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An Efficient Technique of QRS Complex Detection of Electrocardiography Signal
Based on Optimized Median Filter and Efficient Signal Reshaping
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Abstract: Automatic detection of R-peak is changing into a prominent tool for automatizing the designation
of significant cardiovascular components. R-wave peaks in electrocardiography is a major indicator of the
cardiac dysfunction. Most of the R-wave peaks prospectors have great troubles owing to non-stationary attitude
of the ECG signal. In our current research, a smart technique established on bases of median filter and an
automated R-wave peaks detection technique has been proposed. First median filter approach is used to
eliminate the base line from the ECG signal. Then an efficient signal reshaping with sequential steps was
proposed to detect the QRS position. The efficiency of the proposed work has been tested on MIT-BIH
arrhythmia database. The technique has also been applied to a real signal for patients with different heart
diseases. The proposed technique showed better performance and faster detection compared to the latter
techniques at the same time. Error rate detection is low 0.05%, Positive predictivity (P+) of 99.85% Sensitivity
(Se) of 99.94% and an average F-score of 0.999 are accomplished for the suggested ECG detector which are
superior to the former results.
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INTRODUCTION

In  recent  years  Associate  in  nursing  calculable
17.3 million individuals have died of cardiovascular
disease (WHO., 2011), representing thirteen of the
world’s deaths. The primary reason for death worldwide
is disorder in line with the globe health organization.
Medical interference and technology have evolved
attributable to the nice importance that medical analyzers
have placed on heart health research (Dilaveris et al.,
1998; Pan and Tompkins, 1985; Silva et al., 2011).
Electrocardiogram has been a straightforward, cheap and
common-use check electrocardiograph that show the
heart’s health, it contributes to the diagnosing of the many
heart. Subsequently, the analysis of electrocardiogram
signals   was   explained   during   20   years   ago
(Dilaveris  et  al.,  1998;   Pan  and  Tompkins,  1985;
Silva et al., 2011; El-Dahshan, 2011).

Electrocardiogram (ECG) is one of the important
factors for diagnosing cardiac illnesses. It presents the
electrical activities of the heart. The primary segments of
a  typical  ECG  signal  are  P-wave,  QRS  complex  and
T-wave. The P wave presents the contraction of the atrial
rooms of the heart, the QRS complex exhibits the
contraction of the ventricular rooms and finally the T
wave is the relaxation of the ventricular rooms, Table 1
shows the abbreviations of ECG beats with their
definitions.

The main target of this study is to introduce an
efficient algorithm for the detection of the QRS complex

Table 1: ECG beats abbreviations
Terms Abbreviations
Electrocardiography ECG
Unclassifiable beat Q
Right bundle branch block beat R
Supraventricular premature beat S
Electrocardiography waves P, QRS, T and U
Ventricular trigeminy T
Premature Ventricular Complex PVC
Atrial Premature Contraction APC
Electrocardiography EKG
Electromyography EMG
Left Bundle Branch Block LBBB
Right Bundle Branch Block RBBB

at ECG signals based on median filter and optimized
signal processing. This algorithm aims to improve the
performance of QRS detection

Literature review: There are several QRS complex
detection strategies sophisticated by researchers within
the last 3 decades with utilization of many techniques
which includes: derivatives, Yeh and Wang (2008) and
Arzeno et al. (2008), digital filters (Manikandan and
Soman,   2012;   Hamilton   and   Tompkins,   1986; 
Adnane et al., 2009), wavelet-transform (Sahambi et al.,
1997;  Saxena  et  al.,  2002;  Martinez  et  al.,  2004;
Ghaffari et al., 2008, 2009; Sunkaria et al., 2010;
Chouakri et al., 2011), neural networks (Vijaya et al.,
1997), Support Vector Machine (SVM) (Mehta and
Lingayat, 2008), mathematical morphology (Zhang and
Lian, 2009), combined threshold procedure (Christov,
2004), moving averaging technique (Chen et al., 2006),
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phase space process (Plesnik et al., 2012), Hilbert
transform procedure (Benitez et al., 2000) and body
sensor  which  is  based  on  a  network  (Li  and  Tan,
2006). By assuming a noise-free ECG signal, the
derivative-based algorithms and digital filters calculate
QRS complex without the need for the P and T waves
were filtered by a low, high and band pass filters. In other
algorithms it is assumed that there is a specific frequency
range in which there are predefined QRS complexes as in
wavelet transform algorithms utilize  a  collection  of  low 
path  and  high  path  filter (Zidelmal et al., 2014).

