
Hybrid Testing Model for Cloud API Testing as a Service

1R. Jeba Gazelle and 2M.A. Maluk Mohamed
1Anna University, Chennai, India
2Department of Computer Science, MAM College of Engineering, Tiruchirappalli, India

Key words: Application programming interfaces, quality
assurance, testing as a service, software

Corresponding Author:
R. Jeba Gazelle
Anna University, Chennai, India

Page No.: 30-34
Volume: 12, Issue 3, 2019
ISSN: 1997-5422
International Journal of Systems Signal Control and
Engineering Application
Copy Right: Medwell Publications

Abstract: Cloud computing provide infrastructures,
development and deploying platforms and provides many
application services over internet. As multiple systems,
devices and applications interoperate in the today’s cloud
world, APIs play an important role providing the required
functionalities by communicating with different sub
systems without a compromise in the quality of delivery.
An important area on this front is the testing of
Application Programming Interfaces (APIs) which are
direct links between the client code and the infrastructure
it runs upon. In this study, a hybrid model for testing
cloud platforms and infrastructures is suggested. The
model is hybrid in the essence that it provides two
options: one is that it leverages the API test cases either
automated or manual test scripts which can be reused for
testing various APIs and hence provides an option of
testing as a service. Secondly, the model includes the
various test environments that would be required to run
the API testing, the plugins and adapters that would be
required to execute the test cases such that it leverages the
concept of infrastructure as a service for API testing, This
option helps the development and cloud quality assurance
engineers not to spend effort on setting up the required
test environments but can use them as a service.

INTRODUCTION

Cloud Computing can be applications that reside in
datacenters as hardware or software in the huge data
centers and could be the products or applications. Li et al.
(2011) explained the major characteristics of cloud
computing as socialization, intensification and
specialization. Out of which socialization is the behavior
of cloud computing which showcase cloud computing as
a computing model which provides various forms of
cloud services resources like web services, Application

Programming Interface (API) which are leveraged as
Infrastructure as a Service (IaaS), Platform as a Service
(Paas) and Software as a Service (SaaS), as cloud
computing has started to gain momentum, architects are
looking for more ways to integrate their traditional
application with the cloud model. The service providers
in today’s age have come up with predefined list of cloud
APIs which can help anyone who wants to integrate their
services in the cloud. As such APIs are not a new word in
computing world. APIs in general are defined as a set of
programming instructions and standards for accessing a

30

Int. J. Syst. Signal Control Eng. Appl., 12 (3): 30-34, 2019

web-based software application or web tool. A software
company releases its API to the public, so that, other
software developers can design products that are powered
by its service. An API is not a user interface but a
software-software interface. This enables applications to
communicate with each other. In the connected world,
although it may look like we are interacting with a single
system; the main system would call or interact many other
sub systems using API functional calls. An example to
this would be when we purchase goods online, the only
visible portal would be the online shopping portal and this
would interact with any other systems in terms of either
providing data or receiving response to make each
transaction successful.

In essence APIs are one of main building blocks of
non-standalone systems. As cloud computing deals with
more of collaboration and socialization with different
systems, Cloud APIs play a key role to integrate services
in the cloud. In simple terms, the concept of APIs are
nothing but a form of software as a service, in which a
cloud provider enable users to leverage cloud computing
in their systems through the list of APIs provided by the
various cloud providers. With this introduction on cloud
computing it would be the very important to ensure the
APIs that are written or that which is used for integration
does not compromise on quality and are completely
validated before they are released to the market.
Cretella and Di Martino (2012) in the paper “Semantic
Web Annotation and Representation of Cloud APIs”
have presented an analysis of techniques that can be used
for semantic description of application programming
interfaces exposed as web services through SOAP or
REST based protocol. Wu and Lee (2013) bring out the
importance of a strong API access control model for
strengthening the security of cloud computing in the
paper “Design and implementation of cloud API access
control based on Oauth”. Further, Jenkins et al. (2011)
have proposed a new framework which by itself a
cloud application which contains plugins for testing
APIs of cloud platforms. This study focuses on
explaining a hybrid model which can cater to API testing
needs.

II NEED FOR CLOUD API
TESTING-PROBLEM STATEMENT

Today’s business revolution is not about developing
or testing a system or an application for a requirement.
The need has emerged out to be able to such that each
APIs that is developed is going to be released to the
market and hence could act as a standalone deliverable.
Having said this, the quality of the designed or developed
cloud API is very important for any API to have a longer
shelf life. If the designed API for an application is not
going to meet the required standards or the requirements
of other applications any new application will opt for an
API that would meet their requirement.

Each organization should take more caution in the
API that they select as there may be a need for multiple
different API models for your environment to function
well. Also, cloud service model is very new and there are
still some challenges to be ironed out. Specifically,
platform and infrastructure compatibility have been an
issue. There are times when applications just won’t
work with a cloud-based API platform. APIs do not
belong to a single broad category such that validation
and verification of them is less cumbersome, rather they
can be classified in many ways which makes the
testing or validation process a very detailed and an
efficient one.

