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Abstract: A new concept for the design of finite impulse response (FIR) filters is introduced here. This
analytical approach has led to three fundamental and new results. First, a differential equation for the
approximating polynomial of the filter 1s developed. Second, the linear differential equation is solved by

iteration, yielding an algorithm for recursive evaluation of the impulse response of a filter. Fmally, the degree
equation of the filter is introduced. We present the design of 4 types of narrow band FIR filters: the maximally
at notch FIR filter, the equiripple notch FIR filter, the equiripple DC-notch FIR filter and the equiripple comb FIR
filter. Equuripple filters are optimal in the Chebyshev sense. The design procedure starts with frequency

specifications of the filter and ends with a recursive evaluation of the inpulse response coefficients reframing

from other numerical procedures.
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INTRODUCTION

The design of digital FIR filters may seem to be a
closed chapter in the history of digital signal processing.
Several textbooks devoted to DSP, Mitra (1998) and
Orfanidis (1996) have suggested that a few numerical
methods including the Fast Fourier Transform and the
Remez exchange algorithm implemented by the famous
Parks-McClellan code (McClellan et af., 1973), are all that
1s needed for FIR filter design. Until recently, however,
only a limited number of closed form solutions have been
available (Zahradmk and Vigek, 2005, 2007). This study
deals with the analytical design of FIR filters including the
class of optimal filters, which cannct be obtained at all
with the Remez algorithm. Our analytical approach in the
design of FIR filters has led to three fundamental and new
results:

¢ A differential equation for the approximating function
and its linear version.

* A degree equation of the filter.

¢ A recursive algorithm for the impulse re-sponse
coefficients.

The development of the differential equation 1s novel,
and its concept is essential. Tt consequently plays a

fundamental role in replacing spectral transformation
by an algebraic evaluation of the impulse response
coefficients. The filter degree is evaluated through closed
form formulae. This 1s a novel and nen-standard result, as
an empirical estimation for the filter degree 1s frequently
used (Rabiner, 1973; Rabiner and Gold, 1975). The
solution of the differential equation provides the
recurrenice  algorithm  for the impulse response
coefficients, refraiming from the Fast Fourier Transform.
This 1s important, because the Fast Fourier Transform
cannot be used on several analytical filter design
methods. Some analytical design methods are worth
noting (Chen and Parks, 1986), but it should be
emphasized that various numerical methods have always
been used. In following filter design starts with frequency
specifications and ends with a recursive evaluation of the
impulse response coefficients without any other numerical
recourse. In addition, the analytical approach pre-sented
here is extremely robust and fast. These properties are
advantageous in adaptive filtering.

EQUIRIPPLE APPROXIMATION

In this study we present the fundamental principles
which govern FIR filter design procedures presented in
the study.
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Chebyshev polynomials and Zolotarev polynomials
and their relatives form the mathematical core of practical
applications including filter design and data interpolation.
Chebyshev polynomials of the first kind are defined as a
solution of an approximation problem (Achieser, 1928).
The objective of this problem is to find, within all
polynomials of the nth order and fixed highest
coefficient b(n), such a polynomaial

T (w)= Zb(k) wh (1)
k=0
that minimizes the quantity
max|T, (w)|, we[-11] (2)

The polynomials fulfill the differential equation
(Abramowitz and Stegun, 1972):

2 [ 4L (W) i 2 2
(1—w )[TI =n’(1-T2w)) @

which reflects the equiripple behaviour of T, (w) within the
interval w € [-1, 1]. By separating the variables

dT, _ 4w @
J-T2 J1—w?
we can arrive at the parametric solution
T. (@) = cos ng (3)
W =Cos @ (6)
This can alternatively be expressed as
T, (w) =cos (narccos (w)), we [-1, 1] )]

The coefficients bik) from Eq. 1 are usually given in
closed form. Using a standard identity for the cosine of
multiple angle Eq. 5 we get

T (cos) = cos np = 2°7' cos™

n
2

n—k-1 ®)

k-1

(=1

+n
k

k=1

—2Zk—1 —zk
] 2" cos”

If there were no De Moivre’s theorem, we would need
to develop an alternative way of finding algebraic form
Eq. 1. For this purpose, we use the second order linear
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Table 1: Recursive evaluation of the coefficients b(k)

Given n
Initialisation b (m) =2+
b (@-1)=0
Recursive body
(for k=n2ta0
k+2)(k+1
bk) — 1%(2) bk 2)
(end

differential equation for Chebyshev polynomials T, (w).
The denvative of Eq. 4 and simple algebraic mampulation
gives the well known equation

d*T dT
1—w") ;—wd” +n*T =0 9
w W

Inserting identity Eq. 1 mto 9 we obtain a recursive
evaluation of the coefficients b(k) and the explicit
algebraic representation of Eq. 5 and 6 consequently. This
alternative and robust way for evaluating the algebraic
form of the Chebyshev polynomials avoeids using De
Moivre’s theorem (Table 1).

The algorithm produces the coefficients bik) for
Chebyshev polynomials T, (x), as expected.

The second order differential equation converts the
parametric representation to an explicit form.

