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Abstract: This study is about the simulation of complex engineering systems’ damages with auxiliary of neural
networks. We start off with a brief definition of details. We will discuss the use of neural networks in
determimng the conclusions of the study. A detailed defimtion of semi-trailer, which 1s the machine m study,
will also be given. The study then moves on towards the main body of the study which will discuss in full
details of the damages done on a semi-trailer. The analysis is being done using neural networks to analyze this
complex phenomenon and to study the operation analytically. The discussion is ended by a conclusion that
clearly indicates advantages, limitations and possible applications.
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INTRODUCTION

A neural network is a collection of interconnected
elements or units (Mozer et al., 1996). Beyond that
characterization, neural network means a variety of things
to a diversity of researchers. However, to put aside
neuroscience and cognitive science, we regard a neural
network as a purely formal object or as a rich family of
formal objects. For narrowing our scope to mathematical
perspectives, neural network' still has a striking diversity
of construals.

Neural networks are dynamical systems that compute
functions that best capture the statistical regularities in
traimng data: their study inevitably brings together
concepts from dynamical systems theory, computation
theory and statistics. Correlated with, but logically
mdependent of, the tripartite division of computational,
dynamical and statistical perspectives, there 1s the
following tripartite decomposition of a neural networl:

The processing component:

*  Of a neural net 1s an algorithm (or set of differential
equations) by means of which activation patterns
input to the network are converted into activation
patterns  that comprise the nets output. The
computational and dynamical perspectives tend to
address this component most, since the input/output
function computed is of primary concern to the
computational perspective and the dynamics by
which 1t 18 computed is of central interest to the
dynamical perspective.

But the computational and dynamical perspectives
also address the learning component:

»  Since the computational difficulty of the learning
problem and the weight dynamics of learning
algorithms are both of great interest. Tt is the
statistical perspective, though, that has the most to
say about the central problem m most neural network
learning: what are justifiable procedures for drawing
inferences from given training examples to unseen
data--the problem of mduction.

Lastly, the third component, representation:

¢ Is the least-studied aspect of neural networks: it
link between the nput/output
activation patterns and the items that they encode
from whatever domain the network's problem comes.
Now that we have an idea about neural networks,

concerns the

what about semi-trailers? What 1s 1t? Since it 15 our main
object, we should at least define what it 1s.

A semi-trailer is a trailer without a front axle. A large
proportion of its weight is supported either by a road
tractor or by a detachable front axle assembly known as a
dolly. A semi-trailer 1s normally equipped with legs, which
can be lowered to support it when it is uncoupled. A
road tractor couple to a semi-trailer is often called a semi-
trailer truck or
Semitrailer).

The automobile semi-trailers life cycle simulation
is based onto process of damage “assigning” to a

serml

(http://en. wikipedia.org/wiki/

given area from the list of previously selected
possible hazard locations, that bemng grounded onto
statistical data and operational dynamics from one side
and stochastic conditions of operation from another

(Balan, 1999).
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As such assigning represents several variables
threshold function (determined and stochastic ones) and
with respect to: different factors” specific influence onto
these variables, that influence varied degree by the
measure of damages accumulation and repairs effected,
to simulate the semi-trailers frame life cycle we used the
neural networks logic mathematical apparatus.

The threshold logic allows structuring devices with

n binary inputs x,,....X,

y=laty gx =n,y=0at) &x <n (1)

=1 1=1

and one output y, which function follows to such relation:
Where the i-th input weight £ and the threshold 1) are
given as finite real numbers. Such devices, conventionally
shown at Fig. 1, are known as threshold elements.

The arbitrary set of weight & and the threshold v, as
every threshold element always can be correlated with
some logic function lknown as threshold function.
Nevertheless not every logic function can be realised
through one threshold element. That 1s why the first
problem of threshold logic consists i assigning a class of
threshold functions with determimng the structure of
threshold element implementing the threshold function
(threshold synthesis).  Provided
implementation is impossible or inexpedient; we’ll face the
second problem of scheme synthesis with threshold
elements.

