M Journal of Engineering and Applied Sciences 2 (10): 1563-1564, 2007
We]l

EAL . AT ¥ [SSN: 1816-949X
Online © Medwell Journals, 2007

Providing Fault-Tolerance of Distributed Systems by Process-to-Processor Reassignment

Oleg Viktorov
P.OBox 1764, Amman 11821, Jordan

Abstract: The study describes the method which provides fault tolerance of distributed systems with not less
than four processing modules. The process-to-processor reassignment method is based on process relocation,
intermediate results comparison and analysis of special tables. Tmplementation of this method reduces three
times mcorrect result probability compared with voting method.

Key words: Fault-tolerance, distributed systems, process-to-processor reassignment algorithm, redundancy,

voting, check pomt, scheduling

INTRODUCTION

Essentially all fault-tolerant systems achieve fault-
tolerance by using redundant components in one or
another form. Some system use duplicate components and
compare thewr outputs to check the validity of the
computation (Jalote, 1994). Other systems use triple
modular redundancy with voting, so special voting logic
(majority element) compare the component outputs and
accept the majority outputs values as correct (Neumann,
1956, Jalote, 1994; Xu and Bruck, 1998; Hardekopf et al.,
2001). The main disadvantage of such systems with
voting is the failure of majority element causes the failure
of the whole system. Another drawback of conventional
system with duplication or voting is that they can not
locate the faulty components. To reconfigure distributed
system, diagnostic functions have to be implemented in
the system. An attempt to provide diagnostics using
unreliable failure detectors was presented by Chandra and
Toueg (1996). In distributed systems with number of
processing modules not less than four and one-to-two
process-to-processor assignment process shuffling
method can be used to detect faulty components and to
identify the hard or soft processor failure.

PROCESS SHUFFLING METHOD

Tet us consider that suggested method can be
unplemented in the distributed system which consists of
8 processing medules A, B, C, D, E, F, G, H and run 4
processes P\, P,, P;, P,. Suppose process-to processor
assignment at the i-1 check point step is as follows:

P = (A, B),
P,” = (C, D
P = (B, F);
P (G, H).

We are gomg to use for diagnostics of faulty
processing modules the mismatch tables which columns
are marked with processing models and rows with i -1 and
i check points. The table contains the results of
comparison. If the pair of processing modules (A,B)
produces the same result at the step i, the squares (i,A)
and (1,B) in mismatch table are marks with zeros. If there is
a mismatch in results of processing modules (C,D) at the
step 1, the squares (1,C) and (1,D) i mismatch table are
marks with ones (Table 1).

If there 1s a mismatch m the results of processing
modules m the pair (C, D), then at the next step 1+1 the
distributed system reassigns processes to the processing
modules 1n such way that the processing modules with
mismatched results will be separated.

P = (A B)
P (C),
P "~ (D, E);
P = (G, H).

With the assumption of single failure the four
variants of mismatch table are presented i (Table 2-5).

Table 1: Mismatch table

A B C D E F G H
i-1 0 0 0 0 0 0 0 0
i 0 0 1 1 0 0 0 0

Table 2: Processing module D is faulty

A B C D E F G H
i 0 0 1 1 0 0 0 0
i+l 0 0 0 1 1 0 0 0

Table 3: Processing module C is faulty

A B C D E F G H
i 0 0 1 1 0 0 0 0
i+l 0 0 1 0 0 1 0 0

1563

J. Eng. Applied Sci., 2 (10): 1563-1564, 2007

Table 4: Soft failure of C (or D)

Table 6: Probability of incomrect result for the process shuftling system

A B C D E F G H Process shuffling system Voting system
i 0 0 1 1 0 0 0 0 Probability of q%(i)/AN"-1) 33(V/N"- 1)
i+l 0 0 0 0 0 0 0 0 incorrect result . b a bl
_ System SN -i)2]3) P j 57N - 3] Bift + JT)
Table 5: Double failure C and D performance i=4 j=0 i=4 =0
A B C D E F G H Where,
i 0 0 1 1 0 0 0 0 q{I) = Probability of getting incorrect result at the moment t;
itl 0 0 1 1 1 1 0 0 N* = Tthe number of possible result variants;
N = No. of processing modules;
. . .. A = System degradation level at the moment £,
Given certain probability to get correct result we can a = Acceptable level of degradation (a =N —3);
choose a proper value of b (the number of check points). T = Processing interval lasting;
Ifb=ta system needs t + 1 check points (Steps) to finish P = Probability of processing module correct execution;
. . = 1-F
processes without repeating some steps. Acceptance of g = No. of check points
multiple failure models brings more variants for mismatch ~ p; = min B+ jT), Pt + G + LT

tables and necessity of steps repetiton. So, number of
process shuffling algorithms with different number of
steps and repetitions can be suggested. An algorithm for
single failure model without repetition is presented below:

Process shuffling algorithm

1. Setj=h;
2. Run the process on two processing modules during
one step;

3. If the results are different then fill n the proper
squares with ones else go to step 9,

4. Process execution is postponed for next step;

5. Ifj=bgotosteps,

6. Ifitis hard failure then eliminate the faulty processor
from consideration;

7. Correct the state pointer of processing module;

8. Assign processes to new pairs of processing
modules and go to step 10,

9. Fill in mismatch table with zeros;

10. If j = Othen go to step 12;

11. Setj=j-1 gotostep2;

12. End.

Process shuftling algorithm can be implemented as a
process (task) scheduling procedure which is mun by
operating system. Process scheduling m distributed
systems have been discussed in the following references
(Ishfaq and Kafil, 1997; Hong and Goo, 2005).

RESULTS AND DISCUSSION

New process shuffling algorithm for single failure
model has been presented. OS assigns each process to
the pair of processors. In case of result mismatch it
reassighs the processes to a new pair of processing
modules and creates a mismatch table for further analysis.
Algorithm can define the type of failure and detect a
faulty processing module to provide system fault-
tolerance.

Expression, presented in the Table 6, shows that
probability of incorrect result for the process shuffling
system is 3 times less than for the voting system. System
performance of the process shuffling system is 1.5 times
higher than the performance of the system with triple
redundancy (voting system). The main
advantage of process shuffling systems 1s their ability to
detect processor failures and reassign processes among
unfaulty processing elements again.

modular

REFERENCES

Chandra, T.D. and S. Toueg, 1996. Unreliable Failure
Detectors for Reliable Distributed Systems. J. ACM.
(TACM)., 43: 225-267.

Hardekopt, B. et al., 2001. Secure and fault-tolerant voting
in distributed systems, aerospace conference. TEEE.
Proc., 3: 1117-1126.

Hong, Y.S. and HW. Goo, 2005. A fault-tolerant
scheduling scheme for hybrid tasks in distributed
real-time systems. 3rd IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous
Systems, 1: 3-6.

Ishfag, A. and M. Kafil, 1997. A parallel algorithm for
optimal task assignment in distributed systems.
Advances in Parallel and Distributed Computing
Conference (APDC)., 1: 284.

Talote, P., 1994. Fault-tolerance in distributed systems.
PTR Prentice-Hall, NT., pp: 448.

Von, Neumann, ., 1956. Probabilistic logic and synthesis
of reliable organisms from unreliable components.

Automata Studies, Princeton University Press,

34