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Abstract: This study investigates the active controller design for Generalized Projective Synchronization (GPS)
of identical Liu-Chen 4-scroll chaoctic systems, identical Lu-Chen-Cheng 4-scroll chactic systems and
non-identical Liu-Chen and Lu-Chen-Cheng 4-scroll chaotic systems. The GPS synchronization results for the
4-scroll chaotic systems have been derived using the active control method and established using Lyapunov
stability theory. Since, the Lyapunov exponents are not required for these calculations, the active control
method is a very effective and convenient method for achieving Generalized Projective Synchronization (GPS)
of the 4-scroll chaotic systems addressed in this study. Numerical simulations are presented to demonstrate
the effectiveness of the synchromzation results derived n this study for the 4-scroll chaotic systems.
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INTRODUCTION

Chaotic systems are non-linear dynamical systems
which are highly sensitive to initial conditions. The
sensitive nature of chaotic systems 15 commonly
addressed as the butterfly effect (Alligood et al., 1997).
Chaos is an interesting non-linear phenomenon and it has
been intensively and extensively studied in the last three
decades. Chaos theory has wide applications in several
fields such as physical systems (Lakshmanan and Murali,
1996), chemical systems (Han et al., 1995), ecological
systems (Blasius et al, 1999), secure communications
(Cuomo et al., 1993; Kocarev and Parlitz, 1995; Liao and
Tsai, 2000), ete.

Chaos synchronization is a phenomenon that may
occur when two or more chaotic oscillators are coupled or
when a chaotic oscillator drives another chaotic oscillator.
Because of the butterfly effect which causes the
exponential divergence of the trajectories of two identical
chaotic systems started with nearly the same initial
conditions, synchronizing two chaotic systems 1s
seemingly a very challenging problem.

Tn most of the chaos synchronization approaches, the
master-slave or drive-response formalism is used. If a
particular chaotic system is called the master or drive
systemm and another chaotic system 1s called the slave
or response system then the idea of the chaos

synchronization is to use the output of the master system
to control the slave system so that the output of the slave
system tracks the output of the master system
asymptotically. Since, the seminal research by Pecora and
Carroll (1990) on the synchronmization of chaotic systems,
a variety of impressive approaches have been proposed
for chaos synchronization such as OGY method
(Ot et al, 1990), sampled-data feedback method
(Murali and Lakshmanan, 2003), time-delay feedback
method (Park and Kwon, 2003), active control method
(Huang et al., 2004; Chen, 2005; Sundarapandian, 201 1a,
1, ), adaptive control method (Park ef al., 2007, Jia and
Tang, 2009, Sundarapandian, 2011b, ¢, ), Backstepping
method (iau-Qun and JTun-An, 2003; Park, 2006;
Vincent, 2008), Sliding mode control method
(Utkin, 1993; Sundarapandian and Sivaperumal, 2011;
Sundarapandian, 2011d, f), etc.

In Generalized Projective Synchromization (GPS)
of chaotic systems (Zhou et al, 2010), the chaotic
systems can synchronize up to a constant scaling
matrix. Complete synchromzation (Huang et al., 2004),
anti-synchromzation (Emadzadeh and Haeri, 2005,
Al-Sawalha and Noorani, 2009; Sundarapandian and
Karthikeyan, 2011a, b; Sundarapandian, 2011h), hybrid
synchromization (Sundarapandian, 2011g), projective
synchromization (Maimeri and Rehacek, 1999) and
generalized synchronization (Wang and Guan, 2006) are
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particular cases of generalized projective synchronization.
GPS has important applications in areas like secure
commumications and secure data encryption. In this
study, researcher deploy active control method so as to
derive new results for the Generalized Projective
Synchronization (GPS) for identical and different T.iu-Chen
4-scroll systems and Lu-Chen-Cheng 4-scroll chaotic
systems. Explicitly using active non-linear control and
Lyapunov stability theory, we achieve generalized
projective synchronization for identical Liu-Chen 4-scroll
chaotic systems (Liu and Chen, 2004), identical
Lu-Chen-Cheng 4-scroll chaotic systems (Lu ef al., 2004)
and non-identical Liu-Chen and Lu-Chen-Cheng 4-scroll
chaotic systems.