Tmportant constituent of threshold logic is the formal
neuron (Fig. 1 and 2). Neuwron’s inputs, dendrites,

element such

mfluence its body through two types of fibres: these
exciting with weight 1 and these inhibitory, with weight-1.
The point of fibre-to newon body contact 15 called a
synapse (exciting fibres” synapses are marked with bold
points). The output 15 located immediately at the neuron
body. Apart that there occur the denymg fibres with
termination at denied fibre, through which signal arrival is
blocked when denying input excited (Fig. 4; denied is
input’s x, fibre at x; =1). Just like threshold element the
neuron has characteristic threshold m, at that it excites
(y = 1) when the weight function, corresponding to the
given input variables’ values set is not less that 1 value.
So, the neuron shown at Fig. 1 and 2 will be excited when
sets (0,1,0), (1,0,0),(1,0,1),(1,1,0) and (1,1,1).

As a distinet from threshold elements, with one
formal neuron we can implement any logic function. For
neuron and neural schemes synthesis usual practice 1s to
involve Venn's diagrams and their modifications . at that
the goal consists m obtaimng schemes, where total fibres
number is minimum (here implementing the process with

only one neural scheme would be preferable when
compared to only one neuron). These last years rumming
the formal neuron reached to become universal model
both in cybernetics and some other engineering fields.
The more complete model of abstract neuron introduces
time-dependent relations: signals passage through
synapses with one time-step delay and the threshold
value represent discrete time function (Sigorsky, 1975).

The research (Balan, 1999) suggests a system of
complex engineering objects’ operation prognosis
based onto processing the current data received from
subsystems executing global study of object condition at
different stages of its life cycle: From project design up to
withdrawal from operation.

X
X
x; x5
Fig. 1: Logic network elements 1- threshold element; 2-
formal neuron

Ground test

Fig. 2: Scheme of cell model
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Let we shape such system model with neural logic
auxiliary. Such model cell scheme is given at Fig. 2. it
consists of three threshold elements implementing the
following functions:

y-binary random-number generator (0 either 1)
{

v, =1(z, 2. £, &),

YE = f(23= Z4= ES: E.*I):

y = (%, X X5)

XTY X TY;

x, =0, if y,=1
1,if y,=0,y=1.

Denominations of the given at Fig. 2:

X,,- Binary signal from tension calculation unit;

X,,- Binary signal from test bench unit;

X,,- Binary signal from ground test unit;

X,- Binary signal from client’s data processing unit;
E,- Weight of signal from tension calculation unit;
E,.- Weight of signal from test bench unit;

E.,- Weight of signal from ground test unit;

E,.- Weight of signal from client’s data processing unit;
M- Excitation threshold,

y- Binary excitation signal.

The input cells are

leocalculated: ZZ=0measurecl: ZE=Pgmundrtest: Z4=Pclientrdata:

Where

Oqeumeg - Calculated tension at corresponding damaged
point,

Ooonre-  Measured tension at corresponding damaged
point,

P ot~ Beventuality of damage calculated by ground-
test data,

Puiorane- Eventuality of damage calculated by data from
client.

The cell threshold element No 1 implements the
function:

y, =0 at
2K
x&§+gf,=—"21—=<m 3
Gcalcul + Grated
y, =1 at
2K
X 4z, =—>m 4
Gcalcul + Gratsd
Where

E, - Weight of parameter at z, input,
E, - Weight of parameter at z, input,

Table 1: Cell threshold element No 3 (neuron) states

X X Xz Weighted
State no. +1 -1 +1  sumn* Thresholdn  Axony
1 0 0 0 0 1 0
2 1 0 0 1 1 1
3 0 1 0 -1 1 0
4 0 0 1 1 1 1
5 0 1 1 0 1 0
& 1 0 1 2 1 1
7 1 1 0 -1 1 0
8 1 1 1 0 1 0

Ki- Resource coefficient by mechanical tension.
The cell threshold element No 2 implements the
function:

y, =0 at

ZBEJS + Z4E-*4 = Pratedcground—test + P:lient—datacclient—data < T]Z (5)

vy, =1 at

ZBEJS + Z4E-*4 = Pratedcground—test + P:lient—datacclient—data = T]Z (6)

Where

Comntee - weight coefficient of damage probability
obtained at ground-test;

Ciorana - Weight coefficient of damage probability
obtained at statistical processing of data
received from clients.

