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Abstract: In this study, a new improved real time
Adaptive Constrained Quaternion Extended Kalman Filter
(ACQEKF) algorithm is proposed. It is employed to
estimate the quaternion and bias states of a constrained
nonlinear system perturbed by noise using noisy
measurements. The values of the process and
measurement noise covariances Q and R, respectively are
unknown or partially known, their biased initializations
result in the degradation or divergence of the quaternion
Extended Kalman Filter (EKF) performance. This study
proposes a new method to improve the EKF performance
against the covariances uncertainty. Unlike, the previous
methods, this method adopts the idea of the recursive
estimation of the EKF to propose two tunable recursive
updating rules for Q and R, respectively designed based
on the filter innovations. As for the quaternion constraint,
it is projected onto the EKF gain derivation. The proposed
ACQEKF proved itself to have a dramatic improved
performance over the conventional EKF, the estimates are
more accurate have less noise and more stable.

INTRODUCTION

THE state of art of estimation based on the Extended
Kalman Filter (EKF) is one of the most famous estimation
tools for nonlinear systems. It incorporates the observer
theory and the Bayesian approach. The EKF uses noisy
measurements to estimate the states of a dynamic system
perturbed by noise[1].

The EKF is used with the quaternion representation
in many applications to estimate the orientation of a rigid
body using the readings of a gyroscope. One problem is
that the quaternion is constrained to unity norm and this
is not preserved by the EKF[2]. To overcome this problem,

numerical techniques are applied on the post-estimated
quaternion  to  maintain  its  unity  norm.  Here,  a
systematic method of including the unity constraint into
the filter derivation[3] is proposed, this filter is called
constrained quaternion extended Kalman filter (CQEKF).
For this CQEKF, the filter gain is derived based on
minimizing the state covariance subjected to the unity
constraint.

Another problem is related to the noise models. The
structure of the EKF is composed of the plant dynamic
nonlinear model which describes the system behavior
over time and the stochastic models which describe both
the process and observation noises properties[3]. The EKF
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uses the noise statistics to influence the EKF gain that is
applied on the filter innovation error which affects the
estimation performance. Thus, the EKF qualification
depends on the knowledge of the stochastic models
parameters. Thus the EKF qualification depends on the
knowledge of the stochastic models parameters.
Therefore, The uncertain model parameters will affect the
EKF performance adversely. Further, this performance
degrades or may even diverge[4, 5]. Therefore, improving
the EKF such that it can adapt itself to the uncertainty in
the noise statistical parameters and reduce their effects is
of significant importance. The most used adaptive EKF
schemes in the literature can be divided as:
Innovation-based Adaptive Estimation (IAE), Multiple
Model Adaptive Estimation (MMAE) and a scaled state
covariance method. A summary of the first two methods
can be found by Mohamed and Schwarz[6].

The IAE estimation method assumes that the
innovation sequence of the EKF is white noise. Based on
this assumption it estimates the process noise covariance
matrix R and/or the measurement covariance matrix Q.
One technique in this method is the covariance matching
technique, it assumes the availability of large window of
data to compute the sample covariance which is employed
to estimate Q and/or R[7-9]. Another technique is
correlation one, it uses the sample auto-correlations
between the innovations to estimate the covariances[10-12].
Both of the above techniques require large window of
data which makes them impractical. The use of the
maximum likelihood techniques are used to estimate the
covariances by maximizing the likelihood function of the
innovations[13]. However, they can be implemented
off-line their computations are heavy a modified one with
using the Expectation-Maximization algorithm (EM) is
reported by Bavdekar et al.[14].

The MMAE method is model based: It assumes the
availability of the correct model among a bank of different
available models. Using the measurement sequence, the
Bayesian probability is computed for each model as it is
the true model. Later, the output of the highest probability
model or the output of the weighting sum of all models is
considered. However, having the correct model
assumption makes it unsuitable for the uncertain dynamic
systems[15]. Scaling the error state covariance matrix by a
factor is reported to improve the filter stability and
convergence performance[16, 9]. The scaling can be
empirical.

