and enhanced chances of PS. Since, in 48% of
software projects new defects occurred after little
durations while in 52% of projects overall MSDLCA
remained low as depicted in Table 6.

Study found that SC is critical and multi factor
process. Furthermore, explicitly defined project goals/
objectives contributed little in SC in 72% projects. In
addition, change requests formally approved, rejected/
deferred by CCB and documenting changes in scope
change log also contributed little in SC. Finally,
stakeholder’s involvement in defining project scope,
incomplete/partial definition of scope documents and
restricted sharing of project scope statement contributed
little in SC as shown in Table 7.

Various factors (project performance standards,
planning for on time product delivery, identifying projects
risks, project progress/status reports planning, schedule,
scope, cost and stakeholder management planning)
contributed in effective PP which reduced rework and
leads to PS as depicted in Table 8.

Pearson correlational analysis shows that with PP,
SRSDQ, ST, MSDLCA and SRMT, PS was ensured
R = 0.690, r = 0.511, r = 0.575, r = 0.581, r = 0.611,
p<0.01) as depicted in Table 9. Further, effective PP,
SRSDQ, ST, MSDLCA and SRMT ensure up to 48, 26,
33 and 37% of PS, respectively. In addition, usage of
SRMT and effective PP were the most critical factors to
ensure very high chances of PS. Furthermore, ST ensured
high chances of PS while factors like SRSDQ ensured
moderate level of PS. While a significant low
negative correlation was calculated between SC and
PS (r = -0.145, p<0.01). Study found that SC decreased
2% magnitude of PS. In addition, significant moderate
negative correlation was present between PP,
SRSDQ, ST, MSDLCA, SRMT, PS and rework
R = -0.495, r = -0.284, r = -0.419, r = -0.560, r = -0.345,
r = -0.485, p<0.01). Accordingly this study found that PP
reduced 21% rework, SRS Document Quality reduced
08% rework, ST reduced 18% rework, MSDLCA reduced
15% rework and SRMT reduced 31%rework. Further,
significant low positive correlation was calculated
between SC and rework (r = 0.133, p<0.01) which means
that SC increased 2% rework magnitude. In addition,
rework reduced 24% chances of overall PS. While SRMT
and PP were prime factors in significant rework reduction

126

Int. J. Soft Comput., 14 (6): 123-131, 2019

Table 3: Descriptive statistics of software testing
Statistics
--

Variables Scales Age (%) Means Mode SD
No. of defects Very low 18.8 2.69 3 1.16

Low 24.6
Removed during Neither low nor high 31.7
SDLC High 18.8

Very high 6.3
Total number of defects Very low 23.7 2.34 2 1.04
found later Low 34.8

Neither low nor high 27.7
High 11.6
Very high 2.2

No. of soft req. tested Very low 18.8 2.77 3 1.2
during testing phase Low 23.2

Neither low nor high 29.5
High 19.6
Very high 8.9

No. of defects removed Very low 22.3 2.70 3 1.2
during testing phase Low 21.4

Neither low nor high 27.2
High 21.9
Very high 7.1

Table 4: Descriptive statistics of rework
Statistics
--

Variables Scales Age (%) Means Mode SD
Rework performed to correct Very low 2.7 3.79 4.00 1.03
critical errors errors Low 7.6

Neither low nor high 25.9
High 35.3
Very high 28.6

Rework performed due to poor Very low 4.9 3.60 4.00 1.16
quality of work Low 12.9

Neither low nor high 26.3
High 29.0
Very high 26.8

Rework performed to enhance Very low 2.2 3.71 4.00 1.01
existing product features Low 9.4

Neither low nor high 28.6
High 35.3
Very high 24.6

Total effects spent in fixing Very low 0.9 3.79 5.00 1.06
rework Low 12.1

Neither low nor high 26.3
High 28.1
Very high 32.6

Overall rework ratio present in Very low 3.1 3.77 4.00 1.01
the project Low 6.3

Neither low nor high 27.7
High 36.2
Very high 26.8

Table 5: Descriptive statistics of SRSDQ
Statistics

Variables Scales Age (%) Means Mode SD
No. of errors found in SRS Very low 15.2 2.63 3 1.01

