
Dictionary Based Approach To Detect Cross Language Clones of C and Java Language

1Sanjay B. Ankali and 2Latha Parthiban
1K.L.E. College of Engineering and Technology, Chikodi, Visvesvaraya Technological University, Belgaum,
Belgavi, India
2Department of Computer Science, Pondicherry University CC, Pondicherry, India

Key words: Type-III, type-IV clones, clones, C, Java,
porting tools

Corresponding Author:
Sanjay B. Ankali
K.L.E. College of Engineering and Technology, Chikodi,
Visvesvaraya Technological University, Belgaum,
Belgavi, India

Page No.: 91-96
Volume: 15, Issue 4, 2020
ISSN: 1816-9503
International Journal of Soft Computing
Copy Right: Medwell Publications

Abstract: Software clones are the result of the copy/paste
activity widely used by programmers to reuse existing
code to save time. About 10-15% of the code in large
codebase are clones. gcc-8.7%, JDK-29%, Linux-22%
There are state of art tools for detecting clones like
CCFinderX, EqMiner, Dup, Simjava, Nicad but cannot
work with IDE’s, hence, To solve the software
maintenance efforts in development process it is
important to propose efficient techniques to identify
clones (especially, type-III and type-IV clones). In this
work, dictionary based approach to detect cross clones of
C and Java to provide proper inputs to the developers who
engage in software forking or porting activities by
detecting and correcting porting and copying errors that
arise during porting process for IDE’s like NetBeans,
Eclipse.

INTRODUCTION

Generally code clones are the result of the copy/paste
activity widely used by programmers to reuse existing
code to save time. Large software codebase consist of
10-15% of duplicate code[1]. Code cloning is considered
harmful to the software quality[2]. i.e., if the code
containing error is copied then the same error will be
distributed across all the target code fragments[1]. Thus, it
is important to develop approaches for clone detection in
software systems. Code clones are divided into four
classes[3].

Type I: This type is commonly referenced as exact
clones. Clones fragments of type I are exactly identical
code fragments. Variations in comments and white space
are tolerated.

Type II: Identical fragments from the structural and
syntactical point of view and with variations in identifiers,
literals, types, layout and comments.

Type III: Copied fragments with some modifications.
The modifications consist on adding, changing and
removing statements.

Type IV: Two or more code fragments that have the same
behaviour but implemented differently. To solve the
software maintenance efforts in development process it is
important to propose efficient techniques to identify
type-III and type-IV clones. Chua[4] in his research
analyzed that Java, Python and C are the most preferred
languages for implementing Open Source code like
Apache, Mozilla and Ubuntu. To help developers that port
application among C, Java and python clone detection is
important technique.

91

Int. J. Soft Comput., 15 (4): 91-96, 2020

The study is organized as follows: related work,
architecture design and algorithm, results and discussions,
limitations and conclusions.

Literature review: Based on the survey of Su et al.[5].

Static approaches:
C Textual approaches
C Token-based techniques
C Tree-based techniques
C PDG-based techniques
C Metrics-based techniques

MATERIALS AND METHODS

Dynamic approaches: Work done based on the dynamic
profiling. Some of the techniques are listed below.

Deissenboeck et al.[6] proposed Simion detection
pipeline that works on code chopper, code transformation
and filtering. But has limitations:

C Identifies only functionally similar Java-codes
C Efficiency of input-output generation process is not

reliable
C Cannot be plugged in to IDE’s

Al-Omari et al.[1] work is mainly based on 3
algorithms namely SimHash, Longest Common
Subsequence (LCS) and Levenshtein distance to detect
clone-pairs. Study reveals the quantitative and qualitative
performance aspects of clone detection approach. Results
show number of reported candidate clone-pairs, as well as
the precision and recall (using manual validation) for
several open source cross-language systems.

Limitations: Matching algorithm is limited to the
information present in boxes:

C Platform dependent
C Cannot be applied on large codebase as length of CIL

is more for corresponding C#, VB code.
C CIL instructions contain noise that needs filtering

which imposes lot of processing burden

Yuan and Guo[7] proposed token based clone
detection techniques that matches based on number of
different identifiers present in the code.

Limitations:
C No accurate calculation of false positive rate
C No results found for large codebase

Priyambadha and Rochimah[8] proposed method clone
detection based on PDG that identifies similar methods in
given large codebase.

Limitations:
C Wont detect type-IV clone
C Static variables may not be detected properly
C Applying the method for medium and large size may

be challenging

Lazar and Banias[9] proposed clone detection based
on AST based method. That works on sequence detection
and generalization algorithm.