The main aim here is designing an adaptive CQEKF
(ACQEKF) that avoids the aforementioned problems of
using moving window, excessive computations, exact
models and scaling the state error covariance matrix. 

Furthermore, the ACQEKF core concept is to be able to
adapt itself to the biased initial covariances smoothly
while running, to increase the estimation accuracy and to
stabilize the filter if the used noise covariance values
cause filter divergence.

In this study, a new ACQEKF is proposed to achieve
the above advantages. The unity constraint is included in
the derivation of the filter. The ACQEKF adopts the idea
of the recursive estimation of the EKF to add two tunable
recursive unbiased updating rules for the noise
covariances Q and R. Each rule consists of a scaled value
of the previous covariance matrix and a correction
covariance error term. This error is calculated at each
sample time by using the most recent measurements and
innovations along with the available information about the
state covariance error. The updating rules tunes the
matrices Q and R to get the best performance.

MATERIALS AND METHODS

Consider the discrete-time nonlinear state space model:

(1) k k 1 k 1 k 1 k 1x f x ,u      

(2) k k ky h x v 

where, x0n is the state vector, y0d is the measurement
vector and k is the time index. u is the input and assumed
to be piecewise constant over the sampling time intervalT
and the process and measurements have the same
sampling time. vk-10m and vk0d are the Gaussian process
and measurement noises, respectively, they are assumed
to be independent and mutually uncorrelated with
constant covariances Q and R, respectively. Γ0n×m maps
the noise to the states space. The state estimation is
carried out under the following assumptions. Then, for the
given system in (1), the conventional EKF algorithm is
composed of the prediction step:

(3) k k 1 k 1ˆ ˆx f x ,u
 

(4)T

k k 1 k 1 k 1

T
k 1 k 1 k 1P A P QA

        

and the measurement update step:

(5)T
k k k k kS H P H R 

(6)T 1
k k k kK P H S 

(7) k k kˆe z h x 
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(8)k k k kˆ ˆx x K e 

(9) k k k kP I K H P 

where:

(10)
k k1 k 1

k
,u

k 1
ˆ ˆx x

A ,
f h

x x
H








 


 


Equation 3-9 the following notation is employed. (.)-

and (.) stand for the prior and posterior estimates,
respectively. K is the Kalman gain. I is the identity matrix
and P is the estimation error covariance matrix, x is the
estimated state and z is the measurement vector with the
same dimension as y.

Remarks:
C For the quaternion estimation Hk = [I4   04×3]
C The Kalman gain in Eq. 6 can be rewritten as:

(11)T 1
k k kK P H R

Unit quaternion constraint projection: The quaternion
q = [q0 q1 q2 q3]

T04 with the constraint of unit l2
2 norm

(||q||22 = 1) has an important role in representing rotations
and orientation of a rigid body with respect to a reference
frame[17]. It is generally used with the readings of the
gyro-rate due to the direct relation between the quaternion
time  derivative  q  and  the  gyroscope  angular  velocity
Ω03 as:

(12)q q 

where q is the quaternion multiplication. Equation 12 is
nonlinear  and  the  gyroscope  angular  velocity  has  bias
b03  band  contaminated  white  zero  mean  noise  v03 
as stated in:

(13)+b+v  

The bias is modeled as an integrated white noise vb03 as:

(14)k k 1 b, k 1b b v  

Due to the bias and noise, the quaternion is estimated
by employing the EKF. Defining the state vector as xk =
[qT

k b
T

k]
T  and taking the discrete form of Eq. 12 along

with Eq. 13 and 14, then the model (1) is obtained with:

(15)
 4 k 1 k 1 k 1

k 1 k 1

k 1

1
I TU b q

f (x ,u ) 2
b

  
 



         
  

(16)
k 1

k 1
b,k 1






 
   

 

v

v

where:

(17)

x y z

x z y

y z x

z y x

0 - - -

0 -
U( )

- 0

- 0

   
         
 
    

(18)k 1 4 3
k 1

3 3 3

1
TU(q ) 0

2
0 I

 




   
 
  

and:

(19)

1 2 3

0 3 2

3 0 1

2 1 0

 U( )

   
     
   
 
   

This model is used in the EKF algorithm. The output
of the EKF is q. One main problem in the quaternion
estimation is to maintain its unity norm which is not
preserved by the EKF. Usually, post estimation numerical
correction is used as  where  in Eq. 8 and 2

N 2q q/ | q |   q x 
Nq

is the normalized value of   or as presented by theq

author 2
N 2q q(1 || q || )q.    

