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Abstract: The use of multiple shape recognition techmques for target recognition and classification are explored
and compared. An overview into the methods used to isolate the targets and remove background clutter is also
mcluded. The primary method used for shape detection was a version of geometric hashing, used in
combination with a specialized corner detection method and a circle detection method. The corner detection
method described obtained better results at finding corners in the black and white outlined 1mages than several
other compared methods. The geometric hashing algorithm implemented with a weighted-neighbourhood,

performed better than the alternative methods compared.
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INTRODUCTION

The primary objectives of the project were to 1dentify
and locate the position of well-defined targets on an
airfield. The targets were contrasted with the surrounding
area and consisted of simple geometric shapes of a solid
color with an alphanumeric character inside of a different
color. Both the objectives of this project and the images
used during testing were obtained during the 2007 ATUVSI
competition (http://uav.navair.navy.mil/seafarers/default.
htm for a newer, but similar set of rules). The table of
parameters 1s shown in Table 1. The data obtained during
this competition consists of 94 high-resolution mmages
and a data stream describing the altitude and orientation
of the camera.

The following section contains a review of some
previous research done on shape processing. After that,
the overall method is described. The first step of the
overall method consisted of loading all the images and
synchromzing the data stream mformation with the camera

Table1: Abbreviated list of target parameters from the 2007 AUWVSI

comp etition
Shape Size (ft) BG color Alpha color
Square 2x2 Red Red
Triangle 2 Orange Orange
Rectangle 2x8 Yellow Yellow
Circle 44 Green Green
Cross 48 Blue Blue
Hexagon 88 Black Black
Octagon White White
Purple Purple

data. During this step, the camera orientation and position
were determined during the exact moment each image was
taken. Clutter removal is performed to remove regions that
clearly do not match the target shape parameters. Once
most clutter 1s removed, perspective correction 1s
performed on the remaimng regions.

REVIEW OF PREVIOUS SHAPE DETECTION WORK

Over the last few decades, multiple algorithms for
shape detection have been developed. Among them, 2-
dimensional shape matching techmques were of particular
interest. Several categories exist including global image
transforms, global object methods, voting schemes,
computational geometry, etc. (Veltkamp and Hagedoorn,
1999). Global image transforms, such as wavelet-based
methods, are not typically good at representing shape
information;, only the image as a whole 13 measured.
Global object methods, such as curvature scale space,
work on objects as a whole. Voting schemes, such as
the geometric hashing method or pose clustering,
operate on points of interest of the shape (Olson, 1997;
Rigoutsos and Wolfson, 1997). Computational geometry
deals with the geometric mformation of the shapes,
such as their points, lines, or polygons (Veltkamp and
Hagedoorn, 1999). Here a few techniques are briefly
mentioned before moving on to the methods that were
implemented.

One method explored was the generalized Hough
transform or pose clustering. The generalized Hough
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transform can detect arbitrary shapes that are 2
dimensional and have undergone translation (Ballard,
1981). Hough transforms that account for rotation and
scaling also exists. Pose clustering works similarly to
this, but also works well with different rotations and
scaling. The pose clustering method determines which,
transformation parameters align groups of model features
with groups of image features. A large number of these
transformations should appear near the pose of the object
in pose space. The clustering is performed by moving
a box around the pose space. If a large number of
points are found inside the box, a potential match exists
(Olson, 1997).

Shape context are another method that was
investigated. Shape context is a method to measure the
similarity between shapes. A shape context is attached to
each point. This shape context determines the distribution
of all remaining points relative to it. Similar, shapes will
have similar shape contexts, so comparing shape contexts
of 2 shapes together enables the ability to perform shape
detection (Belongie ef al., 2000). Finally, the geometric
hashing technique was explored and decided on for the
primary method.

Geometric hashing essentially uses a 2D hash table to
store different geometric transformations of a set of points
from an image. This table is referenced using a set of
query points from an image that can be a scaled, rotated,
or translated version of the model used to generate the
points stored in the table. For each set of points in the
table, a set of points from the query shape are transformed
and mapped into the table. For each unique point set in
the table, a vote is cast based on the number of matches
with that set and the query point set (Rigoutsos and
Wolfson, 1997). Many other shape detection methods
exist. For more information on these and other methods,
(Veltkamp and Hagedoorn, 1999).