Limitations:
C Works only on C code clone detection
C Cannot be scaled on large data sets
C Cannot be integrated to IDE

Su et al.[5] proposed the technique that detects
functional clones in arbitrary programs by identifying and
mining their inputs and outputs. The key insight is to use
existing workloads to execute programs and then measure
functional similarities between programs based on their
inputs and outputs which mitigates the problems in object
oriented languages reported by prior work. The technique
is implemented in system, HitoshiIO which is open source
and freely available. Experimental results show that
HitoshiIO detects >800 functional clones across a corpus
of 118 projects. In a random sample of the detected
clones, HitoshiIO achieves 68+% true positive rates with
only 15% false positive rate.

Limitations:
C Experiment was applied on small size code base of

118 projects from Google code jam repository
C More number of false positives.
C There are many implementation limitations to be

used in HitoshiIO as experimentation shows small
numbers of clone detected

C Capturing inputs/outputs method requires more
refinement

Ragkhitwetsagul[10] Technique uses “Internet-scaled
Similar Code Search (ISiCS)” framework is a code search
framework that is scalable and resistant to code
incompleteness.

Limitations:
C No results found on large code base
C Reliability needs to be tested on frequency of false

positive

Saini et al.[11] proposed a token-based clone
detector that targets the first three clone types and exploits
an index to achieve scalability to large inter-project
repositories using a standard workstation. It uses an
optimized inverted-index to quickly query the potential
clones of a given code block.

92

Int. J. Soft Comput., 15 (4): 91-96, 2020

Copying error
Forking error
Porting errorPort scanner

C program

Java program

Python program

C Java and
python

Code snippet scan

Trace with keyword
dictionary

Frequency calculation

Accuracy calculation

Prediction model
framework DAC

Fair

Copies

Ported

Forged

Fig. 1: Overall architecture diagram

Fig. 2: Flow diagram of Directed Auto Correction (DAC)

Limitations:
C Wont detect near miss clones and type 4 clone
C Reduced efficiency because of heuristic filtering
C No enough results presented to prove efficiency

Roy[12] proposed NICAD to detect Near Miss clones
by applying Pretty Printing, Code Normalization and code
filtering. Runs LCS algorithm to detect similarity among
the lines of codes.

Limitations:
C Only finds exact clones and near miss clones
C Cannot find type-4 semantic clones
C Cannot find cross language clones

Architecture design and algorithm: Figure 1 shows
overall architecture where C, Java, Python (clone of C)
vice-versa are given as input to Porting scanner.
Intelligent code comparator algorithm finds copied,
forked and porting code to calculate frequency of the
porting by using comparisons and frame the consistency
and inconsistency blocks.

The C code will be converted into Java code using
online converter mtsystems then DAC takes input from

prediction model and finds amount of fair, copied, ported
and forged code snippet. Then, necessary modifications
will be done in either of the code to make it clone of cross
language. The prediction model creates bar chart to
indicate amount of lines that are part of clone. The
same result will be displayed graphically to help
developers monitor and analyze amount of porting
taken place.

Figure 2 calculate the final frequency for analysis in
second phase. Prediction model generate the intelligent
code comparators with respect to relevant languages.

Algorithm Type 1 (String strS, String strD):
begin
let preProcessCommentS := 0
let preProcessCommentD :=0
 let sourceLineDupCommentsOffset[]
 let destLineDupCommentsOffset[]

 Read source code1 to strS
 Read source code2 to strD
let sourceLinesComments:=0
let destLinesComments:=0
 sourceLines Comments := getCommentedPortion of strS
 destLinesComments := getCommentedPortion of strD
 for i:=0 to sourceLinesComment begin
String tempS := Read sourceLinesComments(i)
 If destLinesComments contains(tempS)
begin
 prePocessIndex := sourceLinesComments(tempS)
add sourceLineDupCommentsOffset(i)
if prePocessIndex==0
begin
 ++preProcessCommentD
 End if
 End if
End for
For i=0 to destLinesComments
begin
String tempS := read destLinesComments(i)
If sourceLinesComments contains(tempS)
begin prePocessIndex := destLinesComments(tempS)
 add destLineDupCommentsOffset(i)
if prePocessIndex==0
 begin
 ++preProcessCommentS
 End if
 End if
 End for

Draw Bar chart to indicate clone type number of comments among both
codes

 End Algorithm

Algorithm Type 2 (String strS, String strD):
 begin
 let totalSyntacticSimCOunts := 0
 let totalSyntacticSimLines:=0
 read code1 in strS
 read code2 in strD
sourceLines := getTokensFromString(strS)
destLines := getTokensFromString(strD)
int sSize := sourceLines
 int dSize := destLines
 int actSize := 0
 if sSize < dSize
 actSize := sSize
 else if sSize > dSize

