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Abstract: AGPBSim (Animal Gene-Pyramiding Breeding Simulation) is an individual-based, genetical
information integrated simulation program. It was developed to investigate gene-pyramiding breeding given
base population sizes, mmtial allele frequencies and selection strategies. The process of gene-pyramiding
breeding was measured using population hamming distance, superior genotype frequency and average
phenotypic values. AGPBSim is high flexible at various levels: four cross schemes and three selection strategies
and trait architecture using various genotype-phenotype models were integrated in gene pyramiding breeding
simulation. The GUI design of AGPBSun can facilitate design of gene-pyramiding breeding strategies by

performing virtual breeding simulation on this platform.
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INTRODUCTION

Gene pyramiding aims to design a superior trait
through combining favorite target alleles into a single
target genotype. Many quantitative trait loci and linked
markers have been identified as the fast development
of molecular dissection of complex traits. AGPBSim
(Animal Gene-Pyramiding Breeding Simulation) was
developed to mtegrate valuable molecular information in
breeding program using marker-assisted gene-pyramiding
design This strategy can be considered as the using
synthetic biology in the design of synthetic components
(QTLs) of a desired specificity (traits) (De Lorenzo ef al.,
2006). This study aims to develop computational models
to analyze, simulate and predict the behavior of artificial
and synthetic systems (Animal breeding systems).

Marker-assisted gene pyramiding 1s an iumportant
branch of marker-assisted selection. The theoretical study
of marker-assisted gene pyramiding study has just begun
(Servin et al., 2004; Zhao et al., 2009). Gene pyramiding
also belongs to the field of breeding by design which was
proposed by Peleman and van der Voort (2003) with the
goal of controlling all allelic variations for all genes of
agronomic importance. AGPBSim is the first attempt to
mntegrate the concept of gene-pyramiding design from an
engineering perspective using evolution computation in

soft computing techniques (Holland, 1992; Zadeh, 1994).
Theoretically, breeding by design can be regarded as an
optimization process and evolutionary computation is a
subfield of artificial intelligence that
combinatorial optimization problems. Researchers
considered the artificial breeding process as an optimized
program by building a model that links the genotype to
phenotype. phenotypic  value,
researchers selected the optimal genotype combinations
in the breeding processes.

AGPBSim regards gene pyramiding breeding as an
optimization process, individual carried various genotype
1s measured by the genotypic score and phenotypic value
considering various selected strategies. Generation
selection and genetic operator promoted the individual
carried the optimal genotype combination and individual
with optinal genotype combination responds to the
optimal trait (Xu ef af., 2011). AGPBSiun implements two
types of and selection strategies four types of cross
schemes, including two population cross, three
population cross, four population symmetry and
cascading cross.

Various programs of gene-pyramiding design
breeding, including different cross schemes and selection

involves

To maximize the

strategies under different muitial favorite allele frequencies
and base population sizes can be compared via the
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program of AGPBSim. In addition, AGPBSim supplies the
users unfamiliar with the command line through a simple
and mntuitive Graphical Interface (GUI). The simulation
results such as population hammimg distance, superior
genotype frequency and phenotypic value can be
computed and
results of visualization in AGPBSim can communicate

saved as the text files. Simulation
information clearly and effectively through graphical
means to users.

FEATURES

AGPBSiIm consists of four simulation components,
two population cross, three population cross, four
population symmetry and cascading Each
component corresponds to one type of cross breeding
program with different target genes pyramiding numbers

CTOss.

which can be easily used and extended according
different reality.

Population: The mdividual’s genotype at one locus was
coded by 0 or 1. Initial base population were represented
by N x M Matrix (N denoted the number of mdividuals in
the base population and M/2 denoted the number of loci).
The base population was initialized with random or
fixed favorite alleles frequencies. In each generation,
individuals in population were evaluated by genotypic
score and phenotypic values under different selection
strategies.