MATERIALS AND METHODS

Consider the chaotic system described by the
dynamics:

% =Ax +f(x) (1)
Where:
xe€R* = The state of the system
A = The nxn matrix of the system parameters
fiR">R* = The non-linear part of the system

We consider the system (Eq. 1) as the master or drive
system. As the slave or response system, we consider the
following chaotic system described by the dynamics:

vy=By+g(y)+tu 2
Where:
veR" = The state of the system
B = The nxn matrix of the system parameters
g:R">R" = The non-linear part of the system
ueR® = The controller of the slave system

If A =B and f = g then x and y are the states of two
identical chaotic systems. If A#B or f#g then x and y are
the states of two different chaotic systems. In the active
control approach, we design a feedback controller u which
achieves the Generalized Projective Synchronization (GPS)
between the states of the master system (Eq. 1) and the
slave system (Eq. 2) for all mitial conditions x (0), z(0)eR™.
For the GPS of the systems (Eq. 1 and 2), the
synchronization error is defined as:

e = y-Mx (3)
Where:
a 0 0
VR @
0 0 a

27

In other words, we have:

g=yv-ax(i=1,2,.,n) (5

From Eq. 1-3, the error dynamics is easily obtained as:

& =By -MAX +g(y)-Mf(x)+u (6)
The aim of GPS is to find a feedback controller u so

that:
lim|le(t)] = 0 forall e(0)e R*

t—3e

(7

Thus, the problem of Generalized Projective
Synchronization (GPS) between the master system (Eq. 1)
and slave system (Eq. 2) can be translated into a problem
of how to realize the asymptotic stabilization of the
system (Eq. 6). So, the objective is to design an active
controller u for stabilizing the error dynamical system
(Eq. 6) at the origin. We take as a candidate Lyapunov
function:

V(e)=e"Pe (8)
where, P is a positive definite matrix. Note that V:R">R" is
a positive definite function by construction. We assume
that the parameters of the master and slave system are
known and that the states of both systems (Eq. 1 and 2)
are measurable. If we find a feedback controller u so that:

V(e) = —eTQe ()

Where, QQ is a positive definite matrix then V:R* —»R"
is a negative definite function. Thus by Lyapunov
stability theory (Sundarapandian, 2011g), the error
dynamics (Eq. 6) is globally exponentially stable and
hence, the condition (Eq. 7) will be satisfied. Hence, GPS
is achieved between the states of the master system
(Eq. 1) and the slave system (Eq. 2).

Systems description: In this study, the 4-scroll chaotic
systems considered in this research, viz. Liu-Chen 4-scroll
chaotic systems (Liu and Chen, 2004) and Lu-Chen-Cheng
4-scroll chaotic systems (Lu et al., 2004). The Liu-Chen
system is described by the dynamics:
X, =ax; —X;X;
X, =-bx, +xx, (10)

X, = —CX; t XX,

Where, x,-x, are the states and a-c are positive,
constant parameters of the system. The Liu-Chen system
(Eq. 10) exhibits a chaotic attractor (4-scroll attractor)
when the parameter values are taken as:



Int. J. Syst. Signal Control Eng. Appl., 4 (2): 26-33, 2011

-30 .40

Fig. 1: The Liu-Chen 4-scroll chaotic attractor
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Fig. 2: The Lu-Chen-Cheng 4-scroll chactic attractor
a=04b=12andc=5

The 4-scroll chactic attractor of the Liu-Chen system
(Eq. 10) is showed in Fig. 1. The Lu-Chen-Cheng system
is described by the dynamics:

X, =PX, —XX,
(1L

X, =X, TXX; +8

Xy = IX, + XX,

Where, x,-x, are the states and p-s are positive,
constant parameters of the system. The Lu-Chen-Cheng
system (Eq. 11) exhibits a chaotic attractor (4-scroll
attractor) when the parameter values are taken as:

28

p=20/7,q=10,r=4ands =35

The 4-scroll chaotic attractor of the Lu-Chen-Cheng
system (Eq. 11) 1s shown n Fig. 2.

