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Abstract: In this study two linear cooperative Distributed
constrained Model Predictive Control (DMPC)
approaches are proposed to control the uncertain
nonlinear interconnected large scale systems. In these
approaches a proposed novel cooperative optimization
strategy is employed that its advantage is to improve the
centralized global cost function of each local controllers
which decreases the control efforts, cost function values
and convergence time compared to typical cooperative
DMPCs which is demonstrated via. simulation results of
a typical nonlinear large scale system. In proposed
approaches two reconstructed linear distributed
constrained model predictive controllers; Distributed
Extended Dynamic Matrix Control (DEDMC) and
Adaptive Generalized Predictive Control (DAGPC) are
presented to control the uncertain nonlinear large scale
systems by compensation of the mismatch between
linearized and nonlinear models. The advantage of
proposed controllers is their less complexity compared to
fully nonlinear DMPCs. In DEDMC, the mismatch
between linearized and nonlinear models is considered as
a disturbance and in DAGPC this mismatch is
compensated using online identification of the linearized
model. The typical linear algorithms like distributed DMC
leads to an unstable closed-loop response if the reference
trajectory is a little far from the equilibrium point while
this problem will be partially solved using the proposed
DEDMC and will be completely solved using the
proposed DAGPC even if the reference trajectory is too
far from the equilibrium point. The performance of
proposed approaches are demonstrated through simulation
of a typical uncertain nonlinear large scale system.
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INTRODUCTION

Most industrial systems have nonlinear dynamic. A
precise model of the simplest systems such as a DC motor
is still nonlinear. On the other hand, many industrial
systems are large scale systems which consist of a number
of nonlinear subsystems. Control design for these
nonlinear large scale systems is one of the important
challenges. Model Predictive Control (MPC) is one of the
desirable approaches for researchers to design the control
algorithm for linear and nonlinear large scale systems that
lead them to distributed MPC (DMPC) algorithms.
Different linear DMPC approaches like cooperative,
non-cooperative and agent negotiation are theoretically
investigated in some papers that could be extended to
nonlinear large scale systems[1, 2]. Dual mode DMPC
method is designed based on the proximity of the state
variables to the origin. When the state variables are far
from the origin the nonlinear DMPC algorithm is
considered and on the other hand when the state variables
are in origin’s neighborhood, the linear DMPC algorithm
is applied. Unlike the methods which use nonlinear
algorithms when the states are in a neighborhood of the
origin, the complexity of the computations is reduced
using proposed dual mode DMPC method[3]. Gradient
projection optimizer is designed as a subsidiary nonlinear
nonconvex algorithm that improves the objective function
and does not require a coordination layer[4, 5]. On the
contrary, some methods require coordination between
their subsystems because each subsystem is optimized
independently[6-8]. In these methods each subsystem
exchanges its information to its interconnected neighbours
via. coordinators. In some other approaches the
interconnection between subsystems is considered as a
constraint in each local optimization instead of using the
coordinator[9, 10]. The network based DMPC algorithm
with multirate sampling is a combination approach which
is designed for a nonlinear large scale uncertain system
composed of coupled subsystems. Local controllers are
interconnected through a network based coordination
structure that uses iterative strategy to control the entire
large scale system[11]. The key factor in approaches with
coordination layer or approaches in which each local
controller optimizes its cost function separately and
exchanges information to its neighbours is communication
delay. In most of these approaches, communication delay
is considered as a constraint[12, 13].

A two-layer robust DMPC strategy is another method
which is designed for nonlinear constrained systems
coupled through cost functions. Each subsystem receives
information of control trajectories of its neighbours and
solves its local optimization that involves interconnected
coupling terms and computes its local optimal control
signal. Sufficient conditions for convergence of states of

all subsystems are provided in the first layer. In the
second layer, robust DMPC approach is developed which
uses a shorter prediction horizon and also tolerates larger
disturbances[14]. Robust DMPC is a useful method to
control a group of nonlinear subsystems subject to
constraints of the control input and external
disturbances[15, 16].
 Another DMPC approach for constrained large scale
systems is sequential nonlinear DMPC strategy. In this
approach each local MPC solves its own optimization
problem and at each sampling time exchanges its
information via. the communication channel to achieve
the global objective of the overall system. The
performance of the proposed nonlinear DMPC strategies
is similar to the centralized nonlinear MPC but they are
more efficient compared to the centralized approach[17].
By applying the contraction theory in DMPC algorithms,
larger sampling intervals and stronger coupling between
subsystems are addressed. The conservative conditions
are also reduced using contraction theory[18]. Hierarchical
base DMPC is a useful algorithm for uncertain large scale
systems. A two level DMPC approach based on
hierarchical framework is designed which takes inaccurate
fault information into account to the system. The
objective is compensating the identified actuator faults of
the subsystems which include the detected time delays
and uncertainties. In first level, the faults are recovered to
maintain the design characteristics for all subsystems. In
the second level, the recovery process is applied by
increasing the whole system performance. The presented
distributed method satisfies the recovery design
characteristics via lower fault compensation and so, lower
cost compared to the centralized and decentralized
methods[19].