Though it is a low cost method of unity preserving;
it is done out of the EKF derivation. Here, the unity norm
constraint is projected on the Kalman gain derivation. The
unity norm constraint is expressed as:

(20) 
3

2 2
i2

i 0

f q q q 1


  

however, since, the true value of the quaternion vector is
unknown, the predicted quaternion is used in Eq. 20 and
linearized using Taylor series as:

(21)       k k k k kf q f q f q q q hot 1           

In Eq. 21, the  term is the higher order terms which are
neglected, then Eq. 21 has only q as unknown and can be
expressed as:

(22)Gq d

where:

(23)   
 

k
k 0 1, 2 3

k

f q
ˆ ˆ ˆ ˆG f q 2 q q q q

q


    




     






and:
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(24) 
3 2

k i
i 0

ˆd 1 q



 

The unconstraint Kalman filter gain is given Kk by
Simon[3]:

(25)
   

k

T

k k k k k
k TK

k k k

I K H P I K H
K arg min Tr

K R K

  
 
  

where Tr stands for the trace. The result of Eq. 25 is the
gain solution and update as in (6). In the same way,
minimizing (25) subjected to the constraints Gqk = d
yields to the constrained Kalman gain Kk

[3]:

(26)k
k k

3 4

K K
0 

 
   

 



where Kk is given in Eq. 6 and ρ is:

(27)      11T T 1 T T 1
k k k k k k kG GG Gq d e S e e S

    

As a final estimation, the CQEKF follows Eq. 4-10
with 28 and replaces Kk by Kk in Eq. 9:

(28)k k k

k

3 4

ˆ ˆx x e
0





 
   

 

Adaptive CQEKF: The values of Q and R have an
important effect on the EKF performance. Too small or
large values of these covariances with respect to the true
value results in estimation degradation[18]. Here, two
tunable recursive updating rules R1 and R2 are developed
to update both Q and R to form the adaptive CQEKF
(ACQEKF).

By definition, the ACQEKF is designed to be able to
adapt itself to the noise covariance uncertainty in order to
achieve better performance. So, increasing this
uncertainty by assuming that the expectation of

 can be approximated by is still fruitful.T
k 1 k 1 k 1Q    k 1Q 



This is justified using the fact that, for high sampling
frequency, the components of the unit quaternion are
always constrained; making drastic changes in the noise
effect impossible. Thus, the new model is:

(29)
 k k 1 k 1

k k k

k 1x f x ,u w

y Hx v
   

 

where wN (0, Q). For the given system (Eq. 29) and for a
given initial value matrices R0>0 and Q0>0 and selected

positive constants NR and NQ, there are noise covariance
errors ΔQ and ΔR such that the CQEKF performance is
improved by updating the observation and the process
covariance matrices recursively as in Eq. 35 and 46,
respectively. The new ACQEKF algorithm is:

(30) k k 1 k 1ˆ ˆx f x ,u 
 

(31)T

k k 1 k 1 k 1 k 1P A P QA

     

(32)k k kˆe z Hx 

(33)
R

k k 1 k
R R

N 1 1
e e e

N N


 

(34)   T T
k k k k k k k k

R R

1 1
R e e e e H P H

N 1 N
    



(35)R
k k 1 k

R

N 1
R diag R R

N 

 
   

 

(36)T
k k kS HP H R 

(37)T 1
k k k kK P H S 

(38)      11T T 1 T T 1
k k k k k k kG GG Gq b e S e e S

    

(39)k
k k

3 4

K K
0 

 
   

 



(40)k k kkˆ ˆx x eK 

(41)k k k

k

3 4

ˆ ˆx x e
0





 
   

 