INITIALIZATION AND FILTERING

The first few steps of the algorithm read in an image
and the data stream. The image is then resized and stored
in memory temporarily for future access. The time of the
image capture is taken from the camera and the pitch, roll,
yaw, altitude, latitude and longitude of the camera is
extracted from the data stream at the time of image
capture. Once this step is done, the images are converted
to YCbCr color space with MATLAB’s rgb2ycbre
command. The individual channels are then separated to
obtain grayscale images of the scene. The primary method
is intended to be used on grayscale images only, so color
information is ignored as much as possible until target
details are extracted after a potential target has been

Fig. 1: Example image showing results of canny edge
detection

Fig. 2: Example images showing before and after of
applying lookup table to a target shape’s corner

identified. For this project, each channel was processed
separately to locate the target shapes. For each channel,
canny edge detection was performed with the edge
MATLAB command. With this, a black and white edge
image can be obtained such as that shown to the right
(Canny, 1983) for information on canny edge detection).
These images show the target shape, usually fully-
enclosed and several unwanted regions of high contrast
from the airfield. A large majority of these are filtered in
subsequent steps (Fig. 1).

The pre-filtering process consists of several
morphological steps before the blob analysis is performed
in the following study. The first stage of filtering involved
morphologically opening the image using MATLAB’s
bwareaopen. This step removed regions that were too
small to be a shape. The next step involved
morphologically closing the images. First, MATLAB’s
imclose was used with a 3%3 square structuring element,
then a custom lookup table was used to connect corners
that would not have been connected with the imclose
operation. A figure showing the effect of the lookup table
operation is shown Fig. 2. After this initial filtering, the
remaining regions are segmented using MATLAB’s
bwlabel and blob analysis is performed on the resulting
regions using regionprops.
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CLUTTER REMOVAL

The clutter removal stage 1s conceptually similar to
the method described in Sun ef al. (2005). Because the
canny edge detector will detect edge segments that do
not correspond to a target, it is necessary to filter the
output of the segmentation stage. Each region detected
must be classified as either “clutter” or a potential target.
This is accomplished with a series of checks that take into
account both image space information and real-world
coordinates and dimensions for a given region. Prior
knowledge of the target shapes 1s used to calculate valid
thresholds for each of the checks. Some of these checks
require the use of perspective correction.

Absolute pixel dimensions check: The first check will
discard any region that contains insufficient information
to accurately reconstruct any of the target shapes. This is
accomplished be checking the width and height of the
region’s bounding box. If either the width or height 1s too
small, that region is classified as clutter.

Filled area vs. unfilled area check: The second check will
discard any region that does not contamn a fully enclosed
shape (i.e., the detected edge is incomplete). This is
accomplished by counting the number of pixels in the
filled version of the region and comparing it with the
number of pixels in the unfilled region (outline). If the ratio
is too low, the region is classified as clutter (Fig. 3).

Invalid location check: The third check will discard any
region that 1s partially or completely above the horizon.
This is accomplished by calculating the perspective
corrected coordinates for each corner of the region’s
bounding box. If any of these points are invalid, the
region is classified as clutter.

Physical area check: The fourth check will discard any
region having a physical size outside the range of valid
target sizes. The physical area of the filled region 1s
computed using perspective correction. If the region size
is smaller than 0.9 times the minimum target size or larger
than 1.5 times the maximum target size, the region 1s
classified as clutter. These wvalues were chosen to
compensate for potential noise and distortion in the
image.

MajorAxisLength vs. MinorAxisLength check: The 5th
check will discard any region having an eccentricity that
is significantly outside the range calculated for the target
shapes. For all target shapes, the ratio between its
MajorAxisLength and its MinorAxisLength 1s calculated.

Fig. 3: Example of a region’s outline area vs. filled area

"

Fig. 4. Example of aregion’s filled area vs. convex area

An upper threshold ratio, By, e 18 calculated using
the following formula, where, E,, is the largest ratio
calculated for all target shapes:

EMaXThrEsh = (EMax )1 : (1)

Likewise, a lower threshold ratio B .. 18 calculated
using the following formula, where, E,;, is the smallest
ratio calculated for all target shapes:

B 08 (2)

MirThresh (EMm )

If the ratio calculated for a given region 1s outside of
this range, it 15 classified as clutter.

Filled area vs. convex area check: The 6th and final check
will discard any regions that are overly concave. For all
target shapes, the ratio between each shape’s filled area
and its convex area 1s calculated. A mimmum threshold,
Crinmreso 18 calculated where, Cp; is the minimum ratio
calculated for all target shapes (Fig. 4).

CMnthrEsh = (CMm )1.5 (3)

If any region has a ratio lower than Cyj s it is
classified as clutter.

Future work for clutter removal: Target shapes could
potentially be segregated mto various bins based on their
physical size, eccentricity and convexity. The clutter
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removal stage could then be uszed to classify a given
region based on the same 3 parameters. It would then only
need to be compared with target shapes fom the
corresponding bins. Thiz could be used az both a
performance  enhancernent method and a  false
identification reduction method.

PERSPECTIVE CORRECTION

Inn order to accurately detect a particular shapeina
given region, that region must undergo perspective
correction. Inaddition to pixzel coordinates from the image,
thisprocess requires the angle of wiew of the carnera lens,
the carnera’s position and the camera’s orientation at the
titne theimage was aptured (Fig. 5.

