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Abstract: Partitioned convolutions are the best methods
to address the system performance related issues in 3D
virtualization techniques both in terms of latency and
computational complexity. General DSP processor
architectures are not suitable to implement very long
filters due to increase in computational complexity and
required on-chip memory. In this study, an efficient
method called Mixed Non-uniform partitioned
convolution is explained to overcome computational
problems for implementing three channel OSD (Optimal
Source Distribution) with stereo inputs on heterogeneous
parallel computing platforms. With the massive parallel
computing architecture, the partitioning scheme used for
this method prove that it is possible to implement OSD
system containing 6 filters, each filter has a filter length
of 65536 (32-bit floating point) on these platforms. The
proposed algorithms were implemented on AMD based
Bonaire GPU using task parallelism. The advantage of
proposed method is that it provides zero output latency
which is desired in real-time applications. The
computational performance and the system cost of
proposed method was compared with existing approaches.
The performance comparison clearly provides information
that the proposed approach is suitable for implementation
of OSD system at very long filter lengths with reasonable
system cost in terms of compute units.

INTRODUCTION

The 3D audio virtual techniques are most popular and
have several applications in home theatre entertainment,
gaming, teleconference and remote control. The aim of
these techniques is to reproduce the spatial audio pattern
at the ears of the listener so that one would feel that he
actually resided in the real audio environment. Initially,

Head Related Transfer Function (HRTF) technique was
introduced in 1983 in which the listener wears the
headphones to enjoy the audio and the incoming signal
will be processed using the HRTF filters whose impulse
responses were measured based on the environment.
Though this technique has excellent channel separation,
they   are   inconvenient  to  wear,   particularly  when 
more   number  of  users  are  enjoying  the  audio.  Later, 
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Fig. 1: Three channel OSD system with stereo source

conventional loudspeaker system was developed. The
main disadvantage of this technique is system inversion to
cancel out the unintended sounds between loudspeakers
and the ears of the listener[1-2].

Takashi in his research found that the condition
number of the inverse acoustic matrix is of type ill
conditioned. This means a small variation of the listener’s
head causes wrong impression in identifying the direction
of the sound. More importantly, it causes the listener to
treat the sound is coming from far though it is actually
originating from near and vice versa. Takashi has come up
with smart solution to overcome this problem by forming
a relationship between operating frequency and the
position of the loudspeaker. He divided the audio
bandwidth into three regions, namely low, mid and high
pass regions so that in each region the condition number
should be unity. He called this technique as Optimum
Source Distribution (OSD)[3, 4].

For perfect crosstalk cancellation, advantage of a
simple phase change is enhanced by introducing one more
loudspeaker between binaural loudspeakers. This is
referred to as three channel OSD system. Here the word
“three channel” means that each input source is processed
by three crosstalk cancellation filters. Figure 1 shows
three channel OSD system in which each channel is
processed by three individual Crosstalk Cancellation
(CTC) filters and the output of CTC block is fed to
frequency divider network[3, 4].

To reproduce the spatial reverberation characteristics
at the desired locations, it is necessary to use long filters
in CTC section. This requires more computational power
for implementation of these filters on general purpose
DSP processors. This study mainly concentrates on
describing the computational complexity issues when
implementing very long filters in audio CTC and provides
a feasible solution called mixed non-uniform partitioned
convolution to implement CTC section on heterogeneous
parallel computing platforms.

Existing implementations: The original and basic
method to proceed is time domain convolution. It is
suitable for very shorter lengths in order of 1024 and is
not preferred for long filters due to more power
consumption. Recently, the DSP processor manufacturers
are come up with FIR accelerators to save computational
power. These accelerators can run in parallel with core
process to reduce the complexity. The ADI SHARC
214xx series processors are best example for this. But
restriction on accelerator filter lengths makes them not
suitable for long filters[5, 6].