In contrast to the explicit formula

nS-(0*"n-m-1
Tn(x):az m!(n— 2m)!

m=0

f (x>

the algorithm computes b(k) for quite huigh order
polynomials (n = 100).
The maximum of the coefficients appears at
approximately

V2

—Xn
2
BASIC TERMS

Here we assume the impulse response hik), with odd
length N = 2n + 1 and with even symmetry

a(0)=h(n),
ak)=2hm+k) =2h(nk),k=1..n

(10)

The vector (k) more useful for further
manipulations than the corresponding impulse response
h (k). For brevity we call a(k) the a-vector of the filter.
Here and m the following we will use the transformed
variable w (Vléek and Unbehauen, 1989):

is
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W:%(z—i—z_l) an

which transforms the z-plane onto a two-leaved w-plane
so that the unit circle itself |z| = 1 is mapped into the real
interval -1 < w =cos w T < 1 along which both leaves are
interconnected. The transfer function H(z) of an FIR filter
of the order N-1 1s

H(z) = f}h(k)z—k

=z "|h(n) = ZZn: hi{n£k) %(Zk +z7%y (12)
k=1

n

=z Za(k)Tk {(w)=2z"Q(w)

k=0

where, Ty(w) 1s the Chebyshev polynomial of the first
kind. The function

Zn

Qw) = D alk) T, (w)

k=0

(13)

represents a polynomial in the variable w which on the
unit circle z = ¢ ™7 reduces to the real valued zero phase
transfer function Q(w) of the real argument
w=cos (0wT) (14

The zero phase transfer function is formed by the
approximating polynomial. The approximating polynomial
has a particular form for a particular type of approximation.

The frequency response H (&™) of the filter can be
expressed by the zero phase transfer function

H(e™ ) =™ Q(coswT)
=77 Q(w)

(15)

z=ejuT

ANALYTICAL DESIGN OF MAXIMALLY
FLAT NOTCH FIR FILTERS

Approximation: Generating function of a maximally at

notch FIR filter is the approximating polynomial A, (w)

(V1dek and Jire§, 1994; Zahradnik and Vigek, 2004):

A, W) =CA-wyd+w) (16)

The approximating polynomial Ap,q(w) fulfils the
differential equation
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Fig. 1: Amplitude frequency response 20 log [H{e®™)|

based on the approximating polynomial Q (w) =1

-A3,37 (w). The parameters are w, T = 0.17661 and

AwT =0.15557 for a = 20 log( 2/2) = -3.0103 dB

P.4

dA
(lfwz) T

Differential Eq. 17 is indispensable for deriving the

(17)

+lp—q+p+aw]A, =0

algorithm for analytical evaluation of the impulse
response. Normalization of the approximating polynomaial
Ay (w) results in

A

P q
L (W)= \p+q (1— W)] [M(l _ W)] (18)
2p Zp

The polynomial @ (w) = 1-A | (w) represents the zero
phase transfer function of the maximally at notch FIR
filter. For illustration, the amplitude frequency response
20 log [H(e™")| [dB] correspending to the zero phase
transfer function Q(w) = 1-A, ;; (w) 15 shown in Fig. 1. The
notch frequency w1 of the filter 1s derived from the
minimum value of the zero phase transfer function Q (w)

4—p

q+p

w,_ =cosw T= (19)

The notch frequency w, T (19) of the filter is given
by the integer values p and g exclusively. It 13 obvious,
that for the specified filter length N = 2(p + ) + 1, exactly
p+ g-1 discrete notch frequencies w, T are available. The
goal in the design of a maximally at notch FIR filter 1s to
obtain as precisely as possible the two integers p and q in
order to satisfy the filter specification (notch frequency
w, T, width of the notch band AwT and attenuation in the
passbands a [dB]). The width of the notchband 1s:



Int. J. Syst. Signal Control Eng. Applic., 1 (1): 110-124, 2008

AT =n—2arccos .Jl 7(1—10005"‘[‘*51 )21” (20)

and degree n 1s given by

log (1 10°71)
AwT

n>

2D

log cos

We call Eq. 21 the degree equation of the maximally
at notch FIR filter. The integer values p and ¢ are

B ]] T ]] =

where the square brackets stand for rounding. The
approximating polynomial A, (w) of the degreen=p +q
can be expressed using Chebyshev polynomials of the
first kind

w. T

m

p:

n sinz[

n cos’ [

1

AL W)= k) T (w)

k=

(23)

Based on differential Eq. 17 we have deduced a fast
and robust recursive algorithm (Table 2) for evaluating the
unpulse response h (k) of the length N =2 (p+ ) + 1
coefficients.

Design procedure: The design procedure reads as
follows:

Specify the notch frequency T, the maximal width
of the notchband AwT and the maximal attenuation
in the passbands a [dB], as demonstrated in Fig. 1.
Calculate the minimum degree n (21).

Calculate the integer values p and ¢ (22).

Evaluate the impulse response h (k) analytically
(Table 2).

Check the notch frequency using (19).

If required, tine the notch frequency to the proper
value.