The nonlinear large scale systems could be controlled
via both linear and nonlinear DMPC algorithms. The
linear algorithms are less complicated than nonlinear ones
and the design’s cost is lower. However there are
restrictions to apply the linear algorithms for nonlinear
systems if the nonlinearity degree is high or it has several
equilibrium points then the closed loop nonlinear system
may be unstable by applying linear algorithms. In this
manuscript, a novel cooperative DMPC strategy is
proposed which reduces the computational burden of
optimization process and convergence time due to its
main algorithm’s reconfiguration. Moreover, to exploit
the advantages of linear algorithms for controlling the
constraint nonlinear systems two reconstructed linear
algorithms are proposed based on Dynamic Matrix
Control (DMC) and Generalized Predictive Control
(GPC) methods. If the reference trajectory deviates too
close to the equilibrium point then the nonlinear system
could be controlled by linear algorithms. However, there
are many nonlinear industrial plants with high degree of
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nonlinearity which could not be controlled using linear
algorithms like DMC, moreover if the reference trajectory
deviates farther away from the equilibrium point so these
plants may be unstable. These problems will be partially
solved using the proposed distributed linear algorithms;
Distributed Extended Dynamic Matrix Control (DEDMC)
and Distributed Adaptive Generalized Predictive Control
(DAGPC).

Problem statement: mathematical models for
nonlinear large scale systems: Consider a large scale
system  with  nonlinear  dynamic  whose  centralized 
model  is  decomposed  into  M  coupled  subsystems 
where  subsystem  i  can  be  implemented  by  the
following first order nonlinear continuous-time
input-output model:

(1)   i i i i jy t f y ,u ,u , i 1,2,...,M 

where fi is a nonlinear function, yi 0Rnyi and ui0Rnui

present the vectors of outputs and inputs of subsystem i
respectively and uj (t) (j = 1, 2 ,...., M, J, … i) is the vector
of inputs of the subsystem j which is the neighboring
subsystem of subsystem i. It is assumed that fi is Lipschitz
function. The M  sets of subsystem’s control inputs are
constrained to be in M convex sets UidRMu

i, i = 1 ,..., M
which are expressed as:

(2) ui
n Max

i i i iU u R : u u  

where, ui
max, I ,..., M  are the constraint’s magnitudes of

the subsystem’s inputs. The nonlinear continuous-time
model of subsystem i can be discretized using Euler
derivative approximation with sampling time Ts:

(3)        i i i i jy k+1 g y k ,u k ,u k , i 1,2,....,M 

where, gi is a nonlinear function. In current manuscript a
new cooperative optimization strategy is proposed.
Moreover, two reconstructed distributed linear
constrained algorithms; DEDMC and DAGPC are
proposed to employ the proposed cooperative
optimization strategy and control the nominal uncertain
nonlinear large scale system of Eq. 1.

Approach; proposed cooperative optimization
strategy: DMPC methods are divided into two main
groups, cooperative and non-cooperative, based on
communication structure between local controllers.
Unlike the non- cooperative, in cooperative DMPC the
same centralized global cost function which is defined

based on a combination of all subsystem’s cost functions,
is optimized in each local controller to consider the effect
of each local controller’s input on the entire plant. Each
local controller optimizes its control input by minimizing
the global cost function at each iteration supposing that
the  other  subsystem’s  control  inputs  of  are  equal to 
their  last  optimal  values[1, 20, 4]. In the proposed
cooperative DMPC strategy the global cost function will
be modified. Each local controller optimizes the global
cost function which is defined based on a convex
combination of its own and its neighbor’s cost functions.
This proposed approach assumes that if based on equation
1 two subsystems are not neighbors, it is not necessary to
consider their cost functions in each other’s corresponding
global cost functions. The effect of each local controller’s
input is still taken into account on the entire plant which
is mathematically provable. The proposed idea helps us
significantly reduce the computational burden of
optimization processes of all subsystems. The proposed
cooperative DMPC uses the following strategy. At time k,
all the local Scontrollers receive the information of overall
large scale system of Eq.  3.