On the other hand, frequency domain techniques
provide better computational complexity. The techniques
like overlap save and overlap add methods are examples.
The drawback of these methods is output latency. Due to
appending of zeroes to the original impulse response to
match the FFT lengths, latency is introduced at the output.
The latency depends on the number of zeroes appended
and typically equal to the length of impulse response. For
example, if the system is operating at 44.1 kHz and
impulse response length is 8192, the output latency is
185.7 msec approximately, which is undesired in real-time
applications. Also FFT requires twice the impulse
response length as its size. Due to this, the computational
power increases drastically[5, 6].

To overcome the latency problems, partitioned filter
approach was developed. The idea behind this approach
is to partition the impulse response uniformly and apply
overlap save method for each partition. The number of
partitions become M/L assuming that M and L are lengths
of impulse response and processing frame, respectively.
Usually M>>L. The length of each partition becomes L so
that when overlap save method is applied for each
partition, it is enough to append L zeroes to each partition.
Hence  the  latency  in  this  case  is  equal  to  L/Fs where
Fs is sampling frequency. For example, latency becomes
5.8 msec for L = 256 and Fs = 44.1 kHz which is drastic
improvement   compared   to   overlap   save   method. To
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Fig. 2: [Top] Uniform partitioning of impulse response. Each partition length is L, so that, total partitions become m
= M/L. [Bottom] Non-uniform partitioning scheme. The total partitions are based on partitioning scheme
followed. The values m and k are decided based on impulse response length and partitioning scheme

optimize  the computational complexity, the structure of
this method can be adjusted in such a way that only single
FFT and IFFT would be needed and all the frequency
domain contents are delayed for process of further
partitions instead of time domain delayed contents. In this
way, this method is referred to as uniform partitioned
convolution as partitions are uniform and also called
Single Frequency Delay Line filter (SFDL) as FFT
contents of the input frames are delayed and used in
processing of further partitions[7-10].

SFDL approach solves major problems of latency and
computational complexity upto certain extent. But when
filter length is very long, the complex frequency
multiplication blocks will increase and this results into
more computational complexity. To avoid these problems,
Gardener and Garcia suggested non-uniform partitioning
approach. In this method, impulse response is partitioned
non-uniformly starting with shorter partition length and
gradually increase the partition length. The initial partition
length is preferred short to obtain less latency. Even if
time domain convolution method is followed for this
partition, zero latency would be obtained. The gradual
increase in partitions are preferred to obtain low
computational complexity. To achieve optimum
computational complexity, massive parallel architectures
are required, so that, each non-uniform partition can be
executed in parallel. Figure 2 shows the partitioning
schemes for uniform and non-uniform cases[7-10].

SreenivasaRao et al.[11], Rao et al.[12], SreenivasaRao
et al.[13], SreenivasaRao and VenkataRao[14] and
SreenivasaRao et al.[15] provide an efficient mechanism on
how to optimize the implementation of audio CTC filters
for various multi-channel inputs. An optimum method
called Mixed Uniform partitioned convolution was
explained to utilize algorithmic as well as processor level
optimization efficiently on DSP processors. When CTC
filter lengths are very long i.e. in the order of 32768, DSP

processors are inefficient to handle computational
complexity and latency issues as these architectures don’t
have massive parallelism compute units. Lot of memory
is required when processing the signal in frequency
domain and to store various FFT coefficients and
intermediate buffers. DSP processors may not support
required on-chip memory. There is a possibility to store
the coefficients in external memory and copy these into
on-chip using DMA but this takes more cycles. Hence, a
suitable architecture called heterogeneous parallel
computing platform is required to perform parallel
operations. This architecture is explained in section 5.

The audio CTC section in Fig. 1 contains 6 such long
filters and if these are implemented separately using
non-uniform partitioned convolution on parallel
platforms, it is very difficult to handle FFT buffers and
partitioned coefficients related to each partition as well as
for each filter. In this study, an efficient method called
mixed non-uniform partitioned convolution is explained
to achieve best optimization in processing of signal with
very long filters. This approach initially relies on
simplifying overall CTC structure in frequency domain
based on method called mixed filtering and applying
non-uniform partitioned convolution to simplified result.