There are computationally complex methods that
require extensive training and good estimation of model
parameters as well as more pre-processing steps as in the
algorithms based on Artificial Neural Network (ANN)
and  SVM.  However,  these  techniques  for  QRS
detection are difficult in the application and needs almost
costly.

A new simple method to detect QRS has been
suggested in this study, based on optimization median
filter and signal re-shaping. The results showed the
superiority of the proposed technology compared to other
technologies in the same conditions where the parameters
were tested through the MIT-BIH database for accurate
justification.

Theoretical backgrounds: Generally, in ECG signal the
QRS complex detection are often divided in 2 main
sections: the primary one is elimination of the noise and
second is QRS complex revelation. Electrocardiogram
signal recording possess a noise of 50/60 Hz Power Line
Interference (PLI) and because of that, also muscular
quiver which will create EMG noise that belong to high
frequency noise, also because of unexpected subject
movement or motion artifact owing to poor electrode
fitting or respiration are going to be composed wander
baseline drift.

The Wander baseline drift and motion drift comes
from an occasional frequency wherever the frequency
within the wander baseline drift contained a smaller
amount than 1 Hz. During our work, wander baseline drift
intended only to be removable and the QRS complex is
determined in the existence of noises substitutional.

Within this research in order to eliminate wander
baseline drift, we tend to thought of a non- recursive
median filter. The median filter could be a technique of a
nonlinear digital filtering, typically want to remove noises
from associate signal or image (Huang, 1981).

Pre-processing is a typical step to reduce noise and to
enhance the results of later process. Median filter below
certain conditions utilized in digital image processing as
a result of preserves edges whereas removing noise and
conjointly utilized in applications signal processing. It
will be wide used. The propose QRS complex detection
technique  utilizes  an  easy  two  stages  median  filter  to 

Fig. 1: Flowchart describes of median filter

eliminate baseline drift via. utilizing 2 window widths 
considering  sampling  frequency  of  registered datum.
Then,  through  the  multiplication  of  the  data 
(extracted from base line signal which is noise free) six
point-to-point times wherever sharp peaks like a Q, R, S
area unit increased over artifacts and P & T waves. Once
power of the signal is become sixth, mean values of signal
become above P and T-waves and every one artifact. The
norm of signals are clearly, especially, waves except QRS
waves.

The detail step of preprocessing is explained within
the flowchart Fig. 1. For detection QRS automatic, a
threshold value is needed to differentiate between
alternative ECG wave like P and T waves and QRS
complex components. The cut point is expounded to
extend of top extent of QRS complex value.

MATERIALS AND METHODS

Proposed system diagram of QRS detection: A
graphical diagram of the QRS complex detection
proposed method is appearing in Fig. 2. Generally, the
detection method will be divided into five stages, the
perform of every step is expound as follows:

Median filter: The central idea of the median filter is to
have  the  input  signal  by  input  and  replace  each  entry
with the median of the adjacententries (Dohare et al.,
2014).  The  style  of  neighbors  named  the  “window”
that  slide,  entry  by  entry,  along  the  entire  signal.  For
one-Dimensional (1D) signals, the chief window evident
is the primary few preceding and following entries,
meanwhile two-Dimensional (2D) or higher-dimensional 
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Fig. 2: Schematic diagram of the proposed QRS detection
technique

signals like images, themost sophisticated window are
designs are doable. It’s important to notify that if the
windows have entries with odd values, the median is
estimated with ease and simply undertaking the entries
through investigated window numerically. In order to
obtain subtle range of entries, there  are  more  than  1 
possible  median.  The  output  of non-recursive filter at
some extent is that the median value of the input data
within the window focused at the point. If “x(k)#k$L}
and y(k)#k$L}”, severally, the input and output of the
one-Dimensional (1-D) SM filter of window size 2N+1,
then:

(1)y(k) = med{x(k-N), ..., x(k-1), x(k), x(k+1), ..., x(k+N)}

For account start and final effect, x(L) and x(1),
respectively are repeated N times at the start and at the
finish of the input.

Derivative: After the median filter processing, for the
QRS advanced inclination, the free of noise cardiogram
signal is gives to the derived block. The amplitude
thresholds are applied before any discrimination to the
signal to cutting horizontally the cardiogram signal to
decrease the P and T wave’s effect compared to the R
wave. With a random distortion of the signal within the
real world, it’ll cause several false peak detections with
high peak distortion, maximizing peak width and wave
height and thus can be by pass this by homogenizing the
derivative output of the signal. The homogeneity decides
the status of the wave, the peak extent and therefore, the
width of every peak with the interval specified. The signal
is  distinguished  to  supply  information  regarding  the
QRS-complex slope. The transfer function is:

(2)-2 -1 11
H(z) (-2z -z +z +2)
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The difference version of this filter is:

(3)-2 -1 1 21
Y(n) (-2z -z +z +2z )

8


Squaring function: Following derivative, consecutive
output signal is square. Become entire information
positive, the derivative output is amplified nonlinear and
also the QRS complex are assert as:

(4)2Y(NT) [x(NT)]

Where:
(NT) : Input of ECG signal
Y(NT) : Squared of ECG input signal

Moving window integration: The output signal from the
squaring process is entered to the moving-window
integration block. The equation of the process is:

(5)
1

y(n) [x(n-(N-1)+x(n-(N-2)) , ..., x(n)]
N

 

Adaptive threshold: Following initial peak determination
using threshold “a’ (a = mean (signal)), to determine
threshold “a’, using Eq. 6:

(6)[Threshold = mean (Signal)*0.3]

RESULTS AND DISCUSSION

Actual electrocardiogram signals originated from the
MIT-BIH standard info were employed in the action. The
MIT-BIH info include 48 record and half-hour with 2
recording channels for EKG (Llamedo and  Martinez,
2011).  All  recordings  are  worked  with  a  frequency  of
360 Hz with 11-bit accuracy over range (10 mV). The
works have been done on MATLAB 2016b platform. The
results divided into 2 parts, results of nonrecursive median
filter and results of QRS detection as follows:

Non-recursive  median  filter  output:  Two  stages 
non-recursive median filter has been applied to get rid of
the wander drift from electrocardiogram signal. Median
filter starts by choose any channel from electrocardiogram
data say yi[n] have whole samples N for N = 5000 as
illustrated in Fig. 3a. First step begin with filter window
width is fs/2, value of input data yi[n] detected and keep
in an array xm1[n]. Using variable window size from fs/2
to fs/4 to work out and store values of input data yi[n] in
an array xm1[n] from N-fs/4+1 to N points. The next step
median filter begin by using window width fs, then takes
initial stage data xm1[n] having all samples ‘N’
employing a variable window size of fs/2 to fs /4 to work
out and store values of data xm1[n] in array xm2[n] from
1 to fs/2 points, ultimately victimization variable window
size of fs to fs/2 for input data xm1[n] to be specified and
keep in array xm2[n] from N-fs/2+1 to N points. Subtract
second stage median filter output xm2[n] from input data
yi[n] for removing of baseline wander from signal xf[n]
use Eq. 7:
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(7)XR[n] = Yi[n]-Xm2[n]