Discrete recombination and population hamming
distance: Discrete recombination was used to combine
(mates) two individuals (parents) to produce new
offspring which was inspired by evolution computation
(Goldberg, 1989; Holland, 1992). New offspring were
produced by the crossover of two selected parents.
Discrete recombiation use crossover mask to indicate
which parent will supply bits (allele) to the offspring a
crossover mask was as the same length as the individual
structure which was randomly generated by 0 or 1 with
equal probability.

Crossover mask 1 indicates the allele of offspring at
this locus inherited from parent 1, crossover mask 0
indicates the allele of offspring at this locus inherited from
parent 2.

Discrete recombination at each locus produced
offspring with new genotype combination. Offspring 1
was produced by mast 1 and offspring 2 was produced by
mast 2, the allele inherited from parent 1 was marked with
underline as follow:

934

Parent 1 01110011

Parent 2 10101100

Mask 1 01100011
\:

Offspring1 11101111

Mask 2 10011100
\:

Offspring2 00110000

Population Hamming Distance (PHD) derived from
information theory denotes the total number of different
alleles compared the population in each generation with
ideal population (Pilcher ef al., 2008). The PHD 18 zero
indicating the fixation of favorite alleles at all loci. XOR is
a type of logical digjunction on two populations (Eq. 1).
For example of (Eq. 2), the population hamming distance
15 19

PHD = XOR (POP (t), POP (1deal)) = 19

PHD = XOR (population (1), population (ideal)) (1)

10 10 11 00 11 11 11 11
01 11 00 ol 11 11 11 11
POP(t)= 00 01 11 10| POF{deal)=|11 11 11 11
01 11 10 00 11 11 11 11
11 10 10 01 11 11 11 11
(2)

SELECTION

Three types of genotype-phenctype models were
used in the studies (Fig. 1). Further described as follows:
The Model I can be written as:

pi = I'LU + Zgjxu +Si (3)
1=1

Where:
P The phenotypic value for the 1 ndividual (1 = 1,

2,....,n)
In The population mean
g, = The gene effectat jthlocus (j=1,2,..., m)
x; = A dummy variable indicating genotype
€, = Random residual effect, &~ N ©, 7))

The values of genotypes were defined in terms of the
midpoint (m), additive (a) and dominance (d) genetic
parameters. The numerical coding of three genotypes
11,10, 00were 5, 4 and 1, respectively m the Model ITI. For
an analysis of genotypes m a single environment,
heritability on an mdividual basis will be estimated using
the following equation:
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Fig. 1: Three types of genotype-phenotype models, model I is simple model with nothing integrated, model II, only gene
effects were integrated and model 111, both gene effects and gene interaction effects were integrated
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From the defined heritability an estimate of &2 is obtained
by calculating of and re-arranging Eq. 4 to:

2
GE

h2

(3)

2
GE

For the genotype-phenotype Model II, only gene
effects were integrated and Model I11, both gene effects
and gene interaction effects were integrated as following:

(6)

m
Py = Mot 2 g X, iy, L +
1=1

Where the variable p, w, x;, € were denoted as the same
as Model 1. The difference between Model T and 1T are the
values of genotypes that could be variously defined in
Medel 2 and g; is the gene effect at jthlocus (j =1, 2, ...,
m).

Moreover, gimg, 1554 ~ N (0, 1) 1s the genotype
mteraction effect, similar to ploygemic effect but
represent the actual information integration in Model TT.
The value denotes genotype interaction effects using
four-dimensional (4D) matrices and was sampled from

2iMy,; 151414 (SUpplementary file).