Low 28.6
Neither low nor high 37.5
High 16.1
Very high 2.7

No. of errors removed from Very low 16.1 2.68 3 1.08
SRS Low 26.3

Neither low nor high 35.7
High 17.0
Very high 4.9

127

Int. J. Soft Comput., 14 (6): 123-131, 2019

Table 5: Continue
Statistics
--

Variables Scale Age (%) Means Mode SD
No. of errors modified in SRS Very low 18.3 2.55 3 0.98

Low 25.0
Neither low nor high 41.1
High 14.7
Very high 0.90

Total number of req. in SRS Very low 19.2
document Low 22.3

Neither low nor high 33.0
High 21.4
Very high 4.00

Number of correct req. found in Very low 21.9 2.66 3 1.15
SRS document Low 21.4

Neither low nor high 28.1
High 26.3
Very high 2.20

Effort used to maintain quality Very low 26.8 2.58 1 1.23
of SRS document Low 20.1

Neither low nor high 26.8
High 21.4
Very high 4.90

Table 6: Descriptive statistics of maturity of SDLC
Statistics

Variables Valid Age (%) Means Mode SD
Duration, since, software Very low 24.1 2.63 4 1.18
products is working Low 21.4
efficiently Neither low nor high 24.1

High 28.6
Very high 1.80

Duration in occurrence of new Very low 16.5 2.55 3 0.99
defects in software product Low 30.8

Neither low nor high 35.7
High 15.2
Very high 1.80

Table 7: Descriptive statistics of scope creep
Statistics
--

Variables Valid Age (%) Means Mode SD
Explicitly projects Very low 44.2 1.85 1 0.86
goals/deliverables objectives Low 27.2

Neither low nor high 27.7
High 0.90
Very high 0.00

Change requests formal approval Very low 44.6 1.84 1 0.85
through CCB Low 26.8

Neither low nor high 28.1
High 0.40
Very high 0.00

Change requests rejected/deferred Very low 48.7 1.78 1 0.86
Low 25.9
Neither low nor high 24.6
High 0.40
Very high 0.40

Change requests documented in Very low 49.6 1.75 1 0.87
scope change log Low 29.9

Neither low nor high 17.9
High 1.80
Very high 0.90

Scope change requests impact on Very low 53.1 1.68 1 0.81
project plan Low 26.3

Neither low nor high 20.1
High 0.40
Very high 0.00

128

Int. J. Soft Comput., 14 (6): 123-131, 2019

Table 7: Continue
Statistics
--

Variables Valid Age (%) Means Mode SD
Stakeholder’s involvement in Very low 51.8 1.17 1 0.84
defining project scope Low 28.1

Neither low nor high 18.8
High 0.40
Very high 0.90

Unclear/incomplete or partial Very low 47.3 1.74 1 0.84
defination of scope documents Low 34.8

Neither low nor high 15.2
High 1.80
Very high 0.90

Restricted sharing of Very low 46.4 1.79 1 0.87
projects scope statement Low 30.8

Neither low nor high 20.1
High 2.20
Very high 0.40

Table 8: Descriptive statistics of project planning
Statistics
--

Variables Valid Age (%) Means Mode SD
Project performance standard Very low 15.18 2.83 3.00 1.10

Low 20.54
Neither low now high 33.93
High 26.79
Very high 3.570

Planning to ensure project outputs Very low 17.41 2.92 4.00 1.24
are delivered on time Low 19.64

Neither low nor high 25.89
High 28.13
Very high 8.930

Identify project risks problems Very low 17.86 2.74 4.00 1.17
issues Low 26.79

Neither low nor high 22.32
High 29.46
Very high 3.570

Effective communications within Very low 22.77 2.79 4.00 1.28
project stakeholders Low 18.30

Neither low nor high 23.21
High 28.57
Very high 7.140

Planning project progress and status Very low 13.84 2.88 3.00 1.14
reports Low 23.66

Neither low nor high 29.02
High 27.68
Very high 5.800

Project scheduled management Very low 16.52 2.90 4.00 1.17
planning Low 19.64

Neither low nor high 25.89
High 33.48
Very high 4.460

Project scope management planning Very low 17.86 2.82 4.00 1.18
Low 22.32
Neither low nor high 24.11
High 31.25
very high 4.460

Project budget management planning Very low 18.30 2.85 3.00 1.20
Low 18.75
Neither low nor high 29.02
High 27.23
Very high 6.700

