Tournal of Animal and Veterinary Advances 12 (17): 1376-1382, 2013

ISSN: 1680-5593
© Medwell Journals, 2013

Network-Based Insight Analysis of Drugs of China Food and
Drug Administration for Potential New Multi-Target Drug Discovery

Nan Zhou, Jin-Chun Zhang, Yong-Xi Liu, Yang Yu,
Yuan Deng, Ling Feng, Wei Q1, Chuan-Fang Wu and Jin-Ku Bao
Key Laboratory of Bio-Resources, School of Life Sciences,
Ministry of Education, Sichuan University, 610064 Chengdu, China

Abstract: Developing multi-target drugs to obtain potentially innovative medicines has become a trend in the
treatment of multifactorial diseases. The open-access resources are used by computational biologists to
uncover relationships among various datasets for further drug discovery. In this study, researchers
systematically analyzed approved retail drugs of China Food and Drug Administration (CFDA) in terms of
biological mteractions networks and found that CFD A-approved drugs had sigmficant multi-target properties.
To determine the features of these drugs and understand their indication on multi-target drug design,
researchers computationally built a bipartite graph composed of drugs and target proteins linked by drug-target
binary associations. Furthermore, researchers chose 19 drugs whose target numbers were >15 and then
mtegrated human Protein-Protein Interactions (PPIs) datasets from DIP, IntAct, BioGRID, MINT and HPRD
to generate a human PPIs network to analyze targets of these diugs. Graph theory analysis identified
significant nodes including five multi-target drugs and eight drug targets which mndicated that some of the

CFDA-approved drugs were potentially valuable for the future development of multi-target diugs.
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INTRODUCTION

Cause of the goal of drug discovery is to design
exquisitely selective ligands against a single target
(Cheng et al., 2012), the rate of new chemical entities
transferred to therapeutic agents decreased in recent
vears (Hopkins, 2008; Cheng et al., 2012). Fortunately, as
more and more scientists realized that many existing diugs
possess an mherently multi-target characteristics, the
traditional view that a drug selectively interacts with a
specific protein target and the one gene, one drug and
one disease paradigm have been challenged (Roth et al,,
2004; Csermely et al., 2005, Hopkins, 2008). For instance,
Celecoxib (Celebrex), a selective cyclooxygenase-2
non-steroidal anti-inflammatory drug has been identified
to target two additional enzymes (namely, carbonic
anhydrase 1T and 3-lipoxygenase) (Weber et al, 2004;
Sud’ina et al., 2008). Additicnally, the serotomin and
serotonergic drugs are now believed to not only bind to
G Protem-Coupled Receptors (GPCRs) but also to an 1on
channel (5-HT.) (Kroeze et al., 2002; Roth et al, 2004).
Indeed, such polypharmacological features of drugs make
us realized that multi-target dirugs would more effective
and practical than single hits (Csermely ef af., 2005).
Furthermore, the introduction of anticancer drugs

like Tmatinib (Gleevec) and Sunitinib (Sutent) and
non-selective drugs for mood disorders and schizophrenia
support that multi-target drugs can play vital roles in the
treatment of complex diseases (Roth et al, 2004).
Traditional medical treatments often use multi-component
extracts from natural products (Csermely et af., 2005) and
many CFDA-approved drugs are transformed from
traditional Chinese medicines which could hit multiple
targets and exert synergistic therapeutic efficacy
(Raffa et al., 2003; Tao et al., 2013).

Traditional Chinese medicine has been recognized as
a complementary and alternative medicine m Westermn
countries and the mixed application of Western medicine
received much attention (Kairuz ef ai., 2007, Xu, 2011).
Ho (1995) introduced cocktail therapy to treat ATDS and
verified the effectiveness of mixed drugs with advantages
of enhanced potions, reduced toxicity complementary
onset time and extension efficacy. In addition, some
compound drugs have been approved by FDA because
of their effectiveness, such as Benicar HCT (combimation
of hydrochlorothiazide and olmesartan), Aggrenox
(combination of aspumn and dipyridamole) and
Glucovance (combination of glyburide and metformin)
(Forbes, 1998; Marre and Allavome, 2000, Chrysant ef af.,
2004).
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The basis of drug discovery and design is
the interaction between the drug and its target
(drug-target interaction). Therefore, the drug-target
mteractions network 1s generated to help finding new
targets and new effective diugs at lower cost, detecting
cross-pharmacology relationships among targets and
designing multi-target drugs that interact only with
effective targets (Yamanishi ef al., 2008; Lee et al., 2009,
Vogt and Mestres, 2010). Network structure is crucial for
drug target identification and topological analysis of
network contributes largely to the initial understanding of
multi-target drug actions (Csermely ef al., 2005). Based on
the systematic analysis of biological networls, the
integration of relevant data can provide a more global
view on drug-target relations. Tn order to figure out
whether the CFDA-approved drugs could make
contribution to the development of novel multi-target
drugs by analyzing the drug-target network of CFDA,
researchers retrieved datasets from databases and
analyzed the relationships between drugs and their
targets using statistical methods; the drug-target bipartite
network and human PPIs network were constructed for
topological analysis of 19 multi-target drugs and their
targets; CFDA-approved multi-target drugs and their
corresponding targets were analyzed in the context of
biological networks and the potentiality of these drugs in
the further research in novel multi-target dirug creation
were discussed.