At iteration p:  Each local controller i calculates its
own vector of future input U+i along the control horizon
based on the input vectors of its neighboring Slocal
controllers (not all other controllers) which are constant
and equal to their latest optimal input vectors. When p =
1, the initial guesses for all local controller’s inputs,
obtained from latest optimal control inputs are used). The
neighboring local controllers exchange their input vectors
and each local controller i calculates the current optimal
input vector .  According to receding horizon criteria

popt
+iU

the: current optimal control input is the first element
popt

+iu

of the current optimal input vector.
If a termination error condition considered in

corresponding global cost function is satisfied in current
iteration, each controller i dispatches its optimal control
input    to its actuators; if not satisfied, go to step

popt opt
i +iu u

2 and let p+1 6p.
All subsystem’s models are updated using obtained

optimal control inputs. Whenever the control inputs of all
local controllers are obtained, go to step 1 and let k+16k.
Each local controller i optimizes following optimization
process at each iteration:

(4)
     

   
i

k
i u

T

+i i i

u k ,...,min k+m-1 J

futureinput vector u k ,...., u k+m-1




     

Subject to Eq. 3:

(5) i iu k+j U , j 0,....,m-1 
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(6)p p-1
1 iU U l Landl i    

(7)   
i

2

i tQ

p
ŷ k+p -W k+p y

k


With:

(8)  i i i i
l

J k J + J  

(9)i l i l
l

, 0, + 1     

And:

(10)       
li

p m
2

i i i RQ
j 1 j 1

J k y k+j -W k+j 2 + u k+j-1
 

     

Where:
m and p = Control and prediction horizons, respectively
LdM = The set of neighboring subsystems of

subsystem i . 

Equation 7 denotes the termination error condition in
which yt is the symmetric closed set in the neighborhood
of origin. The termination error condition states that if the
closed loop system is stable, then the prediction  error 
tends  to  zero  over the  time  is the iŷ k+j , j 1,...,p

subsystem’s i predicted output that in each linear MPC
algorithm is calculated via. particular manner. W is the
reference trajectory. Qi and Ri and diagonal positive
definite weighting matrices of prediction errors and
control inputs respectively with appropriate dimensions.
To achieve global optimality, J(k) is presented as a
convex combination of subsystem i and its neighbor’s cost
functions with appropriate αi and αi coefficients.

Approach; proposed cooperative constrained DMPC
algorithms: There are two key reasons for using linear
algorithms to control the nonlinear large scale systems.
First, the identification of a linear subsystem based on
empirical data is much easier than nonlinear one. Second,
most of the industrial nonlinear systems like liquid level
control, internal temperature control of a furnace and
pressure control have only one equilibrium point, thus
they can be identified by a precise linear model and then
linear DMPCs can be employed to control the linearized
system and determine the subsystem’s optimal control
inputs. In this manuscript two reconstructed constrained
distributed linear algorithms; DEDMC and DAGPC are
proposed to control the uncertain nonlinear large scale
systems. These algorithms are distinguished via how the
nonlinear model is applied in optimization process. In

DEDMC the linearized version of nominal nonlinear
model is taken into account and the mismatch between
linearized and nonlinear models is considered as a
constraint and will be compensated. So, the predicted
outputs calculated via both models are similar to each
other. The DAGPC algorithm identifies the numerator and
denominator polynomials of the linearized system’s
transfer function which actually presents the nonlinear
behavior of the plant.

MATERIALS AND METHODS

Proposed cooperative constrained DEDMC algorithm:
In fact, EDMC is the extended version of the DMC
algorithm that takes the nonlinear model into account, so,
this algorithm also uses the system’s step response to
determine the predicted outputs similar to DMC[21] . The
predicted output of the subsystem i in distributed DMC
algorithm is represented as follows:

(11)
       

iq

N N

i i iiq i i
q 1 l q 1

ˆŷ k+j g u k+j-q + g u k+j-q +n k+j

i 1,...,M, l L,l i

 

  

  

 

Where:
giq and gilq = The step response coefficients of

subsystem i and its interconnected
neighboring subsystem

l, N = The  model  horizon
Δui and Δui = The increment control inputs of

subsystems i and l, respectively

An integrator should be added to remove the steady
state error so increment of control inputs are used instead
of control input in DMC and so in EDMC  methods.

is   the estimation of the future time disturbances in̂ k+j

assuming that disturbance and other signals of plant, until
time j are presented.  In  distributed  DMC,  is  in̂ k+j

considered  as external disturbances applied to the system.
Moreover, it is assumed that the future disturbance is
constant along the prediction horizon and equal to the
current disturbance . The disturbance is defined as in̂ k

difference between measured and predicted outputs:

(12)
       

 

i

N

i i m iq i
q 1

N

ilq i
i q 1

ˆ ˆn k+j n k y k - g u k-q -

g u k-q





  







where, the ymi (k) is the measured output. The cost
function of subsystem i in distributed DMC is:
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(13)       
i i

p m

i i iQ R
j 1 j 1

ˆJ k y k+j -W k+j 2 + u k+j-1 2
 

  

And also the cost function is represented as the
matrix form of:

(14)   
i i

T T
t i i i + i +J Y -W Q Y -W +U R U

In  which  the  elements  of  the  yi  is  obtained 
using Eq. 11 and 12 and series characteristics:

(15)i li i + il + i
l i

Y G U + G U +Freeresponse


 

(16) 
ii i -i il -l m p×1

l i

Free respone H U + H U +Y k I


 

Where:
yi = The predicted outputs vector
U+i and U+l = The future control inputs vectors
U-i and U+l = The determined past control inputs vectors

of subsystems i and l, respectively

According to cooperative optimization strategy
proposed in section 3 the future control inputs vector of
neighboring subsystem l in iteration p is constant and
equal to its latest optimal value. Gi, Gil, Hi and  Hil  are 
MPC  matrices  with  appropriate dimensions:

 
 

 

i

i
i

i

ŷ k+1

ŷ k+2
Y

ŷ k+p

 
 
   
 
  



 
 

 

i

i p-1
+i -i +1

i

u k

u k+1
U ,U U

u k+m-1

 
    
 
  



 
 

 

 
 

 

i i

i i
-i -l

i i

u k-1 u k-1

u k-2 u k-2
U m U

u k-N u k-N

    
          
   
       

 

 

   

i1

i2 i1

i
im i i1

ip i i p*m

g 0 0

g g 0

G
g g m-1 g

g g p-1 g p-m+1

 
 
 
 
 
 
 
 
  




   


   


 

   

il1

il2 i1

il
ilm il il1

ilp il il p*m

g 0 0

g g 0

G
g g m-1 g

g g p-1 g p-m+1

 
 
 
 
 
 
 
 
  




   


   


 

   

i2 i1 i iN

i

i i1 il iN p*N

g -g g N+1 -g

H

g p+1 -g g N+p -g

 
   
  


  



 

   

il2 il1 il iN

il

il il1 il iN p*N

g -g g N+1 -g

H

g p+1 -g g N+p -g

 
   
  


  



The closed form solution of optimal future control
inputs vector of subsystem i could be analytically
calculated   by   computing   the   following   derivative 
(Eq. 17):

(17)

 -1opt Ti
+i i i i i

+1

T
i i il +i

i i

J
0 U G Q G +R

U

G Q W- G U -FreeResponse



  

 
 
 



It should be noted that the linear DMPC algorithms
could have any limitations for example in distributed
DMC algorithm, it must be considered that the nominal
nonlinear system should not be unstable[21].

In  EDMC  algorithm  the  consists  of  two  in̂ k+j

part,  one part is measurable or unmeasurable external
disturbances similar to DMC and the other part is the
disturbances due to the mismatch (uncertainty) between
the linearized and nonlinear models which will be
presented by mismatch disturbance matrix Dnli. The
objective of the proposed DEDMC algorithm is to
compensate this mismatch.

In proposed DEDMC algorithm the disturbance
matrix is added to free response to compensate the
mismatch between linearized and nonlinear models. So,
the prediction vector of subsystem i is reconstructed as:

(18)ii i +i il +i i nl
l i

Y G U + G U +FreeResponse +D


 
where, Free Responsei is presented in Eq. 16 and:

 
 

 

i

i

i

i

nl

nl

nl

nl

d k+1

d k+2
D

d k+p

 
 
 

  
 
 
 



5



Int. J. Syst. Signal Control Eng. Appl., 13 (1): 1-17, 2020

where, dnli0Rndil . The mismatch between linearized and
nonlinear models of all subsystems should be
compensated. Thus, the following equation should be
solved  in   which   the   predicted   outputs   of   the
linearized and nonlinear models must be equal to each
other:

(19)linearized predictor linearized predictor
i iY Y

The elements of Dnli will be calculated via. solving
Eq. 19 and so, the mismatch will be compensated. The
proposed DEDMC algorithm solves the following
optimization problem for subsystem i at each iteration
which has been established based on novel cooperative
optimization strategy proposed in section 3. At the first
step, the vector of future control inputs which was
calculated using distributed DMC algorithm (Eq. 17) is
defined  as  a  function  of  mismatch  disturbance  matrix
Dnli:

(20)
   

 
i

i

-1T T
+i nl i i i i i i

ij +l i nll i

U D G Q G +R G Q

W- G U -freeresponse -D






(21) 
nli

D
min j k ,i 1,2,...,M

Subject to Eq. 3 and 19:

(22) i iu k+j U , j 0,...,m-1 

(23)   
i i

p p-1
+l nl +l nlU D U D , l Landl i   

(24)   
i

2 p
i i k tQ

ˆ ˆy k+p -yNL k+p y

With:

(25)  i i i i
l

J k J + J  

(26)i l i l
l

, 0, + 1     

And:

(27)       
i i

i i

p 2 2

i i NL nlQ R
j 1

ˆ ˆJ k y k+j -y k+j + d k+j


    

The cost function is represented as the matrix form of:

(28)   
i i i i

T T
i i NL i i NL nl i nlJ Y -Y Q Y -Y +D R D

where, Yi is defined in Eq. 18 and YNLi is the nonlinear
prediction vector:

 
 

 

i

i

i

i

NL

NL
NL

NL

ŷ k+1

ŷ k+2
Y

ŷ k+P

 
 
   
 
 
 



By solving the optimization problem in Eq.  20-27 the
mismatch between linearized an nonlinear models is
compensated and the optimal control input trajectory

is obtained. The optimal control input is then 
i

opt
+i nlU D

calculated as:

     opt opt opt
i i iu k u k +u k-1 

where according to receding horizon criteria the
optimal increment control input  is the first opt

ui k
element of . The order  is m×1 and the 

i

opt
+i nlU D  

i

opt
+i nlU D

order of  nonlinear  prediction  vector YNLi is P×1, so  to 
calculate the  in the nonlinear prediction process inopt

+iu

MATLAB, the control signal vector  is opt
+i nliU D

considered as follows:

   
 

i

i

+i nl

+i nl

p-m ×1

U D
U D

0

 
 
  

Where the 0(p-m)×1 id the zero column matrix in the
proposed cooperative constrained DEDMC algorithm, the
mismatch between linearized and nonlinear models is
compensated, so if the reference trajectory moves farther
away from the equilibrium point, the simulation results
illustrate desirable effect of this algorithm while the
system may be unstable using the distributed DMC
algorithm. However, if the reference trajectory is farther
away from the equilibrium point too much or the
nonlinearity of the system is high, then the proposed
cooperative DEDMC algorithm will also lead to an
unstable response. This problem will be completely
solved by the following proposed cooperative constrained
ADGPC method.

Proposed cooperative constrained DAGPC algorithm
The linear GPC algorithm is developed based on the
transfer function model of the system which can be
applied to unstable and non-minimum phase systems[21] .
The mismatch between linearized and nonlinear models
will be compensated using online identification approach
in the proposed cooperative constrained DAGPC
algorithm. The numerator  and  denominator  polynomials 
of the linearized   model   will   be   identif ied   using 
RLS algorithm and nonlinear large scale system’s input

6
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and   output   information.   The   linearized   model   of
each nonlinear subsystem is obtained using online
identification   in   each   time   step   and   then   by
means of identified numerator and denominator
polynomials, nominal   nonlinear   subsystem’s   free  
response   and   GPC   algorithm,   the   vector   of  
optimal  control inputs will be calculated using the
cooperative   optimization   strategy   proposed   in section
3.   The   calculated   optimal   control   inputs   will be
applied  to  nonlinear   system   and   this   process  
moves   to the next   time   step.   The   free   response   of 
 the   nominal nonlinear   subsystem   is   derived   from  
its   past   information   of   input   and   output.   Suppose 
that   the   identified   linearized   model   of   subsystem 
i  is:

(30)   
     

   
I -1 I -1
ii il

i i lI -1 I -1
l iii ii

B z B z
y k u k + u k

A z A z

 

The DAGPC matrices will be calculated using the
new identified polynomials of the linearized model and
finally theoptimal control input will be obtained using
these new DAGPC matrices. The proposed DAGPC
algorithm solves the following optimization problem for
subsystem i at each iteration which has been established
based on novel cooperative optimization strategy
proposed in section 3 in which the new identified
numerator  and  denominator  of  linearized  model  of  
each subsystem is calculated in the beginning of each time 
step:

(31)
 

 
 

   

i
ui k+m-1

T

+i i i

u k ,...., min J k

U u k ,..., u k+m-1




    

Subject to equation 30 i 1,...,M and l L,l i :   

(32) i iu k+j U , j 0,....,m-1 

(33)p p-1
+i +iU U , l L and l i   

(34)   
i

2

i tQ

p
ŷ k+p -W k+p y

k


With:

(35)  i i i i
l

J k J + J  

(36)i l i l
l

, 0, + 1     
And:

(37)       
i i

p m

i i iQ R
j 1 j 1

ˆJ k y k+j -W k+j 2 + u k+j-1 2
 

  

The cost function is represented as the matrix form of:

(38)   T T
i i i i +i i +iJ Y -W Q Y -W +U R U

Where the predicted output matrix form of:

(39)
l I I l I

-i i -t i -1 il -l i +i il +l
l i I i

Y Y + U + U + U + U
 

      

The closed form solution of the vector of optimal
future  control  inputs  of  subsystem  i  could  be
analytically calculated by computing the following
derivative Eq. 41:

(40)
 -1opt 1T li

+i l i i i
+i

T i 1 1 i
i i l -1 l -i il -1 il +l

I l i l

J
U Q +R

U

G Q W- Y - U - U U
 


   

     
 

 

where:

 
 

 

 
 