The neuron 3 function is given at Table 1.

Binary mputs x, x, and x, have the followmng content:

x,- (BExciting input) receives binary signal from random
number generator:

1- Ifrandom number comncides to the cell number,

0- If contrarily,

X,- (Inhibiting input) receives binary signal from
threshold element No 1:

1- If weighted average sum of calculated and measured
mechamical tensions at eventual damage point 1s less
that tolerated tension (with reference to resource
coefficient K;)

0- If contrarily,

% (Bxciting mput) receives binary signal from threshold
element No 2:

1-  If weighted average sum of calculated and measured
mechanical tensions at eventual damage point
exceeds either equal to the given threshold value,

0- Tf contrarily.

As wesee from Table 1, the neuron’s excitation
(y =1) occurs when 2, 4 and 6 states, 1d. e., when at the
least one factor is eventual (x,) either comnected to the
real events (x;), assigns the damage to a given location if
at that the mechanical tension level 15 sufficiently
significant (x,) for not hindering that process.
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ohjects

Damages "accumulator”

Fig. 3: Scheme of semitrailer frame damages accumulation

model functioning on the basis of neural
logic
'y
5
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0
1 ] B
I T »

Fig. 4: Correlation of weight coefficients £, _, & by the
measure of clients’ data accumulation

The general model of semitrailer frame damages
accumulation, on the basis of neural logic is shaped with
the use of elements shown at Fig. 2. Such model
functioning scheme is given at Fig. 3. It includes the
following levels:

¢ “Net stochastic” level (random-values generator),

¢ Object’s current state level,

¢+ Calculated level (models
processes),

+  Empirical level (real object’s internal processes),

*  Logic level (neural network).

of object’s internal

The model functions in such a way:

The random-values generator produces a sequential
real number W from the series 1... N, where N-quantity of
considered points of damage at the object. Accordingly
to that, the n-th neural cell mput x;, (Fig.3) receives a
signal, logic “unit”.

v, =1, if W=n;
y,= 0 if W=/=n

Calculation level is given with correlation:

2 M)

Gcalcul +0

m =x& +2,8E; =

rated

Where m* - weighted sum compared to the threshold
value m;:

n~1/[o].

When researching it was adopted:£,= £,=0,5/K,
Id. e., the influence of calculated and bench test internal
mechamical tensions inside of frame structure was
considered in equilibrium. As a rule the client can select
another correlation between weight coefficients £, and £,
corresponding to his confidence level seeking the
calculations” and bench tests’ results. Provided the bench
test has not been effected , £, 1is equalised to zero.

The object current state level corresponds to the real
dynamics of operation being given with formula:

T]; =285+ 2,8, = PGy + P0G ®)
where 1,* - weighted sum compared to the threshold
value 1, and to the coefficients.

C; and C, values. As £;.C, ; £,C,, these coefficients
represent the weights specifying the
probabilities for such or ancther from considered areas

values of

damage, resulting from ground-test data (P,,,4..) and the
probabilities of the same pomts damaging resulting from
clients” data processing (P » the 1ssues being
compared with probability threshold value 1);.

CONCLUSION

At the model practical application after concluding an
agreement to a client referring to a new object there were
effected accelerated prelimmary ground tests of
automotive vehicle. At this period the £, value when
simulation has been equalised to zero. Initial stage
completed, when the “centre” started receiving the
clients’ data, the £ value begin increasing at the same
time that £; decreasing up to the point where the data
source for second threshold element passes completely to
the clients sector (Fig. 4.).

With reference to that the neuron excitation
threshold n=1 and with respect to weight coefficients, the
logic level 1s given by:
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X, X 1%, =1

The neural network teaching comnsists i Blocking
several neural cells by the measure of corresponding
damaged areas’ complete disabling; accounting of
load redistribution between completely enabled and
partially disabled areas and also the corresponding
elements” threshold values specification, that serving to
adecuate representation of increasing data massif onto
simulated objects’ real operational parameters with the
sougn neural model.
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