The first step is to calculate the diagonal angle of
view This requires the focal length of the lens and the
physical size of the camera’s image sensor. The focal
length waties with the zoom level and is typically recorded
intheimage’s EXIF data at the time of capture. The irrage
sensor dimensions can be obtained from the camera’s
tnanufacturing specifications. Let d be diagonal size of the
image sensor and f be the focal length of the lens The
diagonal angle of view, a, is then given by the following
formula:

a=Zarctan [i] 4
af

Mote: The following steps must be repeated for every
point ofinterestin a given region.

The next step iz to caloulate a vector relative to the
camera’s forward-pointing lens wector. Let H be the
honzontal size oftheimage in pixzels, V¥ be the vertical size
oftheimage in pixels and a be the diagonal angle of wiew.
For a given pointin the immage, 1et 20, be the horizontal
offset from the center of the image (positive right) and
¥ e bE the wertical offset from the center of the image
(postive down). Then two angles, W, and 9, can be
calculated as followrs:

Loz

Lmz

Fig 5 Example image before prespective correction

Wige = otan 2K g, — Vg ) (33

2 2
Kigrar + ¥ o (6

The lens-relative unit wector, {;M, can then he
calculated as followes:

O = 2

-'i"'rLefrs.I{ = Cos Izel.m: )
-'i"'er:,Y = dn (elzrs )Sin [WL&E ) (?}
Vimez =~ Sin(eLms )EDS I:Wl.ms)

After obtaining the lens-relative wector, it must then
be converted to a camera-relative wector in world space.
Thiz iz done using quatemion rotation with the prowided
carnera orientation information. Let Q. be a unit
gquatemion describing the orientation of the camera in

world space.
First, a pure gquaternion, 0, ., is created from {}Lw :

QLms,:{ = {'rlmz{

QLm-.,Y = {'rLem,Y (%
Quaez = Vi

Qe =00

An intermediate quatemion, O, 15 then calculated
as follows:

QTnxmp = QCM Qlﬂ'ﬁ : Qcmm_l [:Q)
The world space unit wector, ﬁwl L. can then he
extracted from the pure component of Q.
1i"'r1.ik1:r1|:1..1-£ = QTmp.I{
V'WIH..Y = QTmp.Y (10)

vvmiz = QTemp,Z

Before continuing, it isimportant to note thatif the
Z component of § 15 Zero or negative, then the given
point of interest is above the horizon and this process
will fail.

Finally, relative north and east distances can be
caloulated using ﬁ_ﬂm and thealtitude of the camera, A,

"i:ir
Dy, = £ (11
Vigri,z
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Fig. 6: Example image after perspective correction

>

_A World,Y (12)

East —

D

=
V\Voﬂdz

These distances can then be re-mapped to pixel
coordinates on a new image. This process can be used to
redraw an image or selected region from a vertical bird’s
eye view. This allows for accurate shape detection to be
performed on ground level objects without requiring a
strictly vertical view point.

The method described here approximates the ground
as an infinitely flat plane. It also assumes that the camera
is significantly higher than the objects being observed. If
the terrain is significantly bumpy, a terrain height map
should be employed and the equations modified
accordingly. Also, the curvature of the earth can be
factored in to provide increased accuracy at extreme
altitudes (Fig. 6).

CORNER POINT DETECTION

Two different binary-image based corner detection
methods were implemented initially. The first one used the
Hough transform to find straight lines along the outline of
the image. The second method is a specialized method
that looks at the distance to the centroid of the object for
each point along the perimeter to find the corners. Two
alternative methods were attempted that operate on
grayscale images as well, rather than the binary images
that have been pre-filtered. Another binary-image based
method was tried, but there were issues with the target
image resolution that prevented the method from working
as well as it could have. The centroid-based method was
shown to work the best out of the methods tried for the
test data, but may not work as well for more complex

Fig. 7: Example result for Hough line method

shapes. In addition to the corner point detection methods,
a corner point minimization technique is also described.

Hough lines: The first method to detect the lines around
the outline of the image was a version of the Hough
transform for detecting lines (Duda and Hart, 1972). The
basic method works by the method described here. First,
points in the (x,y) plane are translated into the (p,0) plane,
where:

p=x,cosO+y,sin0 (13)

Every point in a parameter plane corresponds to
a straight line in the picture plane and curves
through, a common point in the parameter plane
correspond to a straight line in the picture plane.
Therefore, a potential line exists where, there are a
sufficient number of intersections of curves in the
parameter plane. The location of the line can be found
in the picture plane since the points lying on the
same curve in the parameter plane correspond to lines
through the same point in the picture plane.