III CLASSIFICATION OF CLOUD APIS

Cloud APIs can be broadly classified based on the
following types.

Classification based on the type of cloud services
provided:
• PaaS APIs (Service-level): This APIs help in

deployment of applications in Cloud
• SaaS APIs (Application-level): These APIs are

designed in such a way that they can be used as a
standalone service for building any cloud application

• IaaS APIs (Infrastructure-level): Commonly referred
to as Infrastructure-as-a-Service, these APIs help in
rapid provisioning or de-provisioning of cloud
resources

• Cloud provider and cross-platform APIs: As today’s
environment does not limits is usage with a single
cloud provider, these APIs play a greater role in
providing cross platform capability

Classification based on the various initial conditions
that can be subjected to an API: Each API will have a
set of input conditions, based on that they can be
classified as:

• Mandatory pre-setters.->requires few activities to be
carried out before the API is called

• Behavioral pre-setters->There could be optional
parameters which might be set or not set before the
API is called

Classification based on the nature of the API:
• Operating system-API for MS Windows API for

Apple Mac OS X (Cocoa)
• Application services API
• Web services API (REST or SOAP)

Classification based on the API declaration:
• APIs that do not belong to a class
• APIs that belong to a class but requires object to be

created before API function call
• APIs that can be only by using the class reference but

creation of object is optional

31

Int. J. Syst. Signal Control Eng. Appl., 12 (3): 30-34, 2019

Classification based on the API invocation:
• Direct API call
• API call based on event trigger: e.g., mouse

movement/mouse click
• API call based when an exception occurs, e.g.,

Classification based on the parameter passing:
• By value-the value is placed directly into the

parameter list
• By reference->the pointer/address location of a

variable is passed in the parameters list

Classification based on output of an API:
• Executes an operation an returns a value as an input

for some other system
• Update/modify a registry or a resource
• Performs an operation but does not return anything

IV CLOUD API-STUDY AND ANALYSIS

To arrive at the proposed model for cloud API-testing
as a service approach, a study (Anonymous, 2010, 2016)
was conducted on Google app engine trial feature of
application hosting and deployment.

First, the various cloud providers are analyzed to
examine the APIs provided by each of them. Below are
the cloud providers under the three main cloud service
category.

Examples of IaaS providers include: Amazon EC2,
Google Compute Engine, HP Cloud, Joyent, Linode,
NaviSite, Rackspace, Windows Azure, Ready Space
Cloud Services, Terremark and Internap Agile.

Examples of PaaS include: AWS Elastic Beanstalk,
Cloud Foundry, Heroku, Force.com, Engine Yard,
Mendix, Open Shift, Google App Engine, App Scale,
Windows Azure Cloud Services, Orange Scape and
Jelastic

Examples of SaaS include: Google Apps, Microsoft
Office 365, Petrosoft, Onlive, GT Nexus, Marketo,
Casengo

 V API-STUDY-EXPERIMENTAL SETUP

The following setup was used to analyze the various
APIs provided by GAE in designing the proposed model
(Fig. 1).

Fig. 1: Experimental setup

32

Step 1 Step 2

Step 3 Step 5

Int. J. Syst. Signal Control Eng. Appl., 12 (3): 30-34, 2019

Test suite module

REST and
SOAP web-

services
API test

suite

Static code
analyzer/API
specif

reviewer
specif

Performance test
suite

Functional test suite

Standalone tests

API
communication

tests

Load and
street testing

Scalability
testing

Negative
tests

Test
selector

Test data

Common
/generic
functions

Rules
engine

Input data

Tests execution module Tests results
viewer Tests results

logs

Testing tools
similar to
SOAP UI, oauth playground
etc

Tests environment

Adapters/
pluginsTest

environment
selector

ication

Step 1: Create a Web Application project in Eclipse
IDE.

Step 2: In the created App Engine.xml file, supply the
application identifier that was created using Google
account trial period setup.

Step 3: After the application is run in the local host, it is
time to deploy this in Cloud. Using the installed Eclipse
plug-in for Google app engine, deploy the application to
the cloud using the Google ID and password.

Step 4: The application is finally hosted. The following
study was conducted by taking two infrastructures as a
service provider, Google compute Engine and Amazon
EC2 namely (Anonymous, 2010, 2016). There are various
APIs provided by these service providers and hence the
structure and request and response of the two operations
were compared:

• VM instances related operation
• Image related operation

It was noted that the APIs format and structure
used by the service provider Amazon EC2 and Google
Compute Engine differ from each other. This proves that

any model that can prescribed for providing cloud API
testing platform or testing services should be easily
customizable to suit the needs of different APIs that can
be developed in various technologies.