MATERIALS AND METHODS

Objectives of current work: In this study, mixed
filtering is explained to simplify the 3 channel audio CTC
section. This is combined with non-uniform partitioned
convolution to obtain optimum computational complexity.
The mathematical model of each method is explained in
detail. The maximum filter length of 65536 for each filter
is experimented using the proposed approach. This
method was implemented on AMD Radeon HD 7900
series GPUs. The partitioning scheme followed was
explained. Various tests were conducted to support the
proposed method such as latency, computational
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complexity tests using measured impulse responses. The
results of the proposed method are compared with those
of existing techniques.

Proposed solution-mixed non-uniform partitioned
convolution: This study describes the mathematical
model of proposed algorithm. Initially, mixed filtering
concept was explained and later partitioned convolution
was applied to the results obtained in mixed filtering. To
proceed with, the outputs of audio CTC section (shown in
Fig. 1) can be represented in both time and transform
domains, respectively as:

(1)         L L LL R RLy n x n *h n x n *h n 

(2)         R L LR R RRy n x n *h n x n *h n 

(3)         C L LC R RCy n x n * h n x n *h n 

and:
(4)         L L LL R RLY z X z H z X z H z 

(5)         R L LR R RRY z X z H z X z H z 

(6)         C L LC R RCY z X z H z X z H z 

By forming complex signal with first two outputs, one can
obtain:

(7)
          
      

L R L LL LR

R LR RR

y n +jy n x n * h n +jh n +

x n * h n +jh n



In frequency domain, it is represented as:

(8)           L R L L R RY z +jY z X z H z +X z H z

where:
(9)     L LL LRH z H z +jH z

(10)     R RL RRH z H z +jH z

Equation 8 gives the frequency contents of yL(n) and
yR(n). In other words, real and imaginary parts of IFFT
applied to Eq. 8 yield both time domain outputs
respectively. While calculating the FFTs of inputs xL(n)
and xR(n), a single FFT with decomposition can be used
to get better optimization instead of using two individual
FFTs[5]. Also Eq. 6, provides the frequency domain
representation of yC(n). All the components in this
equation are real and hence its FFT is symmetric with
respect to real axis. Equation 6 and 8 are collectively
referred  to as  mixed  filtering  approach  because  there
is  no  need  to  perform  filtering  operations  for  each
filter  separately.  Two  equations  will  do  the  job  of  6
filters.

This approach is better suitable for implementation of
filters in the order of 1024-2048 using overlap save
method because it is easy to manage the required memory
and implementation complexity on general purpose DSP
processors. But when the filter lengths are in the order of
16384, it is very difficult to handle computational
complexity. As mentioned in section 2,[11-15] explained the
mixed uniform partitioned convolution on how to manage
implementation complexity using external memory and
DMA on SHARC DSP processors. The aim of this paper
is to support more filter lengths than 16384 and to derive
better algorithm to achieve  this. To  address  this,  the 
impulse  responses  in Eq. 3 and 7 are partitioned
non-uniformly. The impulse responses hL(n), hR(n), hLC(n)
and hRC(n) are partitioned as:

          
     
     

L L, 0 L, 1 L, 2 L, l 1

LL, 0 LR, 0 LL, 1

LR, 1 LL, l 1 LR, l 1
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where, each impulse response has partition lengths in the
order of L1, L2, ..., Ll. Equation 8 can be written in terms
of partitions as:

(11)
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Similarly, Eq. 6 can be expanded as:

(12)

 C L LC, 0 1 L LC, 1 1 2UPC UPC

L LC, l 1 l 1 1 R RC,0 1UPC UPC

R RC, 1 1 2 R RC, l 1 l 1 lUPC UPC
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Fig. 3: Block diagram of proposed algorithm-Mixed Non-uniform partitioned convolution