(42) k k kP I K H P 


(43)k k kˆ ˆ ˆx x ,   

(44)
Q

k k 1 k

Q Q

N 1 1
ˆ

N N


    

(45)

 

   

T

k 1 k 1 k 1k
Q

k
T

k k k k
Q

A P
1

P A
N

Q
1

ˆ ˆ
N 1
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(46)
Q

k k 1 k
Q

N 1
Q diag Q Q

N 

 
    

 
  

k k 11

k 1
x̂ ,ux

A
f











Remarks:
C The ACQEKF converges to the conventional

CQEKF if the selected values of NR and NQ64
C The update rules keep the noise covariance matrices

Q and R positive definite for all k

Process covariance matrix update rule (R1) proof: The
true values of the system states xk and xk-1 are unknown
which makes it impossible to determine wk-1 in Eq. 29.
The best known states values are x+ and the estimated but
not updated state x-. Using these estimates, w is
approximated by w . ώk = x+

k-x
-
k
[7].

To simplify the proof, assume that a buffer of NQ 
samples is available. These samples are ordered from the
oldest to the newest. The oldest is located in the buffer
index i = 1 and the newest is located in i = NQ. This can
be stated in terms of time instants as follows: the oldest
available data is stored in location k-NQ and the newest is
in the time index k. Note that for the available samples the
noise is assumed independent, then the sample covariance 
Cs is:

(47)   
Q

k
T

s i i
i k NQ

1
ˆ ˆC

N 1  

    
 

where:

(48)
Q

k

i
i k NQ

1
ˆ

N  

  

By using the expectation of the state error
covariances P- and P from the CQEKF and the sample
covariance (Eq. 47), one can write  as Myers and
Tapley[7]:

(49)
Q

T

i i 1 i 1 i 1

k

k s
i k NQ

Q P A P
1

C A
N   

 


   
 



Equation 49 can be divided into two terms, the first
term contains all the samples from i = k-NQ up to i = k-1
and the other term contains only the most recent sample
arrived at the time instant k. Accordingly, (Eq. 49) is
rewritten as (after some mathematical manipulation):

(50)
Q

k k
Q

N 1
Q X Q

N



  

where:

(51)
 

   
Q

Q

T

i i 1 i 1 i 1

k 1
TQ

i i2
i k NQ

k 1

i k NQ

P A P

N
ˆ ˆ

N 1

1
A

N 1   



 



 

      


   





and:

(52)

   

 T

k k 1 k 1 k 1

T

k k k k k
Q

Q

P A P

1
ˆ ˆQ

N 1

1
A

N   

      






The term X in Eq. 51 depends on the samples up to
the sample k-1. Taking the sample covariance of the
samples up to the sample:

   
k 1

Q

k 1
T

s i i
i k NQ

1
ˆ ˆk 1 C

N 2



 

     
 

and compare it with the first term in X, if the value of
NQ/(NQ-1)2 can be approximated by 1/(NQ-2), then this
term is the noise covariance of the samples up to i = k-1.
Let’s define the error δ as:

(53) 
Q

2
QQ

N 1

N 2N 1
  



this error converges to zero as the number of samples

increase    Then,  for  large  value  of  NQ, 
QN
lim 0 .




(Eq. 51) can be approximated by:

(54)

   
Q

Q

T

i i 1 i 1 i 1

k 1
T

i i
i k NQ

k 1

i k NQ

P A P

1
ˆ ˆ +

N 2

1
A

N 1   



 



 

     


   





this is the process covariance for the NQ-1 samples
ordered from i = k-NQ to i = k-1, i.e.,  The samek 1Q .



method is used to compute  as:

(55)
Q Q

k k 1

k i i k
i k N i k NQ Q

1 1 1
ˆ ˆ ˆ

N N N



   

       

this yields:

(56)
Q

k k 1 k
Q Q

N 1 1
ˆ

N N


    