To use this method, the lines around the outline were
broken down into line segments using a combination of
MATLAB’s houghpeaks and houghlines functions. The
results of these functions are a list of points where, each
line segment ends. For shapes other than circles, these
line segments should end on or near corners. This
technique worked relatively well on certain shapes, but
the edges for certain shapes weren’t perfect enough to
obtain good results (Fig. 7).

Centroid-distance corner detector: The centroid-distance
corner detector is another method that can be used with
binary images. Its basic operation is described as follows:

Given the coordinates of a shape’s centroid and an
ordered list of points composing its perimeter, a discrete
wave can be generated based on the Euclidian distance of
each perimeter point to the centroid. Let P be the list of
perimeter points, 1 be the index into P and C be the
centroid point. Then the distance signal, D, is calculated
as follows:
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Fig. 8: Centroid-Distance signal for a test image. Red
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Fig. 9: Centroid-Distance signal and its derivative for
cross template. Red points are local maxima, Blue
points are local minima

D(i)= \/(C “R) (¢, p i) P

Potential points of interest lie at the local maxima
and local minima of the distance signal. It is important
to notethat the distance signal calculated will be eyclical
in nature and this must be taken into account when
determming the local maxima and minima locations (Fig. 8).

For convex shapes, corner points can be determined
by locking at only the local maxima. For concave shapes,
the local minima must also be examined. This method
cannot always locate all corners if a shape 1s concave. To
improve the accuracy with concave test shapes, the first
derivative of the distance signal should also be examined
for local maxima and minima (Fig. 9).

In order to account for all types of shapes, both the
distance signal and its derivative are always analyzed. To
reduce the number of extraneous points detected in
convex shapes, a point minimization technique is
employed (Fig. 10).

Additional corner detection methods: In addition to
Hough lines and the centroid-based method, other corner
detection techmiques were tested. An implementation

Fig. 10: Example result for centroid-based method

Fig. 11: Example results for Harris

Fig. 12: Example results for FAST

of the Harmris corner detection algorithm (Harris and
Stephens, 1988;  http//www.csse.uwa.edu au/~pk/
research/matlabfns/) and another algorithm called the
FAST corner detector (Roston and Drummond, 20035,
2006) were implemented. Both the Harris and FAST corner
detection algorithms rely on grayscale images and do not
work on filled or outline binary images. For comparison
purposes, they are shown below. One major problem with
operating on the grayscale images is that they are not the
filtered-versions and are susceptible to background noise
around the target. If the outline of the object 1s operated
on directly, as with the centroid-based method described
earlier, the corner points are chosen based entirely on the
outline of the targets and not the ground around them
(Fig. 11 and 12).

Another binary method attempted was a pixel-based
curvature approximation technique. Essentially, this
technique traces over pixel-boundaries (sub-segments
of a certain size of the shape outline) and determines
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potential corners by calculating the maximum bending
ratio in a movng window, Mon-marimal suppression is
applied to remove points close to each other, so ondy the
strofigest corners are kept (Firangyraz ef of |, 2007) . It wotks
ety well on higher resolution images, bt most of the
target shapes were too small to reliably detect using this
techrd que.

Cormerpoint minimization: The corner poirtmirimiz ation
method  described  here  can be used to remove
redundant (non-corner) poirts from the outpdt of ay
of the previously described binay corter point detectors.
This method woks by calodlating the agle formed
by a goup of 3 consecutive “cortier™  poitts IF the
calowlated angle is close to forming a strai ght ine (1207,
the middle point can be removed. This methodis a
sitnilar, tut opposite  approach  as that taken in
(Eliratiyaz ef A, 2007,

This method requires an ordered list of potertial
cotrer poirts. IF the outpuat of a binary corner detector is
fot ot dered, then the ordered list of shape perimeter
poirds can be used to sort the corner point list,

For every point, P, in the cyclical corner point lst, let
Pro be the previous point and P, be the next point. The
followring calculations can then be made:

Diff
lefhw = P:r -F‘P‘W
Dl ff]i'nn.x = P]:Tnxtx - PI

. (1%
Diff, . =P, -F

waty  C Hoxty oy

Angle,,, =atan2(Diff,  Diff,_ )
Angleg, = atan? (Diffy., Diffy. )

=F,-P

Ponux

The anmidar difference, Angleqr between the 2
absolute angles caleulated abowe iz then given by

Anglep, =mod[Angle, - Angley  +7,2n)-n
(18)

& simple mirdroam angle threshold, Angle,, .. canbe
specified. If the ahsclute walue of Angleris less than o
equal to this fhreshold, then P iz not a cotter and can be
discarded.