 
 

i

ii

ii I
i -i ai

I
i i ap×1

ŷ kŷ k+1
ŷ k-2ŷ k+2

Y ,Y n +1 ×1

ˆ ˆy k+p y k-n

  
  
      
  
     



 
 

 

i

i p-1
+1 +l +l

i m×1

u k

u k+1
U ,U U

u k+m-1

 
    
 
  



 
 

 

 
 

 
li
b

i i

i i

-i

I I
i b i bu

n ×1

u k-1 u k-1

u k-2 u k-2
U U-l

u k-n u k-n

   
           
   
      

 

in which  are the orders of the I I I
ai abi ailn ,n and n I I I

ii ii ilA ,B and B

idetified polynomials, respectively. For  calculating
 developed  CARIMA and Diophantine  iŷ k+j j 1,2,...,p

relations are taken into account similar to the typical GPC
algorithm in  as following equations and assuming that the
delay is zero:

(41)   
   

       
I -1
ii i

l -1 I -1
ii i i iI -1

il i
l i

B z u k-1 +
A z y k +C z e k

B z u k-1


 
    
  

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(42)     I -1 I -1 -j I -1
i j ii i j1 E z A z +z F z 

where:

(43)       
i

I -1 -1 I I
i i i ai aj,0 j,1F z f +f z +,....,f j,n z-ni

(44)       
 - j-1I -1 -1

i ii j,0 i j,1 j, j-1E z e +e z ,....,e z

where, the coefficients of  and  polynomials I -1
i jF z  I -1

i jE z
are calculated using the following recursive equations:

(45)  I I -1
i1 iiF z 1- A z 

(46)I
i1E 1

(47)     
I -1 I -1 - j
i j+1 i j i j,0E z E z +f z

(48)       
I

i i i j,0 i aij+1,q j,0 q+1f f j,q+1 -f -f q 0,1,...,n  

where,  are the coefficients of the   
i

I
ai q+1 q 0,1,...,n 

 polynomial. The future outputs are achieved L -1
iiA z

using Eq. 41 and 42:

(42)
       

   
   

   

I -1
ii i

I -1 I -1
i i j i ij I -1

ii i
i l

l -1
ij i

B z u k+j-1 +
y k+j F z y k +E z

B z u k+j-1

+E z e k+j



 
   
  


The proper estimation of yi(k+j) is its average so the
predicted outputs are obtained using the average of yi(k+j)
in Eq. 49:

(50)
       

     

l -1 I -1
i i i ilj i

l i

l -1
ij i

y k+j G z u k+j-1 + G z u

k+j-1 +F z y k , j 1,...,p



  





(51)     I -1 I -1 I -1
il il ijG z B z E z

(52)     I -1 I -1 I -1
il il ijG z B z E z

Since, the ei  (k+j) is the white noise, so its average is
zero. The new DAGPC matrices in Eq. 39 are presented
with appropriate dimensions as:

   
   
     I

a

i
i aii 0,1

L i
i i aii 2,1

i
i aii p,0 p× n +1

f f 1,n

f f 2,n

f f p,n

 
 
  
 
 
 







     

     

     

I
bi

I
bi

I
bi I

bi

i 1, 1 i 1,2 i 1,n

i 2,2 i 2,3 i 2,nI
i

i p,p i p,p+1 i p,n
p×n

g g g

g g g

g g g

 
 
 
  
 
 
 
 



  


     

     

     

I
bi

I
bi

I
bi I

bi

il 1, 1 il 1,2 il 1,n

il 2,2 il 2,3 il 2,nI
il

il p, p il p,p+1 il p,n
p×n

g g g

g g g

g g g

 
 
 
  
 
 
 
 



  


 

   

     

i 1,0

i 2,1 i 2,0I
i

il p,p il p,p-2 i p, 0 p×p

g 0 0 0

g g 0 0

g g g

 
 
 

   
 
 
 



  


 

   

     

il 1,0

il 2,1 il 2,0I
il

il p,p il p,p-2 il p, 0 p×p

g 0 0 0

g g 0 0

g g g

 
 
 

   
 
 
 



  


where,  (j = 1, 2, ..., p, q = 1, 2,..,) are the   i j,q il j,qg and g

coefficients of the  and  polynomials, l -1
ijG z  l -1

ijG z

respectively. Since, the GPC is developed based on
transfer function model, it is possible to obtain the
closed-loop transfer function and derive some properties
such as stability.