RESULTS AND DISCUSSION

Generalized projective synchronization of identical
Liu-Chen 4-scroll chaotic systems

Theoretical results: In this study, researchers apply the
active non-linear control method for the Generalized
Projective Synchronization (GPS) of two identical Tiu-
Chen 4-scroll chaotic systems (Liu and Chen, 2004). Thus,
the master system is described by the Liu-Chen dynamics:

R = —XX,
X, =—bx, + XX, (12)

X, = —CX, + XX,

Where, x,-x ; are the states and a-c are positive,
constant parameters of the system. The slave system is
described by the controlled Liu-Chen dynamics:

¥i=ay, - Y.y, Tty
¥ =-by; Tyiys +u,

Y= C¥; Tt ¥i¥, T,

(13)

Where, y,-y; are the states and u-u, are the active
non-linear controls to be designed. For the GPS of
Liu-Chen systems (Eq. 12 and 13), the synchromzation
error e 18 defined by:

€ =Y Tax
(14)

©; =Y, Ta%,

G =¥ —A5X,

Where, the scales a;-a, are real numbers. The error
dynamics is obtained as:

& =ay, —y,y, —a(ax, —X,X, )+,

&, =—by, +yy, —a,(-bx; +x;x;)+ 1, (15)
&, = —CY; T V¥, —a;{(—eX; + XX, ) T U,
We choose the non-linear controller as:
up = ay b ysys tagax, - xx) - ke
u, =by, —y, ¥, +a,(-bx, +xx,) — ke, (16)

u, =cy, —y,y, ta,(—ex, + xx,) ke,

Where, the gams k-k; are positive constants.
Substituting Eq. 16 mto Eq. 15, the error dynamics
simplifies to:
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¢ = ke
&, = ke, (17)
& = ke,

We consider the quadratic Lyapunov function
defined by:

V(e):%eTe:%(ef +eltel) (18)

Which is a positive definite function on R’
Differentiating Eq. 18 along the trajectories of Eq. 17, we
get:

Vie)= ke —kel -k, (19)

Which is a negative definite function on R®. Thus by
Lyapunov stability theory (Hahn, 1967), the error
dynamics (Eq. 17) 15 globally exponentially stable and
hence, we arrive at the following result.

Theorem 1: The active feedback controller (Eg. 16)
achieves  global chaos  Generalized Projective
Synchromzation (GPS) between the identical Liu-Chen
4-scroll chaotic systems (Eq. 12 and 13).

Numerical results: For simulations, the 4th-order Runge-
Kutta method with time-step h = 107° is used to solve the
differential Eq. 12 and 13 with the active non-linear
controller (Eq. 16). The parameters of the Liu-Chen
systems are chosen as:

a=04b=12andc=5
We take the state feedback gains as:
k=3 k=3andk,=3
The GPS scales a, are taken as:
a,=-23,a=-37and a,= 0.8

The mitial conditions of the master system (Eq. 12)
are as:

x(0)=12,%,(0)=4,x,(0)=23

The imtial conditions of the slave system (Eq. 13) are
taken as:

v () =6y, (0)=30,y,(0) =15

Figure 3 shows the time response of the error states
e,-¢, of the error dynamical system (Eq. 15) decay to zero
exponentially when the active controller (Eq. 16) 1s
deployed. Figure 4 shows the GPS of the systems (Eq. 12
and 13).
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Fig. 3: Time responses of the error states for Tiu-Chen
systems
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Fig. 4: GPS of the Liu-Chen 4-scroll systems

Generalized projective synchronization of identical Lu-
Chen-Cheng 4-scroll chaotic systems