To help detect redundant points in low resolution
immages amodification can be made. Instead of relying on
a simple anmidar threshold a dynamic threshold can be
caloulated based on the distances bebween the three
points. This dynamic minimum angle, Angle . can be
caleulated as follows:

Dretects dpodits

Miimized poes

Fig 13: Ezample of cormer poird mirdmizati on on a noisy

test shape
DifFyg e = 1035 [ |Diffpg g [ Diffg | ] €17
Diffy o, = max [[Diff,.., [ [Diff,.[] (19

Angley,p, = atand [Lmin(Diffy,, . Diffy o )]
(18

Thiz helps compensate for the lower graroalarity
irherert in digtizedimages.

E oth thresholds can be used it combinati on for best
results(Fig 137

Angle,. = max (f—‘-.nglemu Anglelyn, | (200
SHAPE DETECTION

& few shape detection techmicues are discussed and
cotn pared. First, the primary method, geometric hashing,
is discussed M ext, bitmap template matching iz discussed.
&5 a third method to compare, the shape corfexts
techricue was implemented and is discussed This
implementation of geomettic hashing relies on corner
points, 50 a method to detect circles to go dong with the
geotnetric hashing teched que was necessary. The circle
detection used for that is briefly discussed as well
Finally, the differert methods of shape detection
implemerted ate compated.

Geometric hashing: The primary method implemented to
petform shape matching was geometric hashing, It was
briefly desctibed eatlier, bt will be describedhere inmore
detail. Mote that the techwdcue implemerted here only
uges two basis points to detect 2D objects in different
translations, rotations and scales Using more than baro
hasis points discussed elsewhere (Rigowtsos 1992,
Rigoutsos and Wolfsorn, 1997, V elthamp and Hagedoorn,



Int. J. Syst. Signal Control Eng. Applic., 1 (1): 1-14, 2008

1999), is a method that can be used to detect 3D objects
as well as 2D objects, but it requires more computational
complexity. The method implemented consists of 2 stages:
preprocessing and recogmtion. The preprocessing phase
consists of the following steps for each model:

*  Determine the points of mterest.

* For each ordered pair or basis, compute the
coordinates of the rest of the points in the model
based on those points.

*  Use those points as indices to index mto the 2D hash
table. The model name and set of basis points are
stored in the hash table bin.

Once the preprocessing phase 1s done, the next step
1s to recognize the object given a query image. The
following steps comprise the recognition phase for each
image:

*  Determine the points of mterest.

¢+ Choose an ordered pair or basis and compute the
coordinates of the rest of the interest points in the
model based on those pomts.

*  Using those points as mdices mto the hash table,
determine all entries found in each accessed hash
table bin.

*  Histogram all hash table entries and compute a score
for each potential match taking into consideration
both the input image features and the model features.

¢ If the score isn’t high enough, go back to step 2
and repeat with a different image basis pair
(Rigoutsos and Wolfson, 1997).

In order to determine the pomts of mnterest, the corner
point detection algorithms were used. The next step,
determimng the basis pomts and computing table
coordinates is done in the following method. First, for the
table can only be a finite size so there needs to be a limit
on how close 2 basis pomts can be apart from each other.
The table can then be scaled by this size according to the
method described here.

Assume 2 points in an image can never be closer than
1/k times the longest side of the bounding box of an
object. Let d;, be the length 1/k. If the 2 points closest
together on the side of an object are chosen (spaced
exactly d,; apart), then the farthest point can be at
most k distances away from either of the points.
When populating the hash table, pomts far away
from the basis points must fit inside the table, sothe
table must be sufficiently large to accommodate k d,
either point location.
Also assume that the basis points are to be spaced

distances away from basis

by, apart in the table. The smallest size of the hash table’s
rows and columns are then:

Columns = 2kd_ b, +b,, (21)

Rows=2kd . b

unit — dist

From this, the locations to store the two basis points
are simply:
b

— dist
- kdumtbchst * 7 (22)

Basis _ =kd b,

unit

Basis_,
co.

Once the table has been sized and the row and
column of each basis pomnt are known, the template points
are inserted into the table. Each set of basis points are
chosen from the templates one pair at a time to be placed
in the table. That means there is a maximum of n (n-1)
basis pomt pairs for each model stored assuming each
model contains n points. For each basis point pair, it is
necessary to find the locations of all other pomnts
assuming the first basis point should to be located at (0,0)
and the second point to be at (1,0). First, translate all
points so that the first point moves to (0,0). So, for all
M(1), where, 1 is between 1 and n and some b,, where, b,
and b, are the first and second basis points, respectively:

M(i) = M(i)— M(b, ) (23)

The next step is to rotate all points about the first
basis point (b, ) so that the second basis point (b;) lies on
the x-axis. For this, one way is to compute the sine and
cosine of the angle required to rotate b, about the origin
(b,) and then rotate all objects the same angle. This was
done using the following method:

: M(bz )x
cosmne =
JM(b,), 2+ M(b,),*
sine = M)y (24)
JM(b,),7 + M(b,),?