RESULTS AND DISCUSSION

A typical nonlinear large scale system consisting of
three coupled subsystems is employed as following
input-output models to investigate the proposed
approaches:

         
         
         

2

1 1 1 1 2

2 2

2 2 2 2 3

2

3 3 3 3 2

y t -y t +y t +7u t +4u t

y t -3y t +2y t +10u t +u t

y t -2y t +y t +2u t +u t

 
 










The subsystems are coupled trough inputs. The
discrete-time system could be obtained using following
Euler derivative approximation:

     i i
i

s

y k+1 -y k
y t

T


So, the discrete-time system is concluded as:
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Fig. 1: Step responses, subsystem 1 (solid line), subsystem 2 (dash line), subsystem 3 (dash dot line)

         
         

         

2

1 1 1 1 1 2

2

2 2 2 2 2 2

2

3 3 3 3 3 2

y k+1 a y k +0.1y k +0.7u k +0.4u k

y k+1 a y k +0.2y k +u k +0.1u k

y k+1 a y k +0.1y k +0.2u k +0.1u k

 
 




where the sampling time is Ts = 0.1 and:

1 2 30.9, 0.7, 0.8     

The step  responses  of  subsystems  are drawn  in
Fig. 1. According  to the step responses the subsystem’s
settling times are approximately 6, 2, and 3, respectively.
So, the subsystem’s optimal model horizons are:

1 2 3
s

SettingTime
N N 60, N 20, N 30

T
    

Note that in all simulations the subsystem’s model
horizons  are  considered  N1  =  60,  N2  =  20  and  N3  =
30, respectively  and  also  the  subsystem’s  prediction 
and  control  horizons  are  considered  5  and 4,
respectively. The following constraint is imposed to
control inputs:

i-4 u 4,i 1,2,3  

The reference trajectory is considered as following
equation:

 

0.01 0 t 2.5

0.02 2.5 t 5
W t gw *

-0.01 5 t<7.5

0 7.5 t 10

 
    
  

where the gw is the amplitude’s coefficient of the
reference trajectory. In first step of simulation we set the
amplitude’s coefficient as gw = 10 to consider the
reference trajectory a little farther away from the origin
(equilibrium point). Therefore, the subsystems’ predicted
outputs are illustrated in Fig. 2-4 using distributed DMC
and proposed cooperative constrained DEDMC and
DAGPC algorithms, respectively.

Since, in both DEDMC and DAGPC algorithms the
mismatch between linearized and nonlinear models is
compensated, so it is expected to obtain appropriate
responses,  the  illustrated  predicted  output  curves in
Fig.  3 and 4 confirm this from the point of view of design
criteria such as convergence, reference trajectory’s
tracking and stability. However, even though the
reference trajectory is not too far from the origin,
according to Fig. 2, the system has become unstable using
the distributed DMC algorithm.

To further emphasize the effectiveness of proposed
cooperative constrained DEDMC and DAGPC algorithms
and compare them, the reference trajectory’s amplitude is
gradually increased; gw = 50, 80, 110 and simulation
results are shown in Fig. 5-10.
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Fig. 2:  The predicted outputs of nonlinear large scale system with gw = 10 and using cooperative distributed DMC
algorithm; (a) Subsystem 1; (b) subsystem 2 and (c) subsystem 3

Fig. 3:  The predicted outputs of nonlinear large scale system with gw = 10 and using proposed cooperative constrained
DEDMC algorithm:  (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

When the amplitude’s coefficient is gw = 50, both
methods  have  proper  responses  according  to  results in
Fig.  5 and 6, however, according to Fig. 7 by increasing
the gw to 80 some fluctuations are appeared when the
DEDMC is applied while based on illustrated results in
Fig.  8, the DAGPC shows appropriate predictions. The

initial overshoots or undershoots in DAGPC’s results is
due to its online identification of the mismatch between
linearized and nominal nonlinear models and after a short
time that the identification of the linearized system’s
numerator and denominator polynomials is done the
response becomes convergent. The usefulness of proposed
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Fig. 4: The predicted outputs of nonlinear large scale system with gw = 10 and using proposed cooperative constrained
DAGPC algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

Fig. 5: The predicted outputs of nonlinear large scale system with gw = 50 and using proposed cooperative constrained
DEDMC algorithm: (a) Subsystem 1; (b) subsystem 2;  (c) subsystem 3

cooperative constrained DAGPC algorithm is more
demonstrated when the reference trajectory is too farther
away from the origin, hence to investigate this issue the

amplitude’s coefficient of the reference is increased  to gw

= 110 and the simulation results are drawn in Fig. 9 and
10 using proposed cooperative constrained DEDMC and 
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Fig. 6:  The predicted outputs of nonlinear large scale system with gw = 50 and using proposed cooperative constrained
DAGPC algorithm:  (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

Fig. 7: The predicted outputs of nonlinear large scale system with gw = 80 and using proposed cooperative constrained
DEDMC algorithm: (a) Subsystem 1; (b) subsystem 2;  (c) subsystem 3

 
DAGPC algorithms, respectively. According to Fig.  9,
the system has become unstable using the DEDMC
algorithm while based on illustrated results in Fig.  10, the
DAGPC shows appropriate predictions and closed-loop
system is stable. Now the proposed approaches are

examined when an uncertainty is applied. Assuming that
in the fourth second of simulation, α1, α2 and α3 change
as:

new new new
1 2 1 0.4     
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Fig. 8:  The predicted outputs of nonlinear large scale system with gw = 80 and using proposed cooperative constrained
DAGPC algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

Fig. 9:  The predicted outputs of nonlinear large scale system with gw = 110 and using proposed cooperative constrained
DEDMC algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

The simulation results are depicted in Fig.  11 and 12 with
gw = 50. The results emphasizes the effectiveness of
proposed algorithms in dealing with the uncertainty.
Although the responses fluctuate when the uncertainties
are imposed but they quickly converge.