VI PROPOSED MODEL FOR API
TESTING AS A SERVICE

We have seen in the previous chapter on the different
types of APIs available in today’s world to suit different
business needs. This section would provide an integrated
architecture that can be used to leverage the concepts of
cloud for testing cloud APIs and for providing a system
which can help in configuring the required environment
that is required for cloud testing. The main modules in
the proposed model are discussed below (Fig. 2).

Test selector: The selection of functional or automated
test cases based on the requirements is done by the test
selector module. The test cases and automated scripts are
stored in such a way that the model is highly reusable.

Test suite module: Static Code Analyzer or API
specification reviewer: A detailed review of the API
specification and any related use case documentation
can be done in this module. This review of the API

Fig. 2: The main modules in the proposed model

33

Int. J. Syst. Signal Control Eng. Appl., 12 (3): 30-34, 2019

specification from a test perspective typically uncovers
numerous errors in the implementation before a single test
case is written.

Performance test suite: Performance testing an API
includes creating a test environment, setting realistic
performance targets, developing test scenarios, generating
high-quality test input data, test execution and root cause
analysis.

Functional test suite: REST and SOAP web services API
Testing: The following tools can be integrated with the
model to support the web services testing based on the
requirement. Optimyz-Webservice tester is an end-to-end
product offering automatic test generation; functional,
regression and load testing; conformance testing
against WS-I Profiles, BPEL-based orchestration testing;
secure Web services testing and debugging and
diagnostics.

Mercury (now HP)-“end to end” solution for Web
services testing in the form of three offerings: Load
runner, quick test professional and business process
testing, its newest tool that sits on top of load runner.

Empirix Inc.-e-TEST: e-Manager enterprise, test
management; e-Tester, functional testing; e-Load,
scalability testing. Parasoft-SOAPtest, WSDL validation,
unit and functional testing of the client and server,
performance testing.

IBM rational software Co.-Test studio, unit,
functionality, performance and load testing; PurifyPlus,
runtime analysis tool for detects memory and performance
bottlenecks early in the development cycle:

Standalone tests: Deals with the standalone behavior of
the API without any functional call sequence.

Negative tests: Deals with providing the negative inputs
and checking on the system behavior and stability.

API communication tests: Deals with tests that integrate
one or more system using APIs.

Test execution module: Test execution module executes
the selected test cases based on the input provided either
using an automated test script on a given environment or
by manually conducting the tests in the selected test
environment.

Test environment selector: This module integrates the
much need environment for the required testing, be it
mobile devices or any particular server configuration in a
dynamic way until the required testing environment is
setup for the cloud APIs. For e.g., the Oauth play ground
provided for validating the Oauth related specification is
already available in today’s world to meet this need. This
architecture suggests the required plugins must be
developed to ensure that these are available inside a single
system.

Test results viewer: Test results play a major role during
the quality assurance process. Storing of test results helps
in identifying the root causes of major issues and helps in
defect predication and prevention. Also, the logs help in
reporting and in metrics derivation.

CONCLUSION

One of the biggest challenges in the Cloud
Computing is to provide a most viable solution for the
major risks or issues raised by its major components. In
this paper we have made extensive study and have found
that Cloud APIs as one of the major category of cloud
architecture. As such APIs is not a new word in
computing. However Cloud APIs need more study
because of the mobility and huge data transfer required by
cloud related service providers from the time they were
invented. In the initial sections of this study, we have seen
the use of APIs by all the cloud service providers as a way
of enhancing their business and providing technological
solutions for various business requirements. As we have
seen there are various types of cloud APIs and as such
testing has to be done in various forms to ensure that a
quality system is erected. This paper concludes by
providing a architecture to accommodate various types of
cloud APIs which by its design can be easily extended for
future needs.

REFERENCES

Anonymous, 2010. Cloud testing. United Technologies
Corporation, Farmington, Connecticut.

Anonymous, 2016. Amazon elastic compute cloud API
reference. Amazon Web Services, Inc, Seattle,
Washington.

Cretella, G. and B. Di Martino, 2012. Semantic web
annotation and representation of cloud APIS.
Proceedings of the 2012 3rd International Conference
on Emerging Intelligent Data and Web Technologies,
September 19-21, 2012, IEEE, Bucharest, Romania,
pp: 31-37.

Jenkins, W., S. Vilkomir, P. Sharma and G. Pirocanac,
2011. Framework for testing cloud platforms and
infrastructures. Proceedings of the 2011 International
Conference on Cloud and Service Computing,
December 12-14, 2011, IEEE, Hong Kong, China,
pp: 134-140.

Li, B., B.Q. Cao, K.M. Wen and R.X. Li, 2011.
Trustworthy assurance of service interoperation in
cloud environment. Int. J. Autom. Comput.,
8: 297-308.

Wu, M.Y. and T.H. Lee, 2013. Design and
implementation of cloud API access control based
on OAuth. Proceedings of the IEEE 2013
Tencon-Spring Conference, April 17-19, 2013, IEEE,
Sydney, Australia, pp: 485-489.

34