Where:
XR[n] : The Baseline drift free signal
Yi[n] : The original signal
Xm2[n] : The output median signal after second median

filter (fs)

Performance    evaluation    of    the    QRS   detection:
To   estimate   the   performance   of   the   proposed   new

Fig. 3(a-d):Outputs of median filter, (a) Original signal
yi[n]; ECG signal from channel: 2, (b) First
step median filter output xm1[n]; Output of
the first median filter with  window length =
181, (c) Second step median filter output
xm2[n];  Output of the second median filter
with  window length = 361 and (d) Drift line
free signal xf[n]; ECG signal-baseline drift

methodology, this technique was performed with the
MIT-BIH cardiac arrhythmia database (MIT-BIH AD).
Different factors were tested that are Positive predictively
(+P), Sensitivity (Se) and Error rate (Er). In addition,
other performance factor called F-score is also utilized in
order to determining the efficiency of the current action,
additionally to use of Accuracy (ACC) during this
research. The achievement of the suggested methodology,
in terms of Positive predictively (+P), Sensitivity (Se),
Accuracy (ACC), Error rate (Er) and F-score given in Eq.
8-12 (Rodriguez et al., 2014) (Table 2 and Fig. 4):

(8)
TP

P =
TP+FP

(9)
TP

Se =
TP+FN

(10)
TP

Acc =
TP+FP+FN

(11)
TP

Er =
TP+FP

(12)
(2×P×Se)

F-score =
P+Se

Where:
FN : Number of incomprehensible peaks
TP : Number of accurately detected peaks
FP : Number of false peaks

Table 2: Performance of the proposed work on ECG signals (30  min) of MIT-BIH arrhythmia database compared with Jenkal et al. (2015)
ECG Total    TP    FP   FN
record beats (beats) (beats) (beats) Se (%) +P(%) Acc (%) Er (%) F-score
100 2273 2273 0 0 100 100 100 0 1
101 1865 1858 7 0 99.62607 100 99.62607 0.003753 0.998127
102 2187 2187 0 1 100 99.9543 99.9543 0.000457 0.999771
103 2084 2084 0 0 100 100 100 0 1
104 2229 2229 0 7 100 99.68697 99.55337 0.004486 0.997762
105 2572 2572 0 10 100 99.6127 99.6127 0.003888 0.99806
106 2027 2024 3 0 99.85222 100 99.85222 0.00148 0.999261
107 2137 2137 0 6 100 99.72002 99.72002 0.002808 0.998598
108 1763 1756 10 0 99.43598 100 99.43598 0.005672 0.997172
121 1863 1863 0 4 100 99.78575 99.78575 0.002147 0.998928
122 2476 2476 0 0 100 100 100 0 1
123 1518 1518 0 1 100 99.93417 99.93417 0.000659 0.999671
124 1619 1617 2 0 99.87662 100 99.87662 0.001235 0.999383
200 2601 2601 0 5 100 99.8081 99.617 0.003845 0.998081
201 1963 1963 0 1 100 99.94908 99.94908 0.000509 0.999745
202 2136 2136 0 0 100 100 100 0 1
203 2980 2980 0 3 100 99.899 99.66555 0.003356 0.998325
205 2656 2653 3 0 99.88705 100 99.88705 0.00113 0.999435
207 1860 1858 0 10 100 99.46524 99.46524 0.005376 0.997319
208 2955 2955 0 11 100 99.62913 99.49495 0.005076 0.997468
209 3005 3005 0 19 100 99.37169 99.37169 0.006323 0.996849
Average 46769 46745 25 78 99.94 99.85 99.8 0.05 0.999
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Fig. 4(a-f): ECG signal from record 100, (a) Original ECG (b) First derivative, (c) After squaring, (d) After moving
average, (e) ECG signal with R point and (f) Variation of heartbeat rat
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Table 3: Performance of the recent work on ECG signals of MIT-BIH arrhythmia database (Jenkal et al., 2015)
ECG record Total beats  TP (beats) FP (beats) FN (beats) Pp (%) Se (%)
100 2273 2273 0 0 100 100
101 1865 1865 1 1 99.95 99.95
102 2187 2188 1 0 99.95 100
103 2084 2084 0 0 100 100
104 2229 2230 1 0 99.96 100
105 2572 2561 9 20 99.65 99.23
106 2027 2021 0 6 100 99.7
107 2137 2168 31 0 98.59 100
108 1763 1774 17 6 99.05 99.66
121 1963 1957 0 0 100 100
122 2476 2476 0 0 100 100
123 1518 1518 0 0 100 100
124 1619 1619 0 3 100 99.81
200 2601 2598 0 3 99.49 99.88
201 1963 1957 10 16 100 99.19
202 2136 2131 0 5 100 99.77
203 2980 2920 0 60 100 97.99
205 2656 2637 0 19 100 99.28
207 1860 1858 5 7 99.73 99.62
208 2955 2950 2 7 99.93 99.76
209 3005 3005 0 0 100 100
Average 46769 46769 77 153 99.84 99.67