MATERIALS AND METHODS

Database of drug-target interaction: The drug list with
7209 approved drugs was downloaded from the
website of CFDA (http//www.sfda.gov.en) and their
corresponding targets were obtained from the DrugBank
(Knox et al., 2011) database at http://www drugbank.ca.
As of November 3, 2012, DrugBank contained 3291 human
target proteins. Therefore, the two datasets can be used
to construct the drug-target interactions network.

Database of human protein-protein interactions: The
human PPIs datasets were downloaded from 5 databases
as follows: DIP (Salwinski et al, 2004), BioGRID
(Stark et al., 2011), IntAct (Kerrien ef af., 2012), HPRD
(Prasad et al., 2009) and MINT. And then the datasets
were 1mtially processed by mtegrating all the various
datasets and eliminating the duplicates. Finally, the
processed dataset including 128896 interactions among
16309 human proteins was used to construct the PPIs
network.

Construction of biological networks: In the research, all
biological networks were generated and displayed by

Cytoscape 2.8.3 (Smoot et al., 2011). Firstly, researchers
constructed a Drug-Target network (D-T network) with
the dataset of drug-target interactions. Thus, researchers
applied a one-mode projection to the D-T network
resulting in two monopartite networks. One was
Drug-Drug network (D-D network) consttucted by
linking two drugs sharing same targets, the other was
Target-Target network (T-T network) constructed by
linking two targets if they shared same drugs
(Barabasi and Oltvai, 2004).

Secondly, the PPIs networl was constructed by the
human PPIs dataset where the nodes represented proteins
and edges between the nodes displayed the interactions
of different proteins. Cause of the human global PPIs
network was too large to analyze, researchers constructed
a sub-PPIs network by linking 217 target proteins of 19
multi-target drugs with other human proteins for analyzing
effectively.

The topological properties: Notably, the key feature of
many large networlks is the vertex connectivity followed
a scale-free power-law distribution following P(k)~k™®
that is to say it is a common property of all interacting
biological networks (Barabasi and Albert, 1999
Ruffner et al., 2007, Chautard et oI, 2009). Quantitative
description  of these networks benefits the
characterization of various biological systems. In the
research, researchers used three predefined properties
(degree, average degree and network density) from graph
theory to reveal the complexity of interactions networks
(D-T, D-D, T-T, PPIs and sub-PPIs). Degree (ki) is the
most elementary characteristic of a node and 1t represents
the number of edges connecting to it. Average degree (k)
is the average edges per node. The density shows
how densely the network is populated with edges
(self-loops and duplicated edges are ignored) (Dong and
Horvath, 2007) and it has a value between 0 and 1. A
network which contains no edges and solely isolated
nodes has a density of 0. In contrast, the density of a
clique 1s 1 (Assenov et al., 2008).

RESULTS AND DISCUSSION

Statistic analysis: Researchers downloaded the list of
drugs from CFDA and obtained the corresponding
protemn targets from DrugBank dataset. Then, researchers
analyzed drugs with respect to the number of their targets
(Fig. 1a) and protemns according to the number of drugs
targeting them (Fig. 1b). Researchers can infer from Fig. la
that some drugs had more than one protein targets while
others targeted only one protein in current application.
According to Fig. 1b, though lots of targets were targeted
by only one drug, there were some proteins targeted by
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more. Thus, the overlapped target proteins indicated a
current shortcoming of drug discovery that was using the
already known targets. Among FDA-approved drugs, one
drug targeted at most 14 proteins (Yildirim et al., 2007).
However, there were 19 CFDA-approved drugs had
=14 targets. There were 417 unique interactions between
these drugs and 217 corresponding target proteins which
meant every drug was currently acknowledged to interact
with 12 targets.