93

Int. J. Soft Comput., 15 (4): 91-96, 2020

 actSize = dSize
 else if sSize == dSize
 actSize = dSize
 for i=0 to actsize
 begin
 begin
 String toTestS := sourceLines (i) String toTestD := destLines(i)
 Let actSimCounts:=0
actSimCounts := getLineSimilarityType2(toTestS,toTestD)
let cc := actSimCounts.get(1)
let dd := actSimCounts.get(2)
let diff := dd - cc
if cc>0 && dd>0 && diff>=0
 begin
 ++totalSyntacticSimCOunts
 totalSyntacticSimLines.add(i)
 end if
 end for
Draw Bar chart to indicate clone type & number of similar lines among
both codes
 End Algorithm

Algorithm Type 3 (String strS, String strD):
 begin
 Read code1 in strS
 Read code2 in strD

Let sourceLines:=0, destLines:=0
sourceLines := getTokensFromString(strS)
destLines := getTokensFromString(strD)
let sourceSize := sourceLines
let destSize := destLines
let actSize := 0
 if sourceSize < destSize
 actSize := sourceSize
 else if sourceSize>destSize
 actSize := destSize;
 else if sourceSize==destSize
 actSize := destSize
 String sss := sourceLines(i)
 String ddd := destLines(i)
 For j=0 to sDictionarysize
 begin
 String sKeyWord := sDictionary(j)
 String dKeyWord := dDictionary(j)
 If sss contains(sKeyWord) && ddd contains(dKeyWord)

begin
 Levenshtein l := new Levenshtein()
 let double value := l.distance(sss, ddd)
 if value<0.85
 begin
 print value;
 add copiedIndexes(i);
 endif
endfor
endfor
Draw Bar chart to indicate clone type number of similar lines among
both codes
 End Algorithm

Algorithm Type 4 (String strS, String strD):
 begin
 Read code1 in strS
 Read code2 in strD

Let sourceLines:=0, destLines:=0
sourceLines := getTokensFromString(strS)
destLines := getTokensFromString(strD)

let sourceSize := sourceLines
let destSize := destLines
let actSize := 0
 if sourceSize < destSize
 actSize := sourceSize
 else if sourceSize>destSize
 actSize := destSize;
 else if sourceSize==destSize
 actSize := destSize
 String sss := sourceLines(i)
 String ddd := destLines(i)
let index := 0
for i:=0 to actSize
 begin
 String sSource := sourceLines
 String dSource = destLines
 If sSourcecontains("for")|sSourcecontains("do")|| sSource.
contains("while")
begin
if dSourcecontains("for")|dSourcecontains("do")|| dSource.
contains("while")
begin
 index = i
 endif
 endif
 endfor
Draw Bar chart to indicate clone type number of similar lines among
both codes
 End Algorithm

RESULTS AND DISCUSSION

Experimental results: Table 1 shows amount of
copied and forged lines. Inconsistency code was
identified by matching the professional origin code with
the forged code to present amount of copied and normal
code.

FIgure 3 shows the Type 2 clone between C and Java.
C code was converted by online converter mtsystems to
get java code (clone) then the Java code was manipulated
to change the identifiers and variables name. Our
framework detects exact amount of code that is similar
between 2 codes in green color bar chart. Similarly,
Type 3 and Type 4 clones are presented.

Limitations: Experiments are conducted only on small
applications such as clock, counter, string print. Proposed
method works very well to detect amount of forged and
copied code by detecting Type-2, Type-3 and Type-4
clones.

Efficiency has to be identified for large code base of
several KLOC. Same work needs to be extended to detect
clones among C, Java and python for online open source
hubs like GITHub by taking input as version histories of
two different projects.

Table 1: Amount of copied and forged lines
Amount of forged Amount of normal

Code under test code (No. of lines) code (No. of line)
Clock 20 35
Counter 09 10
String print 20 14

94

Int. J. Soft Comput., 15 (4): 91-96, 2020

Fig. 3: Type-2 clone detection for C to Java code

Fig. 4: Type-3 clone detection for C to Java code

Fig. 5: Type-4 clone detection for C to Java code

95

Int. J. Soft Comput., 15 (4): 91-96, 2020

CONCLUSION

The proposed method detects all 4 types of clones in
cross language under common umbrella and presents the
results graphically that helps maintenance engineers to
develop the porting analysis tools such as REPERTOIRE
that answers many questions such as: What percentage of
mainline commits is back ported?. What are the
characteristics of back ported patches-bug fixes, feature
additions, new functionalities, etc.?. How different is a
back ported patch with respect to its original main-line
patch?