Here the term [A, B, C, D]UPC means that C samples
delayed input frame A is processed by the partitioned
filter B of length L1. The suffix UPC is attached to each
term because each partition is implemented using uniform
partitioned convolution. Finally the time-domain outputs
of CTC section are given by taking inverse z-transform
for Eq. 11 and 12. Even though the impulse response is
partitioned non-uniformly, each non uniform partition, in
turn, implemented using uniform partitioned convolution
in order keep the output latency low. For example, assume
impulse response of length 8192 is partitioned into 4
non-uniform partitions, each of length 1024 and 2
non-uniform partitions, each of length 2048 (8192 =
4×1024+2×2048). The first partition of length 1024 still
requires appending of 1024 zeroes to the partitioned
length in order to use overlap save method that results
latency problem. To overcome this, it is better to use
uniform partitioned convolution for implementing each
non-uniform partition. If frame length is 128, obviously

each non-uniform partition yields output latency of 2.9
msec (128/44.1 kHz). But we discussed that parallel
computing platforms are suitable for implementing these
algorithms, the output latency is not sum of all latencies.
So 2.9 msec is the output latency of overall CTC section.
Still there is possibility to obtain zero latency with this
approach. As all partitions are executed in parallel, it is
better if first partition is implemented using time domain
convolution because time domain yields zero latency. But
the computational complexity of first partition should not
exceed that of any other partitions. This is guaranteed
because the partitioning scheme makes sure that gradual
increase in partition lengths from lower partition to
possible higher partitions.  

Figure 3 shows the block diagram of proposed
algorithm. When first frame of L input samples arrive,
they are processed by the 1st non-uniform partition in
time domain. For frames more than L1/L, the previous
frames are stored in delay buffer for the 2nd non-uniform
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partitioned filter to process these. The 2nd non-uniform
partitioned filter will be implemented using uniform
partitioned convolution. This process will be repeated for
each partition. The delay buffers will be needed to store
input frames for each partition based on the partition
length. These buffers are common for calculating
yL(n)+jyR(n) and yC(n) as input channels are common for
both. The uniform partitioned convolution contains single
FFT, single IFFT and complex frequency multiplication
blocks. The number of these blocks are derived based on
partition length and frame lengths. As all UPC blocks are
executed in parallel, the computational complexity of
overall system becomes maximum of computations
needed for each UPC block. Obviously the
implementation complexity of this approach is high. Also
more memory is required to store long filter coefficients,
their  FFTs  and  to  store input frames in delayed buffers.
This can be managed with GPUs as the memory in the
order of GigaBytes is available in these platforms.

RESULTS AND DISCUSSION

This study explains the architecture of heterogeneous
parallel computing platforms, partitioning scheme used in
implementing proposed algorithm and results achieved on
AMD based GPUs.

Parallel computing architecture: Heterogeneous
computing involves the use of various computational
units, usually a general purpose processing unit such as
CPU or GPU or DSP processors. To obtain optimal
performance, suitable hardware is required to schedule
various tasks based on the developer’s choice. OpenCL 
(Open  Computing   Language)  is  an  open  and royalty

free parallel computing API used to implement kernel
programs on GPUs and these programs can be enabled by
Host software running on CPU. As shown in Fig. 4, the
OpenCL Device consists of one or more compute units.
Each compute unit in turn contains many processing
elements, usually called SIMD units. These SIMD units
are  responsible  for  processing  of  data  provided  by
Host [16-20].

In general, OpernCL execution model contains two
components, i.e., Host and kernel. Host creates the kernel
context and based on this this context, it creates the
required program objects, command queues and memory
objects. It sets the kernel argument list and prepares the
command queue either in in order or out of order based on
kernel execution. If command queue is on out of order,
then synchronization is required while calling the kernels.
After this, Host calls the kernels NDRangeKernel or
EnqueueTask based on requirement of data parallelism or
task parallelism. The other component Kernel contains the
actual openCL programs which are optimized using the
global work group size[16-20].