Table 4: Recent QRS detection methods compared our algorithm
Methods Se (%) Pp (%) Computational load
Proposed methods 99.94 99.85 Low
Yeh and Wang (2008) 99.85 99.95 Low
Pan and Tompkins (1985) 99.75 99.54 High
Hamilton and Tompkins (1986) 99.69 99.77 Medium
Adnane et al. (2009) 99.77 99.64 Low
Sahambi et al. (1997) 99.90 99.90 Medium
Saxena et al. (2002) 98.80 99.86 High
Ghaffari et al. (2008) 99.89 99.71 Low
Chouakri et al. (2011) 99.91 99.81 High
Rodriguez et al. (2014) 99.71 99.28 High
Zidelmal et al. (2014) 99.84 99.91 Low

The MIT-BIH cardiac arrhythmia database was
examined during this experiment, besides together with
baseline deviation it contains LBBB, RBBB, PVC and
APC. Our QRS detection algorithmic program performs
with 48 records fully length during this study. With
removing of wander baseline drift, power noise and
artifacts are removed too. MIT/BIH cardiac arrhythmia
data record 100 contain noises with extremely baseline
drifts that is clearly detected and shown in Fig. 4. The
effectiveness of the new suggested technique emulated
and evaluated in contrast to recent work (Jenkal et al.,
2015) in contrast to alternative researchers wherever they
largely rated the effectiveness of QRS detector technique
utilizing MIT/BIH cardiac rhythm irregularities data-base.
Performance of proposed new system has well-tried to be
superior to the recent papers (Jenkal et al., 2015) as
shown in Table 1 and 2. We have a tendency to signify
that achievement average of all 48 records and compared
to alternative previous strategies in Table 3. Our proposed
new technique offered Sensitivity (Se%) and Positive
predictively   (+P)   of   cardiac   rhythm   irregularities
data-base as 99.94 and 99.85%, severally, that is higher
compared to alternative ways (Table 4).

CONCLUSION

An active and dependable QRS complex
determination technique primarily centered-median filter
and signal reshaping was instructed. The proposed
method has been tested on standard MIT/BIH data base
and conjointly applied on real graphical record patients.
The median filter approach is employed to address the
base line from the electrocardiogram signal and so an
automatic R-peaks detection method with sequence steps
was instructed to detect the QRS position. The proposed
methodology offered high QRS detection performance
compared to recent algorithms. supported the findings, a
low detection error rate of 0.05%, Positive predictivity
(P+) of 99.85%, Sensitivity (Se) of 99.94% and an
average F-score of 0.999 are determined for the proposed
electrocardiogram detector that the most effective among
previous algorithms.
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