M(1), = cosineM(1), —sineM(1),
M(1), = sineM(1), +cosineM(i),

Finally, scale all points so that the second point lies
at (1,0) on the x-axis. For this, a scale factor (s) must be
determined and all points must be multiplied by that
value. The scale factor 1s found by determming how
much b, must be scaled along the x-axis for it to lie on
(1,0). Since, 1t already lies on the x-axis from the previous
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Fig. 14: Example of 2 hash table mappings for different
basis pairs

transformations, only the following steps need to be
performed:

s=1/M(b,),
M), =sM(i), (25)
M(i), = sM(i),

To determine where, the points map into the table, it
is necessary to translate and scale all points again so that
the basis points map to the middle of the table. For
example, if a table 1s 100x 100, the basis points should map
to [50, 45] and [50, 55] (assuming [ row , column | table
format and 10 cell separation between basis points). At
this point, the first and second basis points are located at
(0,0) and (1,0), respectively. Therefore, all points only
need to be scaled by by, (set s = by, in Eq. 25) and
translated by (Basis,,, , Basis,,) so that b, lies on
[Basis,,, Basis] and b,lies on [Basis,,, Basis
(from Eq. 22). Once these new points are calculated, they
may simply be rounded to obtain their locations in the
hash table (Fig. 14).

Now that the locations to map the basis points are
known, a neighborhood should be determined. It has been
mentioned in previous resecarch (Rigoutsos, 1992;
Rigoutsos and Wolfson, 1997) that noise can cause
positional errors (a point maps into a hash bin near, but
not exactly on the desired bin) that can potentially
completely mismatch the shape. For this reason, a
weighted neighborhood was implemented such that the
weights of surrounding bins are inversely proportional to
the distance to the primary hash bin. The primary hash bin
is given a weight of 1, but the rest are scaled according to
the following function:

w14 (26)
T

Fig. 15: Example of scaled neighbourhoods for 2
different basis pairs

where, d 1s the distance away from the primary (center)
bin and r indicates the maximum radius from the primary
bin to propagate the neighbourhood. The value of r is
determined by the following formula:

e o rl+1o@n
|\/(b1,x - bZ,x )2 + (bl,y - bZ,Y)z

where, d,;, is the smallest distance between any 2 basis
points in the model and r,,,, 1s the maximum radius allowed.
This method gives us an approximately circular weighting
scheme that gives direct hits the largest scores, but can
deal with noise as well. The Fig. 15 shows a graphical
representation of the neighbourhood weighting scheme.
Darker cells indicate a larger weight; while, brighter cells
indicate smaller weight (white has no weight, while, black
has maximum weight).

The above procedure is used to place all models into
the hash table for each unique set of basis points. Overall,
this takes approximately O (n* m) time to insert the m
models of n points each into the table. Once this is done,
a query image can be tested in as little as O(n) time
complexity (Rigoutsos, 1992).

The query images are tested with the same initial
steps as loading the model information into the hash
table. First, the interest points are found based on the
corner detection methods. The points from the query
image undergo the same transformations to determine
their location in the hash table as well. There is no need to
compute a neighbourhood for the query points, however,
since the neighbourhood is computed for the model
points only. Once a set of points has been mapped into
hash table locations, the score for each unique model
transformation (chosen pair of basis points for a model) is
calculated. The score is calculated m the following
manner:
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Fig. 16: Example results for geometric hashing

I WM, (b,.b)

n
o C(M, (b;,b,))
-
(28)
UM, (b;,b)))-2
4= M,, -2

! 1 "
Score = (s)WS (t)w‘ (1+ - j
e

Here, the value s is the sum of the weights (W) for all
the hits on the hash table of a specific model k with basis
points b; and b; divided by the number of points in the
query image n. Similarly, t is the total count (C) of the
number of hits on the hash table for a specific model k and
basis points b; and b; also divided by the number of
points in the query image. The variable u keeps track of
the unique hits (U) on the hash table for a specific model
k with basis points b; and b; divided by the number of
points in the model (M,,). Note that u is calculated to
ignore the basis points as hits, while, the other scores
include the basis points. It is also calculated with a
sigmoid function to enable a better non-linear cut-off for
which shapes match the templates correctly. The overall
score is computed with weights for each sub-score. If W,
1s a large number, for example, more weight is given
towards the sum of weights sub-score. After the weights
are computed for each model and each model’s unique
basis point set, the maximum of all Score values are found.
The best score is then examined to ensure that it is above
some minimum score (Score,,,) and if it is, then a match
occurred. Otherwise, there is not a close enough similarity
to the points of the shapes in the hash table to be called
a match (Fig. 16).