Theoretical results: In this study, we apply the active
non-lmear control method for the Generalized Projective
Synchronization (GPS) of two identical Lu-Chen-Cheng
4-scroll chaotic systems (Lu et al., 2004). Thus, the master
system 1s described by the Lu-Chen-Cheng dynamics:

X =PX XX,
X, = —q%, +t XX, +5 (20)

X, = TX; XX,

Where, x,x; are the states and p-s are positive,
constant parameters of the system. The slave system 1s
described by the controlled Lu-Chen-Cheng dynamics:
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Y =Py, TY.Ys t Y

V:=—qy, t Yy, ts+u, 1)

V=1, Ty, T

Where, y,-y; are the states and u,-u, are the active
non-linear controls to be designed. For the GPS of

Lu-Chen-Cheng systems (Egq. 20 and 21), the
synchronization error e is defined by:

€ =¥ T ax

e, =¥y, —a,x, (22)

€ =¥ T a3X;

Where, the scales a,-a; are real numbers. The error
dynamics 1s obtained as:

& =Py, —¥,¥; —a,(px, —X,%, )+,

&, =—qy, + ¥y, +ts—a, (—gx, + XX, +s)+1u, (23)
&, =Ty, +yy, —a,(—IX, + XX, ) T u,
We choose the non-linear controller as:
u, = —py, tv,y; & (px, —x,%x;) - kg
u, =qy, ty,y, —s+a,(—qx, +xx, +s)-k,e, @24

u, =1y, —Y,¥, ta,(-1x, + xx,) - ke,

Where, the gains k-k, are positive constants.
Substituting Eq. 24 mnto 23, the error dynamics simplifies:

¢ = ke
&, = ke, (25)
&, = —k.e,

We consider the quadratic Lyapunov function

defined by:

V(e):%eTe:%(ef +eltel) (26)

which is a positive definite fimection on R’. Differentiating
Eq. 26 along the trajectories of Eq. 25, we get:

Vie)= kel —k,el —k.el (27)

which is a negative definite function on R’ Thus by
Lyapunov stability theory (Hahn, 1967), the error
dynamics (Eq. 25) 15 globally exponentially stable and
hence, we arrive at the following result.

Theorem 2: The active feedback controller (Eg. 24)

achieves  global chaos  Generalized Projective
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Fig. 5. Time responses of the
Tu-Chen- Cheng systems

error  states  for

Synchronization  (GPS)  between the identical
Lu-Chen-Cheng 4-scroll chaotic systems (Eq. 20 and 21).

Numerical results: For simulations, the 4th-order Runge-
Kutta method with time-step h = 107° is used to solve the
differential Hg. 20 and 21 with the active non-linear
controller (Eq. 24). The parameters of the Lu-Chen-Cheng
systems are taken as:

pP=20/7,q=10,r=4ands =5
We take the state feedback gains as:
k =3k, =3andk;=3
The GPS scales a, are taken as:
a,=52,a,=-19anda,=23

The mitial conditions of the master system (Eq. 20)
are taken as:
% (0)=24,%(0=12,x,(0)=20

The initial conditions of the slave system (Eq. 21) are
taken as:
1 (0)=8,y;(0) = 25,y,(0) =7

Figure 5 shows the time responses of the error states
e,-¢; of the error dynamical system (Eq. 23) decay to zero
exponentially when the active controller (Eq. 24) 1s
deployed. Figure 4 shows the GPS of the systems (Eq. 20
and 21).