All above mentioned results are yielded using the
novel cooperative optimization strategy proposed in
section 3 where each local controller solves a global cost
function that is a convex combination of its own and its
neighboring subsystem’s cost functions. For example in 
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Fig. 10: The predicted outputs of nonlinear large scale system with gw = 110 and using proposed cooperative constrained
DAGPC algorithm; (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

Fig. 11:  The predicted outputs of nonlinear large scale system with imposed uncertainties and gw = 50 and using
proposed cooperative constrained DEDMC algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

large scale system which is analyzed in this section,
subsystem 1 is neighbor to the subsystem 2 but not to the
subsystem 3. Thus, according to proposed optimization
strategy, the global cost function which is minimized in
local controller of subsystem 1 is defined as:

1 1 2 2 1 2j J +a J , + 1    

While according to typical cooperative DMPCs, the
global cost function is defined based on all three
subsystems[1, 4, 20].
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Fig. 12:  The predicted outputs of nonlinear large scale system with imposed uncertainties and gw = 50 and using
proposed cooperative constrained DAGPC algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

Fig. 13:  The cost function values of the local controller
of the uncertain subsystem 1 with gw = 50 and
using typical (dash line) and proposed (solid line)
cooperative optimization strategies

1 2 3J J +J +J

So, this is expected to decrease the control efforts,
cost function values and convergence time using proposed
cooperative optimization strategy. These criteria are
examined by means of the following simulation results in
which the proposed cooperative optimization strategy and
DAGPC  algorithm  are  used.  The  cost  function  values
of  the  local  controllers of the nonlinear large scale
system with  mentioned  imposed  uncertainties  are 
illustrated in Fig.  13-15, respectively  with  gw  =  50  and

Fig. 14: The cost function values of the local controller
of the uncertain subsystem 2 with gw = 50 and
using typical (dash line) and proposed (solid
line) cooperative optimization strategies

 applying typical and  proposed cooperative optimization
strategies. It is cleared that the cost function values have
decreased in proposed cooperative optimization strategy
compared to typical one.

Figure 16 illustrates the predicted outputs of the
nonlinear large scale system without uncertainty which
are obtained using typical cooperative optimization
strategy and DAGPC algorithm with gw = 50  and also
Figure 6 illustrates the predicted outputs of the nonlinear
large scale system without uncertainty using proposed
cooperative optimization strategy and DAGPC algorithm
with gw = 50 . By comparing the results in Fig.  6 and 16, 
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Fig. 15:  The cost function values of the local controller of the uncertain subsystem 3 with gw = 50 and using typical
(dash line) and proposed (solid line) cooperative optimization strategies

Fig. 16: The predicted outputs of nonlinear large scale system with gw = 50 and using typical cooperative DAGPC
algorithm: (a) Subsystem 1; (b) subsystem 2; (c) subsystem 3

it is concluded that the time and quality of convergence
has improved in proposed cooperative constrained
DAGPC (Fig. 6) compared to typical one (Fig. 16).

CONCLUSION

In this manuscript a novel cooperative DMPC
strategy is proposed which improves the centralized
global cost function of each local controller. In proposed
strategy, each local controller optimizes the global cost
function that is a convex combination of its own and its

neighboring subsystem’s cost functions instead of the
combination of its own and all other subsystem’s cost
functions. So, the computational burden of optimization,
control efforts, cost function values and convergence time
will be reduced compared to typical cooperative DMPC
methods which are presented in other researches. Two
linear distributed model predictive controllers; Distributed
Extended Dynamic Matrix Control (DEDMC) and
Distributed Adaptive Generalized Predictive Control
(DAGPC) are presented that employs the proposed
cooperative DMPC strategy to control the constrained
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coupled nonlinear large scale systems. The simulation
results of a constrained nonlinear large scale system
consisting of three interconnected nonlinear subsystems
demonstrate the effectiveness of the proposed approaches.
According to simulation results, the typical distributed
linear algorithms like DMC leads to an unstable
closed-loop response if the reference trajectory is far from
the equilibrium point while this problem is partially
solved using proposed DEDMC and completely solved
using DAGPC algorithms even if the reference trajectory
is too far from the equilibrium point.
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