Bitmap template matching: Bitmap template matching is
a simple and straight-forward method that can be used to
calculate the similarity between a binary test bitmap and
all stored bitmap templates. The concept is similar to that
described in Sun et al. (2005).

10

Fig. 18: Unique outline rotations for cross template using
a 3 degree interval

A bitmap template consists of a filled version and an
outline version of a given shape, scaled to a fixed
resolution (X,Y). The shape is always centered and scaled
to fill as much area on the bitmap template as possible.
Depending on the chosen resolution and the degree of
outline precision required; the outline image may
optionally undergo morphological dilation. This will
increase the outline match score for non-perfect test
shapes.

Bitmap templates will need to be created for every
target shape included in the database. One of two main
methods can be used to allow detection of rotated and
flipped shapes (Fig. 17).

Method 1: For every template shape, pre-compute
bitmap templates for every rotation (using an N-
degree interval) and the corresponding flipped view.
Store all unique templates in the database. The test
shape can then be compared directly with all stored
templates.

Method 2: Only store one view of every template shape.
For each test shape, compute all rotations (using an N-
degree interval) and flipped views. Compare each view
with all stored templates.
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Region #38 filled Matching shape filled

(VLY

Trapezoid +201°

Region #38 outline  Matching shape outline

A

Trapezoid +201°
Fig. 19: Example bitmap template matching results

There 1s a storage size and speed tradeoff for the two
methods. If storage size is not a concern, the first method
is generally faster (Fig. 18).

Bitmap template scoring: Since, the bitmap templates
consist of simple binary images, calculating a similarity
score between 2 templates can be done using logical
operators. Implementations of this method are often quite
fast relative to more complex algorithms.

For a given bimary image A, let X be the number of
horizontal pixels and Y be the number of vertical pixels.
The following function is then defined:

NumTrue(A)= i i A (29)

i=1 =1

This function is used simply to count the number of
“on” or “true” pixels in a binary image.

In addition to this function, two main operations
are performed: binary XOR and binary AND. These
two operations are performed on both the outline
bitmaps and the filled bitmaps of both templates.

Let A and B be two bitmap templates. The scoring
function is then broken into four sub-scores (S, Sop, Sex
and 5.;) as follows:

F i = Avnea ” Brinea
(NumTrue(FAnd ))2 (30)
A NumTrue( A, )NumTrue(B,, )
Oana = Aoutiine ™ Boutine
(NumTruf:(OAnd ))2 (1)
%4 NumTrue (A uine ) NumTrue (B .. |
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XOR filled AND filled

Score=195.21%

Score =9897%

XOR outline AND outline

Score =92.48%

Score = 34.30%

Feor = Apig e Britea
NumTrue(F,,, ) (32)
Sy =1l-——m————
XY
OXor = AOut].ine @ BOutline
NumTrue( O, ) (33)
SOX =1l

XY

The final similarity score, S, i1s then computed as
follows:
(34)

5= (SFA )WFA (SOA )WOA (SE( )WFX (SOX )WOX

For each sub-score, S,, a corresponding weight, W.,
is applied. Weights can vary from 0 to 8 with higher
weights giving more importance to a particular sub-score.
A weight of 0 will cause that sub-score to be ignored
(Fig. 19).

Shape contexts: Shape context was another method
tested. It was briefly mentioned earlier in the study, but
will be discussed here in some further detail. The main
steps involved (Belongie, 2000) are as follows for each
shape:

« Convert edge elements of the shape into a set of N
feature points.

+  For each point P, compute a course histogram of the
relative coordinates of the remaining points (called
the shape context).

+  Store these histograms into a log polar coordinate
system with n equally spaced angle bins and m
equally spaced log-radius bins. Let the total number
of bins, K be mxn.
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Fig 20:Example edge points and selected histogram
(Belonge efal, 2000

v MNormalize all radial distatices by the median distance
(1) bebween all H° poirt pairs inthe shape.

Once these steps ate complete, shape contexts from
differert shapes can be matched with the following
method Given an interest point i for one shape and an
interest point | on a second shape, a cost for matching
these points (T cann be determined. Assume the
histogram atiis g(K) and the histogram &t j 15 hok). The
costis then compute using the 3° statistic:

1 E

1 E [ge)-hioT
Cu= 3T T

Zk)+hik)

(35)

These costs are then computed for dl poirtsi andjin
the first and second shape, respectively. & s mentioned by
(Belongie, 20000, the Hungarian method can then used to
cotngnde the mitdm al cost firwetion for &l C walues, which
can be compzed in O time A cost function lower
thar a particwl ar threshold walue indicates the two shapes
ate similar. An example image is shownin Fig 200

Cirele detection: Two methods were used in corjunction
to perform circle detection. The first method was Hough
citcles (Fimmie o al, 19751 The Hough cirde method
relies on a3 dimensional array of acowruators that track
of the mamber of poirits that lie on each cirele of 2 member
of differert radivses at each point in an image. IF the
roanber of eements found Iying on a cirele of a particular
radivg cettered at a particular point is greater than a
certain threshold, a potential circle of that radius exists
certered at that point.