It 13 worth noting that many coefficients of the
impulse response h (k) of the maximally at notch FIR filter
exhibit negligible values. Consequently, the impulse
response of the maximally at notch FIR filter can be
greatly abbreviated by rectangular windowing without
significant deterioration of the frequency properties of the
filter, as emphasized in Viéek and TireTired (1994).
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Example 1: Design the maximally at notch FIR filter
specified by w, T = 0.351 and AwT = 0.15% for

a=-3.0103dB

Table 2: Recursive algorithim for the impulse resp onse coefficients

Given p, q (Integer values)
Initialisation n=p+q
ain+1)=0
i q
amy=(—1) 2(=p=+1) [M] [p_—i—q]
2p 2p
Recursive body

(fork=n+1to3)
_ (n+Ka(k)+2(2p—njak—1)

atk—2) = ni2 k

(end loop on k)
_ m+2)a(2)+2(2p—n) a(l)
2n
h (m=1-a{0)

a(0) =

Tmpulse response
(fork=1ton)

h (n+k) = -a (k)12
(end loop on k)

Table 3: Impulse response h(k) of the notch filter from example 1

------- | S h (&) it ettt h (&)
14 74 -0.000002 30 58 0.012289
15 73 -0.000003 31 57 0.002278
16 7 0.000000 32 56 -0.019427
17 71 0.000018 33 55 -0.027483
18 70 0.000037 34 54 -0.003357
19 69 0.000010 35 53 0.042804
20 68 -0.000111 36 52 0.048063
21 67 -0.000245 37 51 -0.009353
22 66 -0.000101 38 50 -0.075616
23 65 0.000537 39 49 -0.065324
24 64 0.001173 40 48 0.029196
25 63 0.000480 a1 47 0.106554
26 62 -0.002149 42 46 0.068113
27 61 -0.004302 43 45 -0.053105
28 60 -0.001388 a4 0.880514
29 59 0.007135
it p
a=-3.0103 [dB]
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Fig. 2. Amplitude frequency response 20 log [H(e jwT )
|[[dB] of the maximally at FIR notch filter from
example 1
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Using the proposed design procedure we get
n = [43.8256] =+ 44 (21), p = [11.9644] = 12 and q =
[31.8610] = 32 (22). The actual filter parameters are w, T =
0.34981 and AwT = 0.1496m. The impulse response
coefficients h{lt) of the length N = 89 (Table 3) are
evaluated by the recursive algorithm (Table 2). The
amplitude frequency response 20 log [H(e®") |[dB] of the
maximally at notch FIR filter is shown in Fig. 2.

ANALYTICAL DESIGN OF EQUIRIPPLE
NOTCH FIR FILTERS

Approximation: The approximating polynomial of the
equiripple notch FIR filter 15 the Zolotarev polynomial
(Zahradnik and Vicek, 2004):

7, (uk)= (*21)

mu-Prey|  [murPrep|| @9
n n

+
H(u— 2 K@)
n

Heu + 2Ky
n

It approximates zero value in 2 disjoint intervals.
H (u + p/mn) K (x)) 15 the Jacobi Eta function, K (x) 1s the
quarter-period given by the complete elliptic integral of
the first kind of the Jacobi elliptic modulus k. The degree
of the Zolotarev polynomial 1s n = p +q. The indices
p and g emphasize that p counts the munber of zeros right
from the maximum wm and q corresponds to the number
of zeros left from the maximum wm. The extremal values
of the Zolotarev polynomial alternate between -1 and +1
(q+ 1)-times n the mterval (-1, w,) and (p + 1)-times n the
mterval (w,, 1). Assuming the conformal transformation
(Achieser, 1928; Levy, 1970) between the u domain and
the w domain

sn” (u) en® [BK(FU)|FU] +en’(u) sn’ [RK(m)m]
n n

W=

sn’ (u)—sn® [BK(m)hru]
n
(25)
we denote Z,, (w) = Z,, (u k) the Zolotarev polynomial in
the w-domain. It was derived in V1¢ek and Unbehauen

(1999) that the Zolotarev polynomial 7, (w) satisfies the
differential equation

Pew) (1 w) d ZP'qZ(W)f w de,q(w)
dw dw (26)
4z, ,(w)

—Q(w) (1—-w?) EIT +R(w)Z, (W) =0
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Pw)=(w—-w )w—-w)(Ww-w_) (27
Qw) =(w—w_ ) (W—w_)—
(28)
(ww) (w
2
R(w)=n’(w—-w_)° (29)
The band edges wp and ws correspond to
w, = 2sn’ [EK(m)ha] -1,
B (30)
w,. =1—2sn’ [pK(m)m]
n
The position of the maximum value y,, = A, (w,) is:
sn [EK(H)R] cn [EK(N)|H]
W, =w, +2—0 L z[pK(n)H
dn [EK(m)m] n
n
(31)
Where,
z [RK(m) m]
n

represents the Jacobi zeta function. The integer values
P g, n = p + q and the real valued elliptic modulus k are
related by the partition equation

PR+ TR ) =F o,
n n

) HF(p, [ =Ky G2

Function F (¢ [k} is the incomplete elliptic integral of
the first kind of Tacobi elliptic modulus k. The goal in the
approximation of the equiripple notch FIR filter s to
obtain the 3 parameters p, q and ¥ m order to satisfy the
specified notch frequency T, the width of the
notchband AwT and the attenuation in the passbands a
[dB] (Fig. 3) as precisely as possible. The degree of the
Zolotarev polynomial 1s expressed by the degree equation

. Iy, +4vs—1)

2. Z(EK(H)W (o, (g K(s)|)

(33)

where the auxiliary parameter 0,, i3
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1 W, — W,

w +1

o =F|arcsin ‘m (34)

ksn (%K(%)h%)