Generalized projective synchronization of Liu-Chen and
Lu-Chen-Cheng 4-scroll chaotic systems

Theoretical results: In this study, we apply the active
non-linear control method for the Generalized Projective
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Fig. 6 GPS of the Lu-Chen-Cheng 4-scroll systems

Synchromzation (GP3) of two different 4-scroll chaotic
systems, amely the Liu-Chen systemn (Liu and Chen, 2004)
as the master system and the Lu-Chen-Cheng system
(Lu et al., 2004) as the slave system (Fig. 6). Thus, the
master system is described by the Liu-Chen dynamics:

=ax, —X;X,

}-(1
;o 28

X, =-bx, + XX, (28)
X, =—CX, + XX,

Where, x,-x; are the state variables and a-c are
positive parameters of the system. The slave system 1s
described by the controlled Lu-Chen-Cheng dynamics:

Vi =PV T¥Ys Y
YV, =y, T ¥y, ts+u,
Vi =1y, t Yy, T,

(29)

Where, y;-y; are the states, p-s are positive, constant
parameters and u,-u, are the active non-linear controls to
be designed. For the GPS of Liu-Chen 4-scroll system
(Eq. 28) and Lu-Chen-Cheng systems (Eq. 29), the
synchronization error e is defined by:

¢ =y X
(30)

€, =Y, T X,

G =¥y TaX,

Where, the scales a,-a; are real numbers. The error
dynamics 1s obtained as:

& =Py, —¥,¥; —a(ax, - XX, )+,
&, =—qy,+ ¥y, t5—a,(-bx, +x¥x;)+u,

(31)

& =1y, t Yy, —a,(ex, T XX, )+,

31

We choose the non-linear controller as:
U, =—py, +y,y; +a (ax, —xx;)-ke
u, =qy, —y,¥: —sta,(-bx, + x,x,) - ke, (32)

Uy =1y, Yy, by (Coxs XX, ) - ke,

Where, the gams k-k; are positive constants.
Substituting Eq. 32 mto Eq. 31, the error dynamics
simplifies to:

¢, = ke,
é,=-kpe, (33)
¢, = ke,

We consider the quadratic Lyapunov function
defined by:

V(e):%eTe:%(ef +telt+ed) (34)

which is a positive definite function on R’. Differentiating
Eq. 34 along the trajectories of Eq. 33, we get:

Vie)= ke —k,el kel (35)

which is a negative definite function on R’. Thus by
Lyapunov stability theory, the error dynamics (Eq. 25) is
globally exponentially stable. Hence, we arrive at the
following result.

Theorem 3: The active feedback controller (Eq. 32)
achieves  global chaos  Generalized Projective
Synchronization {(GPS) between the non-identical
Liu-Chen 4-scroll chaotic system (Hg. 28) and
Lu-Chen-Cheng 4-scroll chaotic system (Eq. 29).

Numerical results: For simulations, the 4th-order Runge-
Kutta method with time-step h = 107° is used to solve the
differential Hg. 28 and 29 with the active non-linear
controller (Eq. 32). The parameters of the Liu-Chen system
(Eq. 28) are taken as:

a=04,b=12,¢c=5

The parameters of the Lu-Chen-Cheng
(Eq. 29) are taken as:

system

pP=20/7,q=10,r=4ands =5
We take the state feedback gains as:

k =3,k,=3andk, =3
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Fig. 7. Time responses of the error states for Liu-Chen
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Fig. 8 GPS of the Liu-Chen and L.u-Chen-Cheng 4-scroll
The GPS scales a, are taken as:
a=25a=12anda;=-1.5
The initial conditions of the master system (Eq. 20)
are:

% (0)=14,x,(0)=6,%x,(0)=19

The initial conditions of the slave system (Eq. 21) are
taken as:

yi(0) =18y, (0)=14,y; (0) =27

Figure 7 shows the time responses of the error states
e,-¢, of the error dynamical system (Eq. 31) decay to zero

32

exponentially when the active controller (Eq. 32) is
deployed. Figure 8 shows the GPS of the non-identical
Liu-Chen 4-scroll chaotic system (Eq. 28) and Lu-Chen-
Cheng 4-scroll chaotic system (Eq. 29).