The positive definiteness in the updated values is not
guaranteed; this explains the reason of taking the absolute
value of the diagonal in Eq. 35 and 46.
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Observation covariance matrix update rule (R2)
proof: The observation covariance can’t be estimated
using (Eq. 2) because the true values of the states are
unknown. Therefore, the estimation innovation in Eq. 7
and its covariance S given in Eq. 5 are used for this
purpose. The proof follows the same procedure as in the
previous section. For NR available samples, the sample
covariance of ek and the expectation of the covariance S
can  be  use  to  obtain  the  observation  noise
covariance[7]:

(57)

   

 
R

R

k
T

i i
i k NR

k k
T

i
i k NR

1
e e e e

N 1
R

1
HP H

N

 



 

       
 
  





where:

(58)
R

k

i
i k NR

1
e e

N  

 

When the same approximation in R1 is used here too,
and the result is a proof R2 and it ends up with Eq. 35.

Stability of ACQEKF: The exponential behavior of the
observer:

(59) k k 1 k 1ˆ ˆx f x ,u 
 

(60) k k k k kx̂ ˆ ˆx K Hx Hx    


is determined based on the exponential convergence of the
dynamic  error  gk  =  xk-x

+
k.  First  Taylor  expansion  for

Eq. 29 and 59 with nonlinear functions  M1 and  M2 is
written as:

(61)   k k 1 k 1 k 1 k 1 1 k 1 k 1ˆ ˆ ˆ ˆx f x ,u A x x ,u   
        

(62)   k k 1 k 1 k 1 k 1 2 k 1 k 1x f x ,u A x x ,u       

The dynamic error g, after mathematical manipulation,
can be expressed as:

(63) k k 1 k k 1 k 1 kA K HA       


where:

(64)      k k 2 k 1 k 1 1 k 1 k 1ˆI K H x ,u x ,u
       



The exponential stability is proven here based on
Lyapunov function theory and follows the approach as in
Babacan et al.[19]. The following definitions and lemmas
are employed for the sake of completeness and proof.

Definition  1;  Khalil[20]:  The  origin  of  the  difference
(Eq. 63) is exponentially stable equilibrium point if there
is continuous differentiable positive definite function
V(gk) such that:

(65)
 

 

2 2

1 k k 2 k

2

k 3 k

c V c ,

V c

    

   

for positive constants c1-c3 with ΔV as the rate of change
of V and defined by:

(66)   k k 1V V V     

For sake of completeness, the exponential stability for
discrete time systems is defined by the inequality

  for all k$0  with   β>0 and 0<Y<1[20].k
k 0   

Definition 2: The observer in Eq. 60 is an exponential
observer if Eq. 63 has an exponentially stable equilibrium
at 0.

Definition 3: If Ak-1 is an invertible matrix for all k and
for the positive definite matrices P-

k and Pk, then:

(67)

 

  
 

1 1 1 1

k 1 k 1 k 1 k 1

1

k 1

T1 T
k k k 1

1T 1
k 1 k 1 k 1

1

k

A ×

P P P A Q P

P I K H

A ×

A I K H

   

   





 



  



 

 



Proof: Hashlamon and Erbatur.

Lemma 1: Consider the real and bounded system states
xk/[qT

K]T, the matrix K and the nonlinear functions  M1 and 
M2 such that the following assumptions hold:

C The matrices ||A||#a, ||K||#k and ||H||#ћ are bounded
by the positive real numbers aћ, k>0  for every time
instant k

C There are positive real numbers kM, σM, σ>0 such that: 

(68)    2

2 1 ˆ ˆx ,u x ,u x x 
   

holds for 
1

ˆx x .
2


    

The stability theorem: The given system in Eq. 29 with
the proposed ACQEKF, is exponentially stable if the
following assumptions hold. There are positive real
numbers p, p>0 such that they bound the following
matrices for every time instant k:
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(69)k 1p I P p I 

(70)kp I P p I 

The matrices Q and R are positive definite due to the
updating rules for all k with minimum eigenvalues q>0
and r>0, respectively. There are positive real numbers kM,
σM, σh>0 such that:

(71)    2

2 1 ˆ ˆx ,u x ,u x x 
   

holds for  The matrix Ak-1 is nonsingular
1

ˆx x .
2


    

for all k.