The maximum value ym of the Zolotarev polynomial
reads

y. = cosh2n(o, Z (%K(%)\R) -

(o, , %K(R)m

where, (0, pn K (¥) [k) is the incomplete elliptic integral
of the third kind. The maximizer ym is related to the
attenuation in the passbands « [dB]

of[dB] = 20 log [1 2] (36)

V1

The zero phase transfer function of the equiripple
notch FIR filter 1s

Zp:q(W)%»l
Y +1

Qw)=1- (37

Based on the differential Eq. 26 we have developed
a fast and robust algorithm for evaluating the a-vector of
the Zolotarev polynomial

zZ,,(w)= ana(k) T (w) (38)

and of the impulse response h (k), Table 4 and 5.

Design procedure: The design procedure reads as
follows:

Specify the notch frequency w, T, the width of the
notchband AwT and the maximal attenuation mn the
passband ¢ [dB] demonstrated n Fig. 3.

*  Calculate the band edges
AwT AuT
0, T = w, T = e T =, T+ 39
2 2
+  Evaluate the Jacobi elliptic modulus x
1
w= l——F > (40)
tan”(ip )tan”(p, )
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Table 4: Tmpulse response hik) of the equiripple FIR notch filter

------- — h &) . — h (&)
0 76 -0.020617 20 56 0.023583
1 75 0.009026 21 55 -0.016098
2 74 -0.006910 22 54 0.004079
3 73 0.002540 23 53 0.009627
4 72 0.003215 24 52 -0.021585
5 71 -0.008960 25 51 0.028644
& 70 0.013104 26 50 -0.028782
7 69 -0.014293 27 49 0.021678
8 68 0.011819 28 48 -0.008872
9 67 -0.005907 20 47 -0.006575
10 66 -0.002247 30 46 0.020828
11 65 0.010702 31 45 -0.030245
12 64 -0.017226 32 44 0.032332
13 63 0.019891 33 43 -0.026411
14 62 -0.017624 34 42 (.013833
15 61 0.010583 35 41 0.002336
16 60 -0.000216 36 40 -0.018080
17 59 -0.011026 37 39 0.029453
18 58 0.020271 38 0.916626
19 57 -0.024966
10-
ApT
]
L SN
a[dB]
—=-10
g
4 -20-
)
g
e -304
3
=
=~ _404
=504
T o, T
-60 y T T y T y
| 0.5 1 @l 15 2 2.5 3
oT

Fig. 31 Amplitude frequency response 20 log [H(e™") |[dB]
based on the Zolotarev polynomial Z,(w). The
parameters are w,T =0.3506m, w,T = 0.4006T,
w,T=04507n, AwT =0.1001t anda =-.3.2634 dB

for the auxiliary parameters ¢, and @,

m—w T
___F

2

(41)

5 ¥ T

Calculate the rational values p/n and g/n (32).
Determine the required maximum value y,, (35).
Calculate the mmimum degree n, using the degree
Eq. 33.

Calculate the integer values p and q defining the
Zolotarev polynomial 2, , (w).

Flo, )

K{r)

RICAD
o TP )

= (42)
K<)

n

E
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Table 5: EvaluationoftheimpulseresponseofanequirippleFIRnotch lter

Given

p, q (integers), ¥ (real)

Initialisation n=p+q
w, — 2’ [ﬂK(H,)hQ]f Lw,—1- om0 [BK(R)\R], w, = et ¥
n n
sn [EK(R)‘R] CH[EK(H)|R]
w,—w, 42 —0 I Z[EK(R)|R]
dIl[BK(H,)‘H,] n
n
gm=l,em+)=am+D=c@+I=ch+d=am+5)=0
body
(For m=n-+2to3

8c () =r’-(m + 3)°

4c(2)=(2m + 5) (m+ 2) (W, -w,) + 3w, [- (m+ 2)7

2c (3)=§[n2 — M+ 3w, [n*w, —(m+1)7 w,]

—(m+D)m+2)(w, w, —w, W)

c(4):% (' —m’)+m’ (w, —w,)+w, (@ W, —m'w, w,)

2 (5)=;[n2 —(m=1)]+3w, [ w, —(m—1)' w,]

—(m—-Dm-—-2)(w, w, —w,_ W)

dc(6)={2m—35)(m —2)(w,_ —w,)+3w_[n’ —(m—2)]

8c(7)=n" —(m—

3y

a(m-—3) :%EC(u)u(meH)

(end loop on m)
Normalisation

s(n) = % + Zn:a(m)

oy 20
a(0) =(=1) 2.m)
(form=1ton)
oy Sm)
am) = (-1 2%

(for loop on m)

Tmpulse response
Yo+l

(fork=1ton)

h(ndk) =

(end loop on k)

h(]’l) — Y _OL(O)

ok
2y, +D

where the square brackets stand for the rounding.

Calculate the actual attenuation in the passbands a
[dB] (36) for the corresponding maximal value y,, (35).
Calculate the actual width of the passband

AwT = arccos (w,)-arccos(w,) (43)
For p, q and x evaluate the impulse response h(k)

analytically (Table 5).
Check the notch frequency using (31).
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If required, tune the notch frequency to the proper
value.