How much time does it take to test a back ported
patch? These questions could help us to understand
the effort of maintaining parallel versions of a
project. Studying bug report similarities in a product
family.

The proposed work helps developers involved in
software porting to detect and correct porting and copying
errors.

REFERENCES

01. Al-Omari, F., I. Keivanloo, C.K. Roy and J. Rilling,
2012. Detecting clones across microsoft. net
programming languages. Proceedings of the 2012
19th Working Conference on Reverse Engineering
(WCRE), October 15-18, 2012, IEEE, Kingston,
Ontario, Canada, ISBN: 978-1-4673-4536-1,
pp: 405-414.

02. Abdelkader, M. and M. Mimoun, 2015. Clone
detection using time series and dynamic time
warping techniques. Proceedings of the 2015 3rd
World International Conference on Complex Systems
(WCCS), November 23-25, 2015, IEEE, Marrakech,
Morocco, ISBN:978-1-4673-9669-1, pp: 1-6.

03. Abid, S., S. Javed, M. Naseem, S. Shahid and
H.A. Basit et al., 2017. Codeease: Harnessing
method clone structures for reuse. Proceedings of the
2017 IEEE 11th International Workshop on Software
Clones (IWSC), February 21-21, 2017, IEEE,
Klagenfurt, Austria, ISBN: 978-1-5090-6595-0,
pp: 1-7.

04. Chua, B., 2015. Detecting sustainable programming
languages through forking on open source projects
for survivability. Proceedings of the 2015 IEEE
International Symposium on Software Reliability
Engineering Workshops (ISSREW), November 2-5,
2015, IEEE, Gaithersburg, Maryland, USA.,
ISBN:978-1-5090-1943-4, pp: 120-124.

05. Su, F.H., J. Bell, G. Kaiser and S. Sethumadhavan,
2016. Identifying functionally similar code in
complex codebases. Proceedings of the 2016 IEEE
24th International Conference on Program
Comprehension (ICPC), May 16-17, 2016, IEEE,
Austin, Texas, USA., ISBN:978-1-5090-1428-6,
pp: 1-10.

06. Deissenboeck, F., L. Heinemann, B. Hummel and
S. Wagner, 2012. Challenges of the dynamic
detection of functionally similar code fragments.
Proceedings of the 2012 16th European International
Conference on Software Maintenance and
Reengineering (CSMR), March 27-30, 2012,
IEEE, Szeged, Hungary, ISBN:978-1-4673-0984-4,
pp: 299-308.

07. Yuan, Y. and Y. Guo, 2012. Boreas: An accurate and
scalable token-based approach to code clone
detection. Proceedings of the 27th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), September 3-7, 2012,
IEEE, Essen, Germany, ISBN:978-1-4503-1204-2,
pp: 286-289.

08. Priyambadha, B. and S. Rochimah, 2014. Case study
on semantic clone detection based on code behavior.
Proceedings of the 2014 International Conference on
Data and Software Engineering (ICODSE),
November 26-27, 2014, IEEE, Bandung, Indonesia,
ISBN:978-1-4799-8175-5, pp: 1-6.

09. Lazar, F.M. and O. Banias, 2014. Clone detection
algorithm based on the abstract syntax tree approach.
Proceedings of the 2014 IEEE 9th International
Symposium on Applied Computational Intelligence
and Informatics (SACI), May 15-17, 2014, IEEE,
Timisoara, Romania, ISBN:978-1-4799-4694-5,
pp: 73-78.

10. Ragkhitwetsagul, C., 2016. Measuring code
similarity in large-scaled code corpora. Proceedings
of the 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME),
October 2-7, 2016, IEEE, Raleigh, North Carolina,
USA., ISBN:978-1-5090-3806-0, pp: 626-630.

11. Saini, V., H. Sajnani, J. Kim and C. Lopes, 2016.
SourcererCC and SourcererCC-I: Tools to detect
clones in batch mode and during software
development. Proceedings of the 38th International
Conference on Software Engineering Companion,
May 14-22, 2016, ACM, New York, USA.,
ISBN:978-1-4503-4205-6, pp: 597-600.

12. Roy, C.K., 2009. Detection and analysis of near-miss
software clones. Proceedings of the IEEE
International Conference on Software Maintenance
ICSM, September 20-26, 2009, IEEE, Edmonton,
Alberta, Canada, ISBN: 978-1-4244-4828-9,
pp: 447-450.

96