Proof: Consider the positive definite Lyapunov function:

(72)  1

k 1

T
k 1 k 1 k 1PV 

    

with V(0) = 0. Equation 69 and 72 imply that:

(73) 2 2

k 1 k 1 k 1

1 1
V

p p      

Then for V(gk), we obtain:

(74)  1

k

T
k k kPV   

Substituting (Eq. 63) into (Eq. 74), we get:

(75)    
  1

k

T

k 1 k k 1 k 1 k

k

k 1 k k 1 k 1 kP

A K HA
V

A K HA

  

  

             





The assumptions (Eq. 69), (Eq. 70) and A4 imply that 
P-

k, Pk and Ak-1 are respectively non-singular. Thus, the
requirements of definition 3 are fulfilled, then by using
(Eq. 67) together with (Eq. 75) yield:

(76)

       
  
     

1 1 1 1

k 1 k 1 k 1 k 1

1

k

1 1

k k

T 1T 1
k k 1 k 1 k 1

T

k 1 k k 1 k 1 k

T T

k k 1 k k 1 k 1 k k

P P P A Q P

P

P P

V A

A K HA

A K HA

   

   



 


  

  

  

     

   

      





Applying the bounds in A1 and using the eigenvalues in
A2 along with (Eq. 11) yields:

(77)T 1
k k kK P H R  

where:

ph

r
 

Now applying Lemma 1 along with A1, A3 and (Eq. 77)
on (Eq. 76), we get:

(78)  2

k 1 k 1V        

where:

  2a 1 h
p


 


      

and:

2
2

1

1 a
p

p q

 
 

   
 

Then, with:

k 1

1

2     

it follows that:

(79)

2

k 1
2

2

1
V

1 a
2p

p q

  
 

  
 

holds for ||gk-1||#σM  which satisfies (Eq. 65) and thus the
origin of (Eq. 63) is exponentially stable. In terms of
states and performance, using (Eq. 78) and (Eq. 73), we
can write:

(80)

k

k 0
2

2

pp
1 ,k 0

p 1 a
2p

p q

 
 
 

     
  

      

Recalling definition 1, we have

p
0

p
 

and:

2
2

p
1 ,0 1

1 a
2p

p q

  
 

  
 

RESULTS AND DISCUSSION

In this part, both the EKF and the ACQEKF are
tested and compared. The bias and process noises with the
covariance Qtrue are added to the angular velocity
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measured from the gyro-rate sensor, this forms Ω which
is the input u for (Eq. 1) and (Eq. 29). The measurement
noise with covariance Rtrue is added to the measured
quaternion to form the measurement vector z in Eq. 7. The
Gaussian noise is generated by the MATLAB simulink
Gaussian noise generator. Both of the filters have the
same initial values x0 and P0. The model Eq. 15-8 are used
in the conventional EKF. The ACQEKF uses the model
(Eq. 29) and follows the algorithm (Eq. 30-46). The true
bias values are chosen to be time t dependent as in Eq. 81:

(81)

 
 
 

T

T

T

0.5 0.1 0 t 20

b 1 2 1 20 t 50

0 0 2 else

 


  



The simulation parameters, initializations and the
corresponding  numbers  of  NQ  and  NR  are  listed  in
Table 1. Note that the values of NQ and NR  are different
from each other since they don’t have to be the same in
practice. And since, the true observation noise is much
smaller than the process noise, the value of   is selected to
be much smaller than NQ as tabulated in Table 1. The
following notations are employed:   Qsmall and Qbig indicate
that the considered process covariance noise in the EKF
is either smaller or larger than the true process covariance
noise QTrue, respectively. The same definition goes for
Rsmall and Rbig. The notations Qinitid and Rinitial refer to the
initial values of the covariances used in the ACQEKF. In

is an n×n identity matrix. The ACQEKF displays its
ability to preserve the unit quaternion constraint as
depicted in Fig. 1 for the long run of 500 sec. This also
shows that though sudden changes in the bias take place,
the norm still unity.