CONCLUSION

In this study, we have derived active control laws for
achieving Generalized Projective Synchronization (GPS) of
the following 4-scroll chaotic systems:

»  Identical Liu-Chen 4-scroll systems (2004)

+  Identical Lu-Chen-Cheng 4-scroll systems (2004)

»  Non-identical Liu-Chen and Lu-Chen-Cheng 4-scroll
systems

The synchronization results (GPS) derived in this
study for the 4-scroll systems mentioned in 1-3 have been
proved, using Lyapunov stability theory. Since, the
Lyapunov exponents are not required for these
calculations, the proposed active control method is very
effective and convement for achieving GPS of the 4-scroll
chaotic systems addressed in this study. Numerical
simulations are shown to demonstrate the effectiveness
of the synchronization results (GPS) derived in this study.

REFERENCES

Al-sawalha, MM. and M.SM. Noorani, 2009. Anti-
synchromzation between two different hyperchaotic
systems. J. Uncertain Syst., 3. 192-200.

Alligood, K.T., T. Sauer and I.A. Yorke, 1997. Chaos: An
Introduction to Dynamical Systems. Springer-Verlag,
New York.

Blasius, B., A. Huppert and L. Stone, 1999. Complex
dynamics and phase synchromzation in spatially
extended ecological system. Nature, 399: 354-359.

Chen, HK., 2005. Global chaos synchronization of new
chaotic systems vwvia nonlinear control. Chaos
Selitens Fractals, 23: 1245-1251.

Cuomo, K.M., A.V. Oppenheim and S.H. Strogatz, 1993.
Synchronization of lorenz-based chactic circuits with
applications to commumnications. Inst. Electr. Electron.
Eng. Trans. Circuits Syst. I, 40: 626-633.

Emadzadeh, AA. and M. Haeri, 2005 Anti-
synchronization of two different chaotic systems via
active control. World Acad. Sci. Eng. Technol,
6: 62-65,

Hahn, W., 1967. The Stability of Motion. Springer-Verlag,
Berlm.

Han, 3.K., C. Kerrer and Y. Kuramoto, 1995. Dephasing
and bursting n coupled neural oscillators. Phys. Rev.
Lett., 75: 3190-3193.



Int. J. Syst. Signal Control Eng. Appl., 4 (2): 26-33, 2011

Huang, L., R. Feng and M. Wang, 2004. Synchronization
of chaoctic systems via nonlinear control. Phys. Lett.
A, 320: 271-275.

Jia, L. and H. Tang, 2009. Adaptive control and
synchronization of a four-dimensional energy
resources system of THangsu province. Int. T
Nonlinear Sci., 7: 307-311.

Kocarev, L. and U. Parlitz, 1995. General approach for
chaotic  synchronization with application to
communication. Phys. Rev. Lett., 74: 5028-5031.

Lakshmanan, M. and K. Murali, 1996. Chaos mn Nenlimear
Oscillators: Controlling and Synchromzation. World
Scientific, Singapore.

Liao, T.L. and S.H. Tsai1, 2000. Adaptive synchromzation
of systems and 1its application
secure commumications. Chaos Solitons Fractals,

11: 1387-1396.

Liu, W. and G. Chen, 2004. Can a three-dimensional

quadratic chaotic  system
generate a single four-scroll attractor? Int. J.
Bifurcation Chaos, 14 1395-1403.

Lu T, G. Chen and D. Cheng, 2004. A new chaotic system
and beyond: The generalized lorenz-like system. Int.
T. Bifurcation Chaos, 14: 1507-1537.

chaotic to

smooth autonomous

Mamieri, R. and J. Rehacek, 1999. Projective
synchromzation in  three-dimensional  chaotic
systems. Phys. Rev. Lett., 82: 3042-3045.

Murali, K. and M. Lakshmanan, 2003. Secure

communication using a compound signal using
sampled-data feedback. Applied Math. Mech,
11: 1309-1315.

Ott, E., C. Grebogi and I.A. Yorke, 1990. Controlling
chaos. Phys. Rev. Lett., 64: 1196-1199.

Park, TH. and O.M. Kwon, 2003. A novel criterion for
delayed feedback control of time-delay chaotic
systems. Chaos Solitons Fractals, 17: 709-716.