Example 2: Design the equiripple notch FIR filter specified
by the notch frequency w, T = 0.84% and by the width of
the stopband AwT = 0.061 0 for the maximal attenuation
in the passband a = -0.95 dB. Using the proposed design
procedure we get wp = 0.8095m, ws = 0.8705w (39),
¢,=0.2992, ¢,=13674(41), x=0.743599 (40), n=[37.2896]
— 38(33),p=[31.9713] # 32and q=[6.0287] = 6 (42).
For the calculatedvalues p, g, k the

actual filter



Int. J. Syst. Signal Control Eng. Applic., 1 (1): 110-124, 2008

a=-0.9109 [dB]

. .

[*)

8 o
L L

Log [H(&") [4E]
2

=

2

o.T

0.5 25

Fig. 4. Amplitude frequency response 20 log |H{e®T)|
[dB] of the equiripple FIR notch filter from
example 2

parameters are 0, T = 0.84087 (31), AwT = 0.06071 (43)
and a = -0.9109 dB (36). The filter length is N = 77
coefficients. The impulse response coefficients h(k) of the
filter were evaluated recursively (Table 5) and they are

summmarized in Table 4. The amplitude frequency response
20 log [H(e®") |[dB] of the filter is shown in Fig. 4.

ANALYTICAL PROCEDURE FOR
TUNING FIR FILTERS

Precise tuning (Zahradnik and Vléek, 2006) of
frequency properties 1s an useful operation in the design
of digital filters. Instead of designing the filter from
scratch, the impulse response of the available filter can be
reused. Adaptive filtering 1s one of the applications.
Tuning is also useful in the analytical design of digital FIR
filters where the available critical frequencies are
quantized. Hence analytical design combined with tuning
the filter represents a powerful design tool. The proposed
fast versatile tuning procedure adjusts a single frequency
of the frequency re- sponse of the FIR filter to the
specified value while preserving the nature of the filter,
e.g., maximally at, equiripple etc. The tuning procedure is
based on expanding the Chebyshev polynomial of the
transformed argument mto the sum of the Chebyshev
polynomials, resulting in the transformation matrix. The
impulse response of the final filter is obtained from the
unpulse response of the origmal filter by applymng the
transformation matrix. The purpose of tuning 1s to map the
critical frequency w, T of the frequency response of the
filter to the desired value w,T . The mapping w,T <> w,T
m the frequency domain 1s equivalent to the mapping
W, .. W; in the w-domain. Due to (14) the shift i the 2
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domains cccurs in opposite directions. We propose the
transformed zero phase transfer functions in the form

-1
Q,(W) = QOW N}, A= = if o T <, T
w,—1
(44)
And
w,, +1

Q,(w) = Q0w +X"), A=

LA w, T<w, T
1
o

The real number A is confined to 0 < A < 1. The
tuning procedure provides the impulse response
coefficients for an FIR filter with the following properties:

The frequency w,.T 1s adjusted to the specified value
w,T.

The maximal attenuation(s) in the passband(s) and
the minimal attenuation(s) of the stopband(s) of the
filter are preserved.

The nature (maximally at, equiripple etc.) of the filter
18 preserved.

The bands of the filter are broadened.

The transformed zero phase transfer functions

Quw) =3 al) T, 0w +\)

. (45)
=>ak)> oy (m)T, (w)
can be rewritten in matrix form
Q,(w)=T[a(0) a(1)... a(n)]x
o, (0) 0 0 0 ...0 T (w)
o, (0) (D) 0 0 ...0 T (w)
a,(0) o) o,(2) 0 .0 » T, (w)
o, (0) o, (1) o, (2) o,(3) ..0 T,(w)
o, (0) o) o, 2) o,3) a @) |T(w)
(46)

We call the low triangular matrix A the transformation
matrix. The a-vector of the transformed filter is given by
the product of the a-vector of the original filter and the
transformation matrix A

a=al (47)
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Table 6: Evaluation of the coefficients oy (m) of transformation matrix A+ for filter tuning

k (integer value), 0 < A < 1 (real value)

et k+ Dok k+2)=0 k+3)=0

Given
Tnitialization AT=1-A
o (k) = A5
body
(forp=-3..k-4
o k-p-H
{

—2|(u+3)(2k—u—3)—§(k—u—3)(2k—2u—7)

+2\(}1+1)(2ka 71)7¥(k7u —1(2k—2p—1)

o, (k—p—3)
)\l
2520k 2) o (ko -2)

o (k—p—1)

o, (k—p)

Tu(Zk—p)

P+ Qk-p-4)

(end loop on )

There are 2 transformation matrices A, and A.
corresponding to the transformed zero phase transfer
functions (44). Fast evaluation of the coefficients «, (m)
of the transformation matrices is essential in adaptive
filtering. Using the differential Eq. 9 for the Chebyshev
polynomial of the first kind T, (x) we have derived the
differential equation

a-w? 2wy W)
by dw (48)
w4 ) dFHW) FKF+(w)=0
for the polynomial
F(w)=T, Ow+N\) (49)

and the differential equation

I—w’ 422 (1+ ))dF (w)
Fow) >
—(w—%) - (w) =0
for the polynomial
F(w) = T, Oww —\) (51)

where the real values A and A’ are related by A + A" = 1.
Based on differential Eq. 48 and 50 we have developed a
fast and robust procedure for evaluating the coefficients
¢, (m) of the transformation matrices A, and A . The fast