D-T network analysis of the 19 multi-target drugs: The
visualization of the D-T network provides an umportant
survey method for the current drug discovery status. If
amounts of drugs only targeted few proteins, the network
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Fig. 1: Distributions of drugs and dirug target proteins; a)
Distribution of drugs with respect to the number of
their target protemns. The CFDA-approved drugs
targeted 551 human proteins in total. Most drugs
targeted only a few target proteins but some had
many target proteins for example, reduced
glutathione for Injection had 40 target proteins; b)
Distribution of target proteins with respect to
the number of drugs a protein was targeted.
The most-targeted target protemns were the
¢-1A Adrenergic receptor (ADAIA) (41 drugs),
the ¢-2A adrenergic receptor (ADA2A) (37 drugs),
the Histamine H1 Receptor (HRH1) (targeted by
34 drugs) and the PB-2 Adrenergic receptor
(ADRB2) (34 drugs)

would have contained isolated nodes with few or even no
edges between them. Instead, the network would have
many interactions among different drugs.

According to the research, the D-T network (Fig. 2)
had 1861 unique interactions between 415 drugs and 551
human proteins. Every multi-target diug targeted
>14 proteins and 217 targets m total which accounted for
39% of all the 551 protemn targets. The topology of the
D-T network with a well-organized modular structure
reflected the cluster of diugs and targets. In the D-T
network, the average degree of 19 drugs was 21.947, much
higher than 4.484 of all 415 drugs. Several drugs were
located in the giant interconnected component in the
network (red rectangle marked) while some other formed
independent clusters. It indicated that among 217 target
proteins, some had been studied thoroughly and utilized
fully while others were not which should call for the
drugs. Ewven though
researchers are not fully aware of the presence of multiple
targets for certain drugs, it shall target whatever proteins
it should target in the human body to take effect. With
respect to drugs formed independent clusters, being apart
from the big clusters in the D-T network, they may be
used to treat some highly specific diseases. A
combination drug named glutamic acid, alanine acid and
glycine acid tabletes was used to treat the prostate
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Fig. 2: The drug-target network. Circles and rectangles
represented  drugs and  target  protems,
respectively. Nodes in red were the 19 multi-target
drugs with >14 target proteins. For all the 217
targets of 19 drugs, orange represented targets in
the human PPIs and bright green represented
targets not in
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hyperplasia caused by the frequency micturition, dysuria
and urinary retention disorder, especially suitable for
cardiopulmonary function ncomplete and too old for

Surgery.

D-D network and T-T network analysis of the 19
multi-target drugs: The D-D network showed the status
of different drugs with common target (s). If a lot of drugs
are based on the same targets then the D-D network
would interconnect tightly. On the contrary, drugs in the
D-D network would be distibuted. Through such
characteristic, researchers can reasonably estimate the
utilization of targets of multi-target drugs and analyze
the cross-pharmacology relationships between targets,
ultimately guide new drug design (Vogt and Mestres,
2010).

Drugs connecting two significant clusters were
defined as bridge diug and had special indication. Tn the
D-D network (Fig. 3a), researchers found 5 bridge
multi-target drugs, named compound phenobarbital
nitrazepam and chlorphenamine maleate tablets,
midazolam injection, clonazepam tablets, triazolam tablets
and lorazepam tablets. These clinic nerve drugs were used
to calm patients with epilepsy. To the knowledge,
diseases in the nervous system are so complicated that
the target-specific drugs are less curative (Scheffer, 2004).
Therefore, these drugs and their targets could be used to
develop novel drugs for complex diseases, such as
nervous system diseases.

The T-T network provided a complementary,
protein-centered  view of pharmacological space
(Paolimi et al., 2006). In Fig. 3b, 536 out of 551 target
proteins were connected to each other and multi-target
drugs were responsible for the high mterconnectedness.
There were & target proteins formed bridges between two
clusters to be worthy of consideration. Among them,
Glutathione Synthetase (GSHB), Dopamine p-hydroxylase
(DOPO) and Glycine Receptor subunit -1 (GLRAL)
mvolve n diseases of Glutathione Synthetase deficiency
(33S8), Dopamine P-hydroxylase deficiency (DBH) and
hyperelplexia, hereditary, type 1 (HKPX1). And that their
average degree was 7.625, <15.609 of all proteins in PPIs
network (Fig. 4a). Namely, these proteins were not hub
proteins in human PPIs network and drugs of these
targets had little side-effects (Jeong et al., 2001).