Noise covariances have several scenarios, among
them is that the used noise covariances are smaller or
larger than the true covariances. For example, the values 
Qsmall, Qbig and Rbig in Table 1 are used with the EKF, an
example of the estimation error is shown in Fig. 2 for the
first bias element b1 and the other states have the same
behavior. Figure 2a shows the estimation error for b1

using the EKF with Qsmall and Rsmall replacing the small
noise covariances values by Qbig and Rbig results in
estimation error as displayed in Fig. 2b. As clear that both
small and big covariances have noisy behavior. This noise
is smoothed when the ACQEKF is used with the same
noise covariances as the EKF as shown in Fig. 2c.
Moreover, whether the initial covariances are small or big
they converge to the same result unlike the EKF.

Another scenario is that when one of the covariances
is small while the other is big. For this case, the
estimation error for b2 using the EKF with Qbig and Rsmall

is noisy as depicted in Fig. 3a, however, Qsmall and Rbig

show a smooth estimation using the EKF as in Fig. 3b.

Table 1: Initialization and simulation parameters
Parameters Values
T 0.01 sec
Rtrue 10G6 I4

Qtrue 10G2 I6

P0 10 I7

q0 [0.5 0.5 0.5 0.5]T

b0 [0 0 0]T

NR 200
NQ 1000

07×10

e0 04×1

Rsmall 10G10 I4

Rbig 10G2 I4

10G6 I7smallQ

I7bigQ

Qsmall 10G6 I6

Qbig I6

Fig. 1: Estimated quaternion norm error

Fig. 2(a-c): Estimation error for b1 with (a) EKF using
Rsmall and Qsmall, (b) EKF using Qbig and Rbig,
and (c) ACQEKF with covariance
initialization as in the legend
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Fig. 3(a-c): Estimation error for b2 with (a) EKF using
Rsmall and Qbig, (b)  EKF using Qsmall and Rbig,
and (c) ACQEKF with covariance
initialization as in the legend

Fig. 4(a-c): b vector components, true (solid line),
estimated from ACQEKF (dashed black
line) and estimated from EKF (dotted blue
line), (a) b1, (b)  b2 and (c) b3

The ACQEKF still superior for both cases as displayed in
Fig. 3c. In the same context, a remarkable point for the
ACQEKF is that it converges to the same result even
though different covariance initializations are used. 

Furthermore, some values for the covariances may
slow the filter response or even cause divergence. For the
selected values of Q = 10G10 and R = 10G2 , the estimated
bias using the EKF diverges, however, this problem is
solved in the ACQEKF which keeps the stability of the
filter and forces it to converge as shown in Fig. 4a.
Moreover, the EKF converges very slowly while the 
ACQEKF still able to track the changes for the same

values of covariances as depicted in Fig. 4b and c. This is
because the EKF filter gain increases with increasing Q
and decreasing R. If the selected value of Q is very small
compared to QTrue, then the resulted gain is small. In terms
of convergence, if   q÷0, then the value of Y÷1 and thus
the convergence of Eq. 80 is slowed down. However, the
ACQEKF gain is changing based on the estimation
performance. This is clear, since, it depends on both the
innovation error e and the state error ώ, respectively. If
the tracking is not satisfied then the gain will not
converge to very small value. The reason is that the value
of the noise covariance will increase to change the gain
for better performance. In the same context, increasing the
noise covariance increases q which leads for better
convergence as in Eq. 80. Thus, we can claim that the
proposed ACQEKF has better stability and convergence
performances than the EKF shows: 

CONCLUSION

A new real time adaptive constrained quaternion
Kalman filter ACQEKF for systems with uncertain noise
covariances is proposed. This ACQEKF can adjust itself
recursively to achieve better, more accurate and stable
performance for biased covariances. It relates the filter
gain to the innovation and state errors through the noise
covariance updating rules, these relations change the filter
gain for better tracking and performance. Furthermore, its
tuning parameters are less than the EKF, instead of tuning
all of the diagonal elements of the noise covariance
matrix, they can be initialized and then tuned using   and 
 only. It also preserves the unity norm constraint for the
quaternion during the running of the algorithm. The
results show the dramatic improvements in the ACQEKF
response compared with the conventional EKF under the
same conditions.
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