Gene pyramiding in cross program: Researchers
designed four types of cross programs which were
represented by 1T, IIT, IIT.C and IIL.S (Fig. 2). I represented
pyramiding two target genes from popA and popB. The
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popA and popB were crossed to produce population
popAB. The top 500 individuals based on phenotypic
values were selected for the next generation and each
pair of parents was assumed to produce four offspring
with the sex ratio 1:1. Then the selection parents were
randomly intercrossed to produce the subsequent
generations until two target genes were pyramided into an
ideal genotype. IIT represents pyramiding three target
genes from popA, popB and popC, The popA and popB
were hybrided to produce the hybrid population popAB,
The initial population size of popC was set as 2N then
the top 500 of popAB and popC were hybrided to produce
population popABC. Other breeding parameters and
select strategies are as the same as schemes I1I. IIIL
represents pyramiding four target genes from popA,
popB, popC and popD, other breeding parameters and
select strategies are as the same as schemes IT and IT1. For
four population cascading cross (III1.C), the base
population size of popA, popB, popC and popD were N,
N, 2xN and 4xN, PopA and popB were crossed to
produce popAB, the top 300 of popAB and popC were
crossed to produce population popABC than the top 500
of popABC crossed with popD to produce population
popABCD. For symmetric cross scheme (IT11.3), the base
population size of popA, popB, popC and popD were N,
N, N and N, respectively, PopA and popB were crossed to
produce popAB and popC and popD were crossed to
produce popCD then the top 500 of popAB and the top
500 of popCD were crossed to produce popABCD in the
next generation.

Tteration:  Researchers  performed Monte Carlo
simulation for each gene pyramiding breeding programs.
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Fig. 2: Four types of cross programs which were represented by II, III, IIT1.C and IIIL.5

The computer programs and GUI design were
umplemented via Matlab and run on Microsoft Windows
XP.

AGPBSim GUI design: AGPBSim GUI consists of one
main interface and four sub-interfaces responding to four
functional modules: twopop, threepop, fourpop-s and

fourpop-c.

Input: AGPBSim can simulate the random population
with various population sizes and alleles frequency
levels and the frequencies of favorite genotype can be
visualized by histograms and AGPBSim can also load
data of population genotypes by text files wluch
collect from the actual experiments. Trait heritability
can be given mnput parameters range from 0-1 thus
allowing for a wide variety of quantitative trait
configuration.

Qutput: The gene pyramiding generation, population
hamming distance and the superior genotype frequency
and text files are computed and saved throughout
simulation performed. The average population hamming
distance and phenotypic values are calculated and
presented mto the edit text on mterface. For iterative
simulation, interface can list average phenoctypic value
and superior genotype frequencies at target loci to
facilitate the comparison of trends over generations.
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Table 1: Comparison of average phenotypic progress using phenotypic
selection and genotypic selection
Phenotype selection

Cross Generation Genotype
scheme ) 0.2 0.4 0.6 selection
II-A 7! 0.34? 0,72 0.88* 0.87°
1I-B 6 0.34 0.67 0.82 0.94
II-C 5 0.31 0.58 0.73 0.81
II-A 9 0.43 0.92 1.12 1.17
1I-B 8 0.51 0.98 1.14 1.15
Im-C 9 0.42 0.88 1.07 1.10
II-D 9 0.44 0.92 1.10 1.13
IOI-C-A 11 0.46 1.04 1.27 1.32
II-C-B 10 0.49 1.04 1.27 1.32
ImI-c-C 10 0.46 1.03 1.29 1.37
III-C-D 11 0.49 1.03 1.24 1.27
III-C-E 11 0.46 0.99 1.20 1.23
TOI-S-A 11 0.49 1.06 1.28 1.32
III-S-B 9 0.52 1.10 1.36 1.46
II-8-C 10 0.50 1.07 1.07 1.38
II-8-D 10 0.50 1.31 1.32 1.38

'The generation gene pyramided at using genotypic selection; “The average
phenotypic progress over t generations using phenotypic selection with trait
heritability 0.2; *The average phenotypic progress over t generations using
phenotypic selection with trait heritability 0.4; “The average phenotypic
progress over t generations using phenotypic selection with trait heritability
0.6, “The average phenotypic progress over t-generations using genotypic
selection; °The average phenotypic progress calculated by [p () - p (D]
p (t) denotes the average phenotype value at the generation St and p (1)
denotes the average phenotype value at the generation 1