Project stakeholders management Very low 19.20 2.79 4.00 1.20
planning Low 21.88

Neither low nor high 25.00
High 28.57
Very high 5.36

129

Int. J. Soft Comput., 14 (6): 123-131, 2019

Table 9: Correlations
Correlations Project success Rework
Project planning 0.690 -0.495
SRS document quality 0.511 -0.248
Scope creep -0.145 0.133
Software testing 0.575 -0.419
Maturity of SDLC approach 0.581 -0.385
SRMT 0.611 -0.560
Project success 1 -0.485

Fig. 3: High rework and very low SRMT

and ensuring high level of PS. Finally, SRMT, PP and
rework statistically significantly predicted PS, thus, model
equation is:

Project success = 0.779+0.046 (software testing) +

0.087 (SRS document quality) + 0.106

(maturity of SDLC approach)-0.065

(scope creep)+0.403 (project planning)

0.355 (SRMT)-0.119 (Rework)

Firstly, study quantified that 1% increase in
magnitude of SC and Rework decreased PS magnitude by
6 and 12%, respectively. In addition, 1% increase in
magnitude of ST, SRSDQ, MSDLCA, SRMT and PP
increased the magnitude of PS by 4, 8, 10, 35 and 40%,
respectively. Further, study revealed that in view of 38%
project teams staying within budget constraints was not
critical for PS. While in view of 43% of project teams,
scheduled limits were also not critical for PS. Software
projects in which usage of SRMT remained either very
low/low; the intensity of rework remained high. While
rework magnitude in 60% of projects remained high and
very high in 25% projects in which usage of SRMT was
reported very low as depicted in Fig. 3. Furthermore,
rework is dependent on total project completion duration
while small/medium/long term software projects faced
varying amount of rework. In addition, majority of small
to medium term software projects (0-2 year’s duration)
faced high magnitude of rework while in long term
software projects (2-3 or more than 3 year’s duration)
magnitude of rework was reported very high.

Furthermore, usage of SRMT remained very low in more
than 75% of software projects. Consequently, projects
which used SRMT faced low magnitude of rework as
compared to projects which did not used SRMT. Finally,
study model was found significant without introducing
product term of factors of rework and SRMT and model
was also found significant after introducing the product
term of factors of rework and SRMT and interaction
between factors of rework and SRMT accounted for more
variance.

CONCLUSION

Firstly, usage of SRMT is prime factor in rework
reduction to ensure high level of PS and it critical
moderating role in controlling the relationship between
factors of rework and PS. Furthermore, addition/update
related CR caused extensive rework while deletion related
CR required less rework effort in SDLC. In addition,
COR could be avoided by ensuring that programming
standards were strictly followed while writing lines of
code and minimizing logical errors. Consequently, high
intensity of RR could be avoided by ensuring that small
amount of effort is required in fulfilling future project
needs. Further, high intensity of ER was due to poorly
defined SRS/poor communication between end-users and
software developer. In addition, ER is unavoidable and
good if addition of new module or features did not cause
extensive schedule/budget overruns. Finally stakeholder’s
requirement satisfaction is critical factor for PS since
projects which used SRMT faced relatively low
magnitude of rework as compared to those which did not
used SRMT. Furthermore, rework is dependent on total
project completion duration and rework magnitude
increases with project completion duration while multiple
factors including initially defined project goals, change
requests formal approval through CCB, stakeholder’s
involvement in defining project scope and restricted
sharing of project scope statement contribute in SC.

RECOMMENDATION

This research determined critical moderating role of
SRMT. Future, research could see effect of SRMT among
individual SDLC phases to find role of various types of
rework among individual phases of SDLC.

REFERENCES

Agarwal, N. and U. Rathod, 2006. Defining success for
software projects: An exploratory revelation. Int. J.
Project Manage., 24: 358-370.

Barry, R.M., 2011. Cert ware workbench metrics: A
workbench for safety case production and analysis.
Proceedings of the IEEE Aerospace Conference,
March 5-12, 2011, Big Sky, USA., pp: 1-10.

130

3.64%
14.55%

59.09%

22.73%

Low
Neither low nor high
High
Very high

Rework use of SRMT:
Very low

Int. J. Soft Comput., 14 (6): 123-131, 2019

Besner, C. and B. Hobbs, 2013. Contextualized project
management practice: A cluster analysis of practices
and best practices. Project Manage. J., 44: 17-34.

Bokhari, M.U. and S.T. Siddiqui, 2010. A comparative
study of software requirements tools for secure
software development. BVICAM’s Int. J. IT
(BIJIT.), 2: 207-216.