Table 7: Impulse responses h(k) and hy (k) from example 3

------ ke bR () ke b)) h(o
0 72 0.016832 0.011622 19 53 0.022942  0.028084
1 7 0.004953  -0.005198 20 52 0.028636 0.024800
2 T0 0 -0.002260  -0.009660 21 51 0.009196 0.000144
3 69 -0.009076  -0.010249 22 50 -0.019871 -0.026360
4 68  -0.008700  -0.003681 23 49 -0.033269 -0.032071
5 57 0.000117 0.006768 24 48 -0.018035 -0.010712
3] 66 0.010632 0.013012 25 47 0.014008 0.021071
7 65 0.013100 0.008921 26 46 0035383 0.036681
8 o4 0.003678  -0.00339% 27 45 0.026667 0.021933
9 63 -0.010795  -0.013938 28 44 -0.005787 -0.012097
10 62 -0.017533 -0.012654 29 43 -0.034396 -0.037428
11 6l  -0.009034 0.001287 30 42 -0.033926 -0.032360
12 60 0.009012 0.017271 31 41 -0.003929 -0.000239
13 59 0.021195 0.021210 32 40 0.030153  0.032628
14 58 0.015517 0.007859 33 39  0.038727 0.038693
15 57 -0.004980 -0.013249 34 38 0.013946 0.012424
16 56 -0.023239  -0.024485 35 37 -0.023124 -0.024678
17 55 -0.022375  -0.014929 36 0.933816 0.932507
18 54 -0.001244 0.009158

algorithm for evaluating the coefficients of the
transformation matrix A, 1s summarized in Table 6. The
evaluation of the transformation matrix A. 1s by analogy.
The 2 matrices differ by the signs of the “odd”
coefficients ¢, (k-p-3) and ¢, (k-p-1) only.

Example 3: Design the equiripple notch FIR filter specified
by the notch frequency w,T = 0.3 and the width of the
notchband AwT = 0.075n for maximum attenuation in the
passbands a = -0.5 dB. Using the analytical design
procedure we get k = 0.665619, n=36, p=11 and q = 25.
The designed filter of length N = 73 coefficients with
“quantized” notch frequency w,IT = 030641 and
AwT = 0.075n for aact = -0.4584 dB is tuned using the
proposed tumng procedure m order to get the specified
notch frequency w,T = 03w Because w,T<w,T we
evaluate the transformation matrix A_ for A = 0.9898 (44).
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. 5: Passbands of the "quantized” filter (thin line) and
of the tuned filter from example 3
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The parameters of the tuned filter are w,T =0.37 and
A T=0.0779n for a=-0.4584 dB. A detailed view of the
passbands of the “quantized” filter and of the tuned filter
is shown in Fig. 5 and Table 7.

ANALYTICAL DESIGN OF EQUIRIPPLE
DC-NOTCH FIR FILTERS

Approximation: The approximating polynomial of the
DC-notch FIR filter is the polynomial F(w) (Zahradnik and
Vigek, 2007):

Fw)=T (aw+X—1)= iB(m)wm
= (52)

= 3" AT, ()

The approximating polynomial F(w) fulfils the
differential equation:

,  1-X\_d*F(w)
1—w? —~
A=w bN dw? (53)
=N dFw) | _
(w ~ ) dw +nFw)=0

Differential Eq. 53 15 agam used for deriving the
algonthm for recursive evaluation of the impulse response
of the filter. The zero phase transfer function of the
DC-notch FIR filter 1s:

Flw)y+1
Qw) = 1— —— =
T (2 —1) +1 (54)
1 T, Ow +X—1) +1
T.(2N—N)+1

a[dB]

20 log [H(=*"™) | [dB]
G £ -
A

IS
<

tn
=]
1

wT

P
0 0.5 1 1.5 2 25 3
ol

[
(=)
<

Fig. 6: Amplitude frequency response 20 log [H(e™") |[dB]
of a DC notch filter forn="7, K =1.057638, o,I =
0.15m and a = -1.2446 dB

The DC-notch FIR filter 1s specified by the passband

frequency w,T and by the attenuation in the passband
a [dB] (Fig. 6). The degree equation reads as follows:

1+ 10° 05a[dB)

acosh W
n >
1+ sin® —wPT (55)
acosh 2
w
1— sin® —L£—
2
Where,
1
x p—
T (56)
| —gin? =P~
2

Based on differential Eq. 53 we have developed a fast
and robust algorithm (Table 8) for evaluating the impulse
response of the DC-notch FIR filter.

Design procedure: The design procedure reads as
follows:

»  Specify the passband frequency w,T and the maximal
attenuation in the passband a [dB] demonstrated in
Fig. 6.

»  Calculate the minimum degree n (55).

¢  FRvaluate the impulse response h(k) analytically
(Table 8).