AGPBSim generates the panel of heat maps represents
three types of genotype frequencies
generations as well as text files used to save the data of
genotype frequencies.

over mne
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A case study using AGPBSim: The average phenotypic
progress for cross programs II, III, IIII-C and ITII-C were
mvestigated using AGPBSim as a case study. Table 1
shows the average phenotypic progress using genotypic
selection and phenotypic selection. The population size
15 500, the detail mformation about allele frequencies for
each cross programs were provided m additional table
file.

Researchers first used genotypic selection to get
the gene pyramiding generation G (t). Then at the
generation t, researchers investigated the average
phenotypic progress using phenotypic selection given
different trait heritability (only model II is considered
here), the average phenotypic progress was
calculated by [p (t)-p (1)]/t p (t) denotes the average
phenotype value at the generation t and p (1) denotes
the average phenotype value at the generation 1.

In the cross programs II, III and IIII, genotypic
selection strategy 1s superior to phenotypic selection in
accelerating gene pyramiding. The results show the trait
with lower heritability is more appropriate for using
genotypic selection to pyramid target genes. The
phenotypic selection strategy for heritability 0.6 15 as
same as for genotypic selection strategy.

Compared the scheme TTII-C with TTIT-S, the results of
G (t) and average phenotypic progress show that ITII-3
1s superior to [III-C.

The simulation also investigate cross order that
influence on the schemes in cascading cross via
calculating the value of average phenotypic progress and
the scheme INL.C-C 18 slightly superior to IIIL.C-D and
TI.C-E.

DISCUSSION

AGPBSim regards gene pyramiding breeding as an
optimization process inspired by the science of
evolutionary computation (Goldberg, 1989, Holland, 1992),
this 1s first attempt to use the optimization ideas to deal
with the information integration in breeding practice.

Gene pyramiding breed integrated with genetic
information would facilitate the decision-making of
breeders in breeding practice. Some bodies consider
traditional mass selection strategies also result in gene
pyramiding. Phenotypic selection strategy 18 used to
investigate target gene which controlling quantitative trait
and more over, researchers can compare the gene process
of gene pyramiding using genotypic selection and
phenotypic selection.

Inmitial favorite allele frequencies greatly affect the
process of gene pyramiding breeding using phenotypic
selection and another important factor is the trait
heritability.

From the Table 1, researchers can conclude that for
trait with high heritability, gene pyramiding breeding
using phenotypic selecton strategy needs less
generation and more generation was needed when
considering the low heritability trait. In order to achieve
gene pyramiding successfully, breeder should select large
size base population with high favorite allele frequencies.
In phenotypic selection, researchers set trait heritability
to 1 which is equivalent to genotypic selection derived
from the formula 4 (Table 2-4).

Table 2:  Allele frequencies in first/'second loci in population A and
B forII

Cross scheme Population size Al/A2 B1/B2

II-A 500 0.50/0.00 0.00/0.50
II-B 500 0.25/0.00 0.00/0.25
II-C 500 0.50/0.25 0.25/0.50

! Allele frequencies in first/second loci in population A; 2Allele frequencies
in first/second loci in population B

Table3:  Allele frequencies in first/second/third loci in population A, B
and C for ITT
Cross  Population

schemes size AL/A2/A3! B1/B2/B3? C1/C2/C3

TI-A 500 0.50/0.00/0.00 0.00/0.50/0.00 0.00/0.00/0.50
1I-B 500 0.00/0.00/0.50 0.00/0.25/0.00 0.00/0.00/0.25
m-C 500 0.50/0.25/0.00 0.00/0.50/0.25 0.25/0.00/0.50
II-D 500 0.25/0.00/0.00 0.00/0.25/0.00 0.00/0.00/0.50