Park, TH., 2006. Synchronization of Genesio chaotic
system via backstepping approach. Chaos Solitons
Fractals, 27: 1369-1375.

Park, TH., SM. Lee and OM. Kwon, 2007. Adaptive
synchronization of Genesio-Tesi chaotic system via
a novel feedback control. Phys. Lett. A, 371: 263-270.

Pecora, LM. and T.L. Carroll, 1990. Synchronization in
chaotic systems. Phys. Rev. Lett., 64: 821-824.

Sundarapandian, V. and R. Kartlukeyan, 2011a. Anti-
synchromization of the hyperchaotic Liu and
hyperchaotic Qi systems by active control. Int. J.
Comput. Sci. Eng., 3: 2438-2449.

Sundarapandian, V. and R. Kartlhikeyan, 2011b. Anti-
synchromzation of pan and liu chaotic systems by
active nonlinear control. Int. J. Eng. Sci. Technol.,
3: 3596-3604.

33

Sundarapandian, V. and S. Sivaperumal, 2011. Sliding
mode control based global chaos synchromzation of
four-scroll attractors. CHT Int. I. Programmable
Device Cire. Syst., 3: 297-302.

Sundarapandian, V., 201 1a. Global chaos synchronization
of liu and harb chaotic systems by active nonlinear
control. Int. J. Comput. Inf. Syst., 1: 8-12.

Sundarapandian, V., 2011b. Adaptive synchronization of
uncertan sprott H and I chaotic systems. Int. T.
Comput. Inform. Syst., 1: 8-12.

Sundarapandian, V., 201lc. Adaptive control and
synchronization of uncertain sprott H system. Int. T.
Math. Sci. Comput., 1: 14-18.

Sundarapandian, V., 2011d. Sliding mode controller design
for synchromzation of Shimizu-Morioka chaotic
systems. Int. J. Inform. Sci. Tech,, 1: 20-29.

Sundarapandian, V., 201le. Adaptive control and
synchronization of hyperchaotic Newton-Leipnik
system. Int. J. Adv. Inform. Technol., 1: 22-33.

Sundarapandian, V., 2011{. Global chaos synchronization
of hyperchaotic Newton-Leipmk systems by sliding
mode control. Int. I. Inform. Technol. Convergence
Serv., 1: 34-43.

Sundarapandian, V., 2011g. Hybrid synchronization of
hyperchaotic  rossler and hyperchactic lorenz
systems by active control. Int. T Adv. Sci
Technol., 2: 1-10.

Sundarapandian, V., 2011h. Anti-synchromization of
Lorenz and T chactic systems by active nonlinear
control. Int. J. Comput. Inform. Syst., 2: 6-10.

Sundarapandian, V., 20111, Global chaos synchronization
of Lw-Su-Liu and L1 systems by active nonlinear
control. CIIT Int. J. Digital Signal Process.,
3. 171-175.

Sundarapandian, V., 2011j. Global chaos synchronization
of harb and pan systems by active nonlinear control.
CITT Int. J. Programmable Device Circuits Syst.,
3: 303-307.

Utlan, V.1, 1993, Shding mode control design principles
and applications to electric drives. IEEE Trans. Ind.
Electron., 40: 23-36.

Vincent, U.E., 2008. Chaos synchronization using active
control and backstepping control: A comparative

analysis. Nonlinear Amnal: Modell Control,
13: 253-261.
Wang, Y W. and ZH Guan, 2006, Generalized

synchronization of continuous chaotic systems.
Chaos Solitons Fractals, 27: 97-101.

Kiau-Qun, W. and L. Jun-An, 2003. Parameter
identification and backstepping control of uncertain
system. Chaos, Solitons Fractals, 18: 721-729.

Zhou, P., F. Kuang and Y.M. Cheng, 2010. Generalized
projective  synchromzation for fractional
chaotic systems. Chin. I. Phys., 48: 49-56.

order