OpenCL memory is divided into 4 regions shown in
Fig. 4. Global memory is accessible to both host and
OpenCL device. All host allocated memory objects
resided in global memory. A part of global memory is
dedicated for constants and kernel has only read access
for it but host has read and write access because host
allocates these objects. Local memory is a region of
memory used for data sharing across work items in work
group. Private memory is a region that is accessible to
only one work item. Generally, data must be explicitly
move from host to global to local and back. Host will wait
until the kernel executes entire program to read the output
memory  objects  in  data  parallelism. But in case of task 

Fig.4: [Left] OpenCL device model and [Right] memory model
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kernel l/O buffers
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argument list

Fill kernel buffers and history buffers with
input and delayed audio frames

Call enqueue task
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Releasa all contexts, kernels, l/O bufferes
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parallel and same process run on different
CUs with different partition lengths. Host
should wait till all partition are executed,
Eq, 11 and 12 are performed here. The

1st partition is performed in time domain
convolution

Kernel

Initialization release
process

This task happens for
each audio frame

Kernel tasks

Fig. 5: Flow diagram for the design of proposed approach

parallelism, these can be used as non-blocked if required
based  on  the  order   and  synchronization  of  tasks[16-20].

Partitioning scheme: To reduce the computational
complexity and to keep output latency low, the
partitioning scheme should follow some systematic way
from lower partition length to possible higher partition
length. Gardener and Garcia have proposed 128*2,
256*2,512*2,1024*2,2048*2,4096*2 and 128*14,
1024*14 for filter length of 16128, respectively[9, 10]. As
initial partition length is 128, this ensures that latency is
low. But there is difference in system cost. The solution
of Gardener needs 12 CUs (compute units) whereas
Garcia’s method needs 28 CUs. As against this, Garcia’s
solution consumes less power as maximum partition
length is 1024 but Gardener solution needs 4096 length.
So there is always tradeoff between system cost and
computational power.

Table 1 gives partitioning scheme followed to
implement  proposed  method  for  filter  lengths  from
4096-65536 with step size of 4096. For example, filter
length of 16384 requires 4 UPCs of 512 each, 6 UPCs of
1024 length each and 4 UPCs of 2048 each (16384 =
4*512+6*1024+4*2048). This design was done to make
sure that each non-uniform partition is still partitioned
into uniform partition with filter length of L = 128 during
implementation. This ensures that the latency of the
system is obtained as 128/44.1 = 2.9 msec at sampling
frequency of 44.1 kHz. Also with this approach, the cost
of the system is low as required CUs are low.

Design of proposed approach: Figure 5 shows the flow
diagram of high level design of the proposed approach. In
this, Host basically initializes all the kernels, required
OpenCL kernel I/O buffers, the OpenCL context and the
builds the kernel source code. Then it sets all the required 
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Table 1: Partitioning of impulse response length in mixed non-uniform
partitioned convolution

Filter Partitions Partitions Partitions Partitions    Total
length (M)     ×512    ×1024   ×2048   ×4096 partitions
4096 4 2 0 0 6
8192 4 6 0 0 10
12288 4 6 2 0 12
16384 4 6 4 0 14
20480 4 6 6 0 16
24576 4 6 8 0 18
28672 4 6 8 1 19
32768 4 6 8 2 20
36864 4 6 8 3 21
40960 4 6 8 4 22
45056 4 6 8 5 23
49152 4 6 8 6 24
53248 4 6 8 7 25
57344 4 6 8 8 26
61440 4 6 8 9 27
65536 4 6 8 10 28

kernel argument list. After this, it writes the input frame
contents into kernel Input buffers and calls the
clEnqueueTask function. Upon calling this function, the
OpenCL Kernel runs on GPU. On GPU, the kernel
function is implemented basically to perform FFT of input
audio frame, complex frequency multiplication and IFFT.
These blocks are part of uniform partitioned convolution.
The initial partitioned filter is implemented using time
domain convolution.