Target proteins of 19 multi-target drugs within human
PPIs network: Among the 217 targets of 19 multi-target
drugs, 167 existed in the human PPTs network (Fig. 4a) of
which a few of them located in the center. According to
the centrality-lethality rule, rather than targeting a protein
with high degree, multi-target drugs target protemns of

Fig. 3: Two Dbipartite projection networks of the
drug-target network. a) Drug-drug network, two
drugs connected by an edge if they shared same
target (s). Red nodes indicated drugs that had
more than 14 targets. Nodes 1-5 were bridging
multi-target drugs; 1. compund phenobarbital N
itrazepam and chlorphenamine maleate tablets; 2:
midazolam injection; 3. clonazepam tablets; 4:
triazolam tablets; 5: lorazepam tablets). b)
Target-target network, two target proteins
connected by an edge if they were targeted by
same drug (s). Nodes colored in orange or bright
green represented target proteins that were
targeted by the 19 multi-target drugs. In addition,
orange nodes were in the human PPTs network but
bright green nodes were not. Nodes 1-8 were
bridging targets; 1: AL1AL, 2: AL1A2; 3: RET1; 4
GSTP1; 5. LGUL, & GSHB; 7: GLRAI; 8 DOPO)
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interest but were not the critical components of important
pathways to lower side-effect and drug resistance
(Csermely et al., 2005, Ruffner et al., 2007; Kotlyar ef al.,
2012). Voltage-dependent P/Q-type Calcium Charmel
subunit ¢-1A (CACI1A), Glutathione S-Transferase k-1
(GSTK1) and Calmodulin (CATM) had degrees of 94, 92
and 88. And they formed three obvious clusters with
network density of 0.035, 0.025 and 0.050, respectively
(Fig. 4b). Drugs targeted CAC1A were used to treat
chronic stable angina, diarthea and supraventricular
tachycardia. Drugs targeted GSTK1 were used to treat

.............

Fig. 4: Interactions between target proteins and other
human proteins. Nodes in red were the 167 target
proteing of 19 multi-target diugs; a) Target
proteing of multi-target drugs within the human
PPIs network; b) Sub-PPIs network derived from
the human PPIs network showing interactions
between the 167 target proteins of 19 multi-target
drugs and their interacting human proteins

patients undergoing chemotherapy or radictherapy and all
kinds of low oxygen hematic disease, liver disease and
drug toxicity, etc. Though these proteins in human PPIs
network shared almost the same topological features, their
drug numbers were not. There were 14 dirugs targeting
CALM while only 3 drugs targeted to CAC1A and 1 to
GSTK1. Therefore, CAC1A and GSTK1 should also be
accounted for future potential drug targets.

CONCLUSION

Building and analyzing networks containing
relationships among drugs and targets are one of the
latest and pivotal developments in drug discovery
(Lee et al, 2009). There are several pioneering studies
about drug-target networks building. Yildirim et al. (2007)
built a bipartite graph of drug-protein interactions from
FDA-approved drugs and their target proteins to review
drug targets in the context of cellular and disease
networks. Cases and Mestres (2009) built a ligand-protein
interactions map for diug discovery. Their researches
were the foundation of drug-target network analysis and
might be benefit of cross-pharmacology detection and
target 1dentification as well as the multi-target drug
development.

In the study, based on the concepts of systems
biology, researchers constructed biological networks by
integrating  datasets of different databases. These
networks assisted us to address two questions regarding
drug development: What are the features of Clinese
commodity drugs? How could these multi-target
CFDA-approved  drugs  enhance  future  drug
development? As the outcome showed, there were 19
drugs targeted >14 targets in CFDA while in FDA, no
drug had =14 target proteins (Yildinm et al, 2007).
These 19 drugs are used to treat complex diseases,
such as @ of them for newological diseases. In
addition, the circumstance of unbalanced development
(14 drugs targeted CALM but only 3 drugs targeted
CACIA and one targeted GSTK1) revealed the
incomprehensive development of multi-target drugs and
need for more attention. Consequently, researchers can
use the CFDA-approved multi-target drugs to design
novel drugs and find new fimction of known drugs.

Although, in the research, factors such as data
completeness or mformation loss had impact on the
network construction through databases, the integration
of relevant data allowed analysis at the network level as
well as provided a closer global view on drug-target
relations. Therefore, studies using drug-target network
analysis and systematic drug-design strategies on
multi-target drugs of CFDA would provide further new
clues towards possible multi-target diug development.
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