Burke, R., 2009. Fundamentals of Project Management:
Tools and Techniques. 2nd Edn.,/Vol. 1, Burke
Publishing, London, UK., ISBN: 9780958273367,
Pages: 379.

Cass, A.G., L.J. Osterweil and A. Wise, 2009. A pattern
for modeling rework in software development
processes. Proceedings of the International
Conference on Software Process, May 16-17, 2009,
Springer, Berlin, Germany, pp: 305-316.

Chua, B.B. and J. Verner, 2010. Examining requirements
change rework effort: A study. Int. J. Software Eng.
Appl., 1: 48-64.

Collyer, S. and C.M. Warren, 2009. Project management
approaches for dynamic environments. Int. J. Project
Manage., 27: 355-364.

Damian, D., J. Chisan, L. Vaidyanathasamy and Y. Pal,
2005. Requirements engineering and downstream
software development: Findings from a case study.
Empirical Software Eng., 10: 255-283.

Fairley, R.E. and M.J. Willshire, 2005. Iterative rework:
The good, the bad and the ugly. Comput., 38: 34-41.

Focus, M., 2011. Successful projects start with high
quality requirements. Micro Focus Inc., Rockville,
Maryland.

Gorschek, T., 2006. Requirements engineering supporting
technical product management. Ph.D. Thesis,
Blekinge Institute of Technology, Karlskrona,
Sweden.

Hennicker, R. and N. Koch, 2000. A UML-based
methodology for hypermedia design. Proceedings of
the 3rd International Conference Unified Modeling
Language, (UML'00), Springer Verlag, New York,
pp: 410-424.

Hofmann, H.F. and F. Lehner, 2001. Requirements
engineering as a success factor in software projects.
IEEE. Software, 18: 58-66.

Iqbal, S., M. Naeem and A. Khan, 2012. Yet another set
of requirement metrics for software projects. Int. J.
Software Eng. Appl., 6: 19-28.

Kan, S.H., 2002. Metrics and models in software quality
engineering. 2nd Edn., Addison-Wesley, New York,
ISBN: 0201729156.

Lang, M. and J. Duggan, 2001. A tool to support
collaborative software requirements management.
Requirements Eng., 6: 161-172.

Madhuri K.L., J.R. Jawahar and V. Suma, 2014. Effect of
scope creep in software projects: Its bearing on
critical success factors. Int. J. Comput. Applic., 106:
9-13.

Marques, A., J. Varajao, J.J. Sousa and E.P. Correia,
2013. Project management success ICE model-a
work in progress. Procedia Technol., 9: 910-914.

Mirza, M.N., Z. Pourzolfaghar and M. Shahnazari, 2013.
Significance of scope in project success. Procedia
Technol., 9: 722-729.

Naqvi, I.H., 2007. Developing a framework for effective
IT project management and best HR practices. Ph.D.,
Thesis, National University of Modern Languages
Islamabad, Islamabad.

Osmundson, J.S., J.B. Michael, M.J. Machniak and
M.A. Grossman, 2003. Quality management metrics
for software development. Inf. Manage., 40:
799-812.

PMI., 2013. A Guide to the Project Management
Body of Knowledge (PMBOK Guide). 5th Edn.,
Project Management Institute, Newton Square, PA.,
USA.

Schwalbe, K., 2014. Information Technology Project
Management. 7th Edn., Cengage Learning, Boston,
Massachusetts,.

Sekaran, U., 2000. Research Methods for Business: A
Skill Building Approach. 3rd Edn., John Wiley, New
York, USA.

Sharif, B., S.A. Khan and M.W. Bhatti, 2012. Measuring
the impact of changing requirements on software
project cost: An empirical investigation. Int. J.
Comput. Sci. Issues (IJCSI.), 9: 170-174.

Standish Group, 1999. Chaos manifesto: A recipe for
success. Standish Group International, Boston,
Massachusetts.

Thomas, M., P.H. Jacques, J.R. Adams and J.
Kihneman-Wooten, 2008. Developing an effective
project: Planning and team building combined.
Project Manage. J., 39: 105-113.

Wang, Y.R. and G.E. Gibson Jr., 2010. A study of
preproject planning and project success using ANNs
and regression models. Automation Constr.,
19: 341-346.

Zwikael, O., 2009. The relative importance of the
PMBOK® guide’s nine knowledge areas during
project planning. Project Manage. J., 40: 94-103.

131