The count of non-uniform partitions are based on
length of impulse response and the partitioning scheme
followed as per Table 1. So, all non-uniform partitions are
executed on different CUs in parallel within GPU. The
execution time of kernel function running on each CU
depends on the partition length. Host waits using clFinish
function till execution of all kernels are completed. The
clEnqueueTask basically performs the task parallelism
operation and after completion of this, it is required to add
all outputs of kernel functions, i.e., all UPC outputs. To
do this, Host writes all UPC outputs in one dedicated
kernel buffer and calls clNDRangeKernel, basically meant
for data parallelism operation. This kernel function does
the summing of all UPC outputs and time domain output
to produce the final outputs, yL(n)+jyR(n) and yC(n). In
this case, Host does not need to wait for Kernel
completion because data parallel kernel returns after
completion of kernel execution only. Then Host transmits
the  CTC  outputs  for  rendering.  Once,  all  the  audio
frames  are  processed  successfully,  host  releases  all 
the kernels, allocated kernel I/O buffers and various
contexts.

To proceed with performance tests, impulse
responses from various source locations to receiver
positions are needed. An audio room of size 5×4×3.5 m3

was  used  in  this  experiment.  A  dummy  head  of 
width 30 cm was used to record impulse response. Three
receiver positions fixed to receive sounds.

Receiver locations (Dummy Head):
C Left ear position: 2.35×2×1
C Center position: 2.5×2×1
C Right ear position: 2.65×2×1

Source locations:
C Source 1: 4×3.5×1
C Source 2: 2.5×3.5×1 

The audio room was fully covered with absorption
material. The measurements were done at 44.1 kHz
sampling frequency. The impulse response from source 1
to left ear is corresponding to hLL(n) and response from
source 1 to center position is corresponding to hLC(n) and
so on. The responses were measured for all filter lengths
ranging from 4096-65536. The inverse of these responses
were calculated using frequency domain method and were
used in experiments. The details of hardware used in
experiments are given below:

C Processor: AMD FX-4100 Quad-core processor,
3.6GHz

C GPU: Bonaire (AMD Radeon Graphics Processor-
R7 2000 series)

C Approximate memory: 3GB
C Active CUs: 12
C Debugging tools: Microsoft Visual C++and CodeXL

AMD Radeon 7900 series based BONAIRE GPU is
used to develop proposed algorithm. This GPU has 12
active CUs. Win 10 operating system was used for
experiments. Microsoft Visual C++ and CodeXL were
used for Host and Kernel developments, respectively.

Latency tests: One of the main advantages of using
proposed method is zero output latency. Always the
original method, i.e., time domain convolution provides
zero delay and this is reference approach. To measure this
latency, a multi-channel sweep signal of 44.1 kHz was
provided as input to implemented CTC system shown in
Fig.1. The 1st CTC output yL(n) was implemented using
time domain convolution and proposed method. The
outputs of both methods were recorded and compared as
shown in Fig. 6. The filters used in this experiment are of
length 4096. Here the 1st partition was implemented using
uniform  partitioned  convolution  with  frame  size  of
128 samples.

As shown  in  Fig  6a,  the  proposed  method
provides a latency of 2.9 msec approximately when
compared to original method, i.e., time domain
convolution.  This  is  due  to  appending  of  128  zeroes
to the 1st non-uniform partitioned  impulse  response. 
This  results  128/44.1 kHz = 2.9 msec.