Example 4: Design the DC-notch FIR filter specified by
w,T =005t anda=-0.01 dB.
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Table 8: Evaluation of the impulse response of a DC notch filter

Given n (integer value), A (real value)
Initialization AM=AAM+D=A0O+2)=Am+3)=0
body

(fork=2..n+1)

Amn+1-K)=

(K- n+1-50-(1- D0 @+1-1@n+1-20]A0m+2-k)

FA(L - (+2-K A M+3-K)

CAK - (3B - (1-AW) @+ 3 - n+7-2K]Am+4-K
+ k- Cn+4-K)A@m+5-K) ) \k(2n-k)

(end loop on k)

h(0)=1—

hidk) =

A0} 2+1
T, (2h—1)+1
1 AK+L

_— -k =1.n
2 T, (2x—1)+1

n
=]
:

-100 1

=150 1

20 log [H(&™ | [dB]

-200 1

-300

Fig. 7. Amplitude frequency response 20 log [H{e™") |[dB]
of the DC notch FIR filter from example 4
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e
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Fig. 8: Passband of the DC notch FIR filter from
example 4

Using the proposed design procedure we get
n=>51.8513 = 52 (55) and A = 1.006194 (56). The actual
filter parameters are w,T = 0.057 and a,, = -0.009768 dB.
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Table 9: Impulse response h(k) of the DC notch filter from exmple 4

-------  —— hik) et inais hik)

0, 104 -0.000387 27, 77 -0.009226
1, 103 -0.000248 28, 76 -0.009866
2, 102 -0.000325 29, 75 -0.010516
3, 101 -0.000416 30, 74 -0.011173
4, 100 -0.000523 31, 73 -0.011834
3, 99 -0.000646 32, 72 -0.012495
6, 98 -0.000787 33, 71 -0.013154
7, 97 -0.000947 34, 70 -0.013807
8, 96 -0.001128 35, 69 -0.014451
9, 95 -0.001330 30, 68 -0.015081
10, 94 -0.001556 37, 67 -0.015696
11, 93 -0.001805 38, 66 -0.016291
12, 92 -0.002079 39, 65 -0.016862
13, 91 -0.002378 40, 64 -0.017407
14, 90 -0.002704 41, 63 -0.017921
15, 89 -0.003056 42, 62 -0.018402
16, 88 -0.003435 43, 61 -0.018848
17, 87 -0.003840 44, 60 -0.019254
18, 86 -0.004273 45, 59 -0.019619
19, 85 -0.004731 46, 58 -0.019941
20, 84 -0.005216 47, 57 -0.020216
21, 83 -0.005725 48, 56 -0.020444
22, 82 -0.006258 49, 55 -0.020623
23, 81 -0.006813 50, 54 -0.020752
24, 80 -0.007390 51, 53 -0.020829
25, 79 -0.007986 52 0.978583
26, 78 -0.008598

The impulse response hik) (Table 9) with the length
N =105 15 evaluated analytically (Table 8). The amplitude
frequency response 20 log [H(e™") [[dB] of the DC-notch
FIR filter 15 shown in Fig. 7. Its passband 1s shown in

Fig. 8.

ANALYTICAL DESIGN OF EQUIRIPPLE
COMB FIR FILTERS

Approximation: The approximating polynomial F(w) of the

equiripple comb FIR filter 15 given by the compounded
Chebyshev polynomial (Zahradnik and Vigek, 2005):

F(w) + T [NT.(w)] = iA(k)Tk(w) (57)
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The real parameter 4 = 1/k > 1 affects the ripples in
the passbands of the comb FIR filter. The degree r of the
mner Chebyshev polynomial determines r narrow bands.
The narrow bands of the comb FIR filter positioned at:

(38)

are equally spaced mside the mterval [0, ]. The even
degree n of the outer Chebyshev polynomial T, (w)
determines n-1 local extremes with the same amplitude
between the narrow bands. The approximating polynomial
F(w) (57) of the equiripple comb FIR filter fulfils the
differential equation:

dFw) R |

P(W) (1 v ) dW2 dw (59)
Q(w) dFGw) + R{(w)F(w)=0
Where,
P(w) = U, _,(W)(k* — T (w)) (60)
Q(w) = r{1—r*) T.(w) (61)
R(wW) = n'PU, (w-T'(w)) (62

and T, (w) is Chebyshev polynomial of the second kind.
The differential Eq. 59 1s used for deriving the algorithm
for recursive evaluation of the impulse response
coefficients. The zero phase transfer function Q (w) of the
comb filter is given by the normalization of the
approximating polynomial:

_ 1+Fw)
= e -
= = Y a0 T

The normalizing constant C follows from the
approximating polynomial F (w) for w =1

C=1+F1D) =1+ T,[AT, ()]
=1+T, (\) = 1+cosh[nacosh(\)]

(64)

Note that (64) 15 independent from the degree r of the
mner Chebyshev polynomial T, (w). The goal in the
approximation of the equiripple comb FIR filter is to obtain
the two parameters n and A in order to satisfy the
specified number of notch bands r, the width of the notch
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Fig. 9: Amplitude frequency response 20 log [H{e®™)|
[dB]of an equiripple comb FIR filter

bands AwT and the maximal attenuation in the passbands

a[dB] (Fig. 9) as precisely aspossible. The degree n of the
outer Chebyshev polynomial T, (w) is

L acosh(x) _In (x+4x"—1)

> _ (65)
acosh(h) I (v+N2—1)
where the auxiliary parameters A and y are
1 1+100 05a[dB]
A= AT = 110 05eleE] (66)
cOS [r ]