The implementation of this algorithun Chitpfeneer
mathwrotks. com/) took it a parameter for the threshold
walue, the desired radiug of the circle to find and the hlack
and white cutline image and it returned the center points
of atry potential dreles found Using the bouwnding box of
the region of interest, a radivg for the citcle can be
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calolated it a stral ght-fore ard moarmer and the threshiold
should be some walue proportiona to the perimeter of the
citcle, For nearl y perfect drcles, this works quite well. This
teckrigue dgo picks wp approximately circwlar shapes like
heragons as well with a lower threshold. Jome of the
circles i the test data recuired thresholds that were low
eniough to detect hex agons almost every tithe as circles.
D to this issue, another moethod was implemented to
remove falze positives from the drcle detection.

& simple, tut effective roundness metric was
implemented by examining the perimeter and area of the

shape detected (httpefeww mathworks combf.  The
perith eter and area of a circle arem eamured am
p=2nr (36)
a=mr

whete, ¢ is the radius of the circle. From this, the foll owing
roundness moetric can be compded such that the metric
will be 1 for a perfect circle and some mamber less thanl
otheraise:

dma

mmnc=—?—

2

(37)

If the meamired periteter from the target region is
close to the circle perimeter and the area is close to the
citcle area from the radius, then the object is detected as
a circle. Combining the taromethods worked for all cases
of circle detection in the test data and managed to only
detect the target circles as well. Note, agan, that this
circle detection was only performed for the geometric
hashing and not  the comparison methods  The
compatison methods were able to detect circles with
reasonable accuracy on their own, while, the geometric
haghing method's  dependence poitts
prevented this.

ofl  corner

Shape matching comparison: & comparison between
Geometric  Hashing  (with Circle Detectiom, Shape
Context Maching and Bitmap Template Matching
was performed The centroid-distance corner detection
method was used to detect corner points for G eometric
Hashing

The ity data for each algorithm consisted of all the
perspective corrected regions that passed the clutter
removal stage (Table ). Templates were created for all the
gimple geometric shapes listed already.

The following paratmeters were used for G eometric
Hashing
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Table 2: Summary of shape matching results ignoring shapes remowved with
the clutter removal stage

Method Accuracy (%)
Geometric hashing 93.75
Shape context matching 87.50
Bitmap template matching 88.75

The following parameters were used for Shape
Context Matching:

NPomts = 50
Opp. =12
ers = 5

L —0.125
Lo = 2

The following perameters were used for Bitmap
Template Matching:

COLOR CLASSIFICATION

Since, the targets were classified both by shape
and color, a simple color detection technique was
performed to determine the color of the target. First, the
pixels around the outline of the target in the original
color 1mage were converted to the HSV color space. It
becomes simple to classify colors in this color space with
basic thresholds. Since, the target parameters only
specified targets as red, orange, yellow, green, blue,
purple, black, or white, the following basic method 1s
used:

*  Target is classified as black if value 1s low.
»  Target is classified as white if saturation 1s low.
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Table 3: Final comparison of shape matching methods

Method Accuracy (%)
Geometric hashing and circle detection 85.32
Shape context matching 80.73
Bitmap template matching 81.31

s Target is classified as one of the other colors based
on the hue.

In HSV color space, the hue 1s a degree from 0 to 360.
Based on that degree, the individual colors are segmented
using thresholds. For example, red could be segmented as
(red < 10 or 340 < red), while, green could be (80 < green
< 150). The remaining colors were segmented similarly.
The results from this method with the test data were 100%
accurate so another method for this dataset was not
considered.

Once a method for determining the color was
implemented, another segmentation step was implemented
by splitting the image into color regions labelled with an
index corresponding to the color. This was tested as a
simple, but effective way to extract the letter out of the
image. For future worls, the letter stored inside the target
would be determined, as well as the orientation of the
target based on the top of the letter.

RESULTS

The overall final results of the methods described
taking into account the clutter removal stage are shown in
Table 3. The primary method worked better than the
comparison methods. Accuracies are slightly lower here
than in the shape comparison section because the clutter
removal stage erroneously classified some targets as
clutter.

(Feometric hashing, in combination with the circle
detection  worked  better than all other methods
compared. The corner point algorithms developed in
conjunction with the geometric hashing neighbourhood
scheme were demonstrated to work effectively for the
targets and images beng tested. Further research can be
done to improve the geometric hashing and clutter
removal. Implementing the character recognition would
also be a good next step for the improvement of the
overall project. In addition, there are other shape
detection technmiques that can be compared with those
currently implemented.
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