!Allele frequencies in first/second/third loci in population A;2Allele
frequencies in first/second/third loci in population B; Allele frequencies in
first/second/third loci in population C

Table 4: Allele frequencies in first/second/third/fourth loci in population A, B, C and D for ITT1.8 and ITI1.C

Cross scheme Population size AVA2IAYAL B1/B2/B3/B4 CL/C/C3/CH D1/D2/D3/D4*

IILS-A 500 0.50/0.00/0.00/0.00 0.00/0.50/0.00/0.00 0.00/0.00/0.50/0.00 0.00/0.00/0.00/0.50
IIL.8-B 500 0.25/0.00/0.00/0.00 0.00/0.25/0.00/0.00 0.00/0.00/0.25/0.00 0.00/0.00/0.00/0.25
IILs-C 500 0.50/0.00/0.00/0.00 0.00/0.50/0.00/0.00 0.00/0.00/0.25/0.00 0.00/0.00/0.00/0.25
IILS-D 500 0.50/0.00/0.00/0.00 0.00/0.25/0.00/0.00 0.00/0.00/0.50/0.00 0.00/0.00/0.00/0.25
IIL.C-A 500 0.50/0.00/0.00/0.00 0.00/0.50/0.00/0.00 0.00/0.00/0.50/0.00 0.00/0.00/0.00/0.50
IIL.C-B 500 0.25/0.00/0.00/0.00 0.00/0.25/0.00/0.00 0.00/0.00/0.25/0.00 0.00/0.00/0.00/0.25
Imr.c-C 500 0.50/0.00/0.00/0.00 0.00/0.50/0.00/0.00 0.00/0.00/0.25/0.00 0.00/0.00/0.00/0.25
IIL.C-D 500 0.50/0.00/0.00/0.00 0.00/0.25/0.00/0.00 0.00/0.00/0.50/0.00 0.00/0.00/0.00/0.25
IL.C-E 500 0.25/0.00/0.00/0.00 0.00/0.25/0.00/0.00 0.00/0.00/0.50/0.00 0.00/0.00/0.00/0. 50

!Allele frequencies in first/sec ond/third/fourth loci in population A; Allele frequencies in first/second/third/fourth loci in population B; Allele frequencies
in first/second/third/fourth loci in population C; *Allele frequencies in first/second/third/fourth loci in population D
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CONCLUSION

In this study, the results indicate that using
genotypic selection 1s more superior for gene pyramiding
than phenotypic selection. Design of cross scheme
should concern the mitial favorite allele frequency, cross
order and the trait heritability. Trait heritability is the main
factor that affecting the effective gene pyramiding
breeding for the quantitative traits. When the genotypic
value 1s preset, trait heritability would have a direct impact
on the average phenotypic value predicted by the model
and would finally affect the process of gene pyramiding.
As to the trait with larger heritability, the dominant
components in the model are the gene effects so, gene
pyramiding breeding would be a process of select
individual with the optimized genotype combination over
generations.

AGPBSim was developed as an simulation platform
for the gene-pyramiding breeding. On this platform,
different level of population sizes, mitial gene frequencies
and flexible selection strategies can be designed and the
progress of gene-pyramiding breeding can be predicted.
In recent years, theoretical and experimental studies on
system biology would provide a new perspective for
understanding complex traits (Benfey and Mitchell-Olds,
2008 Sauer et al., 2007, Sieberts and Schadt, 2007). As the
information from the analysis of complex phenotypes
becomes more and more precise, the relationship between
gene networks at a micro-level would also become more
and more clear. Further development of accurate and
practical models is necessary to link the genotype and
phenotype in order to increase the accuracy of model
prediction. Evolutionary computation technology will help
exploit useful information and guide the precise optimal
design of breeding by gene pyramiding.

Optimal models mtegrating useful genetic mformation
would be developed in future studies as the development
of system biology and high-throughout array teclmology.
Moreover, different cross schemes and selection
strategies can be designed and compared based on this
gene pyramiding simulation platform.
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