In  another  experiment,  1st  non-uniform  partition
was   implemented    using    time    domain   convolution
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Fig.6: Latency tests for (a) [Top] Time domain vs mixed non-uniform partitioned convolution with 1st partition being
implemented using time domain (b) [Bottom] Time domain vs mixed non-uniform partitioned convolution with
1st partition being implemented using uniform partitioned convolution. The CTC output, yL(n) was shown in the
comparison

Fig. 7: (a)[Left] Comparison of GPU Execution Time in msec. (b) [Right] Comparison of Cus, Method 1: Uniform
Partitioned Convolution, Method 2: Gardener approach; Method 3: Garcia approach, Method 4: Mixed
Non-uniform partitioned convolution (Proposed approach)

for  1st  CTC  output  yL(n)  and  outputs  were  recorded.
The comparison  was  shown  in  Fig.  6b.  The  output 
latency  is  zero  which   is   actually   desired   result. 
This  won’t  result  additional  increase  in  computational 

complexity  because  all  partitions  are executed in
parallel and the computational complexity of higher
partition  is  more  compared  to  that  of  initial  partition
(Fig. 7).
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Performance tests: The proposed algorithm was
implemented as described in sub-section Design of
Proposed approach. Host fills the kernel buffers and FFT
delayed frames for each frame and initiates the kernel call
using clEnqueueTask and clNDRangeKernel. The kernel
functions were implemented in optimum way using vector
based OpenCL approach. The execution time in msec was
measured at various filter lengths using proposed
algorithm. The same measurements were done for
reference methods and the comparison was shown in
Fig.7 (left hand side). The partitioning scheme mentioned
in Table 1 was followed for implementation of proposed
algorithm and the partitioning of reference methods is
based on approaches provided in references[9, 10]. The
computational cost for each method in terms of
computations units is also compared in Fig.7 (right hand
side).

The 1st method is uniform partitioned convolution. In
this, the parallel implementation of all complex frequency
multiplication blocks are is not done due to uniform
partitioned approach. Additional complexity comes into
picture to add all complex multiplications outputs, which
is serial anyhow. Due to these dependencies, the
computational complexity of this approach is high. So it
is suitable at medium filter lengths but it is not preferable
to use at very long filter lengths. On the other hand, single
CU is sufficient to implement this method. Hence this
method is most suitable to implement on general DSP
processors itself. 

The 2nd method is Gardener’s approach. In this
method, the partitioning was done like for every two
partitions, the partition size becomes doubled, starting
from lower partition length of 128 coefficients. Due to
this, at very long filter lengths, the higher partition size
becomes increase so that the execution time will get
increase at these lengths. But the number of CUs are quite
low due to higher size in partitions. The 3rd method is
based on Garcia’s approach. Garcia proposed partitioning
scheme in which each impulse response is weighted sum
of 128 and 1024 lengths. Due to this, execution time is
less but the required number of Compute units are more
to support very long filter lengths.

The proposed partitioning scheme contains an
increase in partition lengths as well as increase in number
of such partitions. The benefit of this approach is less
execution time will be obtained and at the same time,
there is scope to get less number of compute units.
Clearly, the maximum partition length in proposed
approach is 4096 and 28 CUs are needed for 65536 filter
length in worst case.

The results are clearly resembling that the proposed
method is best suitable for implementing audio CTC
section at very long filter lengths, both in terms of
execution time and number of compute units.

CONCLUSION

To address computational complexity and latency
issues of very long filters in OSD audio CTC section, an
efficient algorithm calledm mixed non-uniform
partitioned convolution was proposed in this study. The
ability of this approach is to provide zero output latency
for long filters. The approach was implemented on AMD
based Bonaire GPU platform. The performance was
measured for various filter lengths from 4096-65536. The
design and the way of implementation was described in
detail on how to utilize the openCL platforms to bring
down the computations. The computational performance
comparison with existing methods clearly indicate that the
proposed method is very good for long filters in audio
CTC section. This work could be extended to
multi-channel based audio CTC systems. In this study, it
is interesting to see the variation of computational power
as the channel count increases. 
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