We call (65) the degree equation of the equiripple
comb FIR filter. The real value n (65) has to be up-rounded
to the next even nteger value. This up-rounding
preserves the specified number of notch bands and the
width of the notchbands. The attenuation in passbands
a[dB] 1s equal or better than the specified value. The
impulse response hik) of the filter consists of 2nr + 1
coefficients, among which there are n + 1 non-zero values.
For illustration, the amplitude frequency response 20 log
|[H(¢") |[dB] based on the zero phase transfer function:

I+ T[LIST (w)]
14T, (1.15)

(67)

Qw) =1

1s shown m Fig. 9. Note that there are true zeros at the
notch frequencies. Using differential Eq. 59 we have
developed a fast and robust procedure (Table 10) for an
algebraic evaluation of the impulse response h (k) of the
comb FIR filter.
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Table 10: Evaluation of the impulse response of a comb FIR filter

Given

Initialization

body
(fork=1..072)

n (even integer), T (integer), A = 1 (real)

kppa:%, a(m)=X", a(n+2) =a(n+4) = a(n+6)=0

a(n—2k)=

{ am-2k-1)x
[(1-kppa’ )(n — (2k — D)(n— (Zk — 2D+ 3(k + D(n—(k —1))]
—am—-2(k—2)) x
[(1—kppa® ) (n — (2k — 4))(n — (2k — 5))+ 3(k— 2)(n — (k —2))]
+an—-2(k-3)k-3)n—(k-3)) }i kin-k)

(end loop on k)

A (k) of F (w)

body
(fork =0...n\2)

A (nr-2kp) =« (n - 2k)

(end loop on k)

@ (K) of Q (@) C =cosh[nacosh(}\)], a(0)=1— 1-%_2(0)
body
ork=1 .. ) a(k) = — Alk)
C
(end loop on k)
impulse response h (k)
h (nr) = (0)
body
(fork=1..nr)
h({mr+k)= ?

(end loop on k)

Design procedure: The design procedure for the
equiripple comb FIR filter consists of the followmng steps:

*  Specify the number of notch bands r, the width of
the notch bands AwT and the maximal attenuation in
the passbands a [dB] demonstrated in Fig. 9.

¢ The degree of the inner Chebychev polynomial is 1.

¢ Determine the auxiliary parameters 4 and  (66).

+  Evaluate the real value n (65) and round it to the next
even integer value.

¢+  FEvaluate the impulse response h (k), recursively
(Table 10).

¢  Evaluate the actual attenuation in the passbands.

a_,[dB] =20log [1— 2 (68)
1+ cosh[nacosh (\)]

Example 5: Design an equinipple comb FIR filter with
20 notch bands specified by the width of the notch bands
AwT = n/50 and by the maximal attenuation in the
passbands a = -1 dB.

The degree of the immer Chebyshev polynomial is
r=20. We getA =1.2361,k=173910(66)and n= 52623
— 6 (65). The zero phase transfer function is

0 wﬂﬂwwwwwv]Prmrmwvﬂq w-lw

104 I
g
204
%
£
‘Eu-3l)-
8

40

-504

&0

= ) 1 1 ]

0.5 1.5 2 2.5 3
ol

Fig. 10: Amplitude frequency response 20log [H(e“T)| [dB]
of the equiripple comb FIR filter from example 5

Table 11: Non-zero coefficients of the impulse response h(k) of the comb
filter from example 5

k h (k)
0 240 -0.060281
40 200 -0.124960
80 160 -0.189719
120 0.749920
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design algorithm

-
aQ

14T,[1.2361 T (w)]
1+T, (1.2361)

Qw) =1 (69)

The impulse response h (k) with a length of 241
coefficients 1s evaluated recursively (Table 10). It consists
of seven non-zero coefficients only. The impulse
response 1s summarized in Table 11. The actual parameters
of the comb FIR filter are AwT = m/50 and a = -0.6080 dB.
The amplitude frequency response 20 log |H(e®)| [dB] of
the equiripple comb FIR filter 1s shown m Fig. 10.

ROBUSTNESS OF THE ANALYTICAL DESIGN

Tt is worth noting that the analytical design by far
outperforms the numerical procedures (McClellan ef al.,
1973). In order to demonstrate the robustness, we wish to
design an equiripple DC-notch FIR filter with a quite
absurd specification w, T = 0.00001 7 and a = -0.01 [dB].
Usmng the proposed amalytical procedure, we get
A=1.00000000024674, n =259523.24 — 259524, The length
of the filter amounts to N = 519049 coefficients. The zero
phase transfer function of the filter is:

T (w-+0.24674 <10 "x(w +1))+1
T_(1.00000000049348) 1

QUw) = 1-
(70)

The properties of the designed filter are
w, T =0.00001 1 and a = -0.00999%76 [dB]. The amplitude
frequency response 20 log |H(e®T)| [dB] of the filter is
shown in Fig. 11.
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CONCLUSION

In this study we have presented robust and fast
solutions for the design of narrow band FIR filters. We
have developed a new and fundamental approach to the
FIR filter design which uses a differential equation to
approximate the filter specifications. Then the differential
equation is solved recursively. Tt avoids using Fourier
transform in evaluating the impulse response coefficients.
Formulae for the degree and for the impulse response of
the filters have been also presented. In our future work we
will develop a similar robust design procedure for a low-
pass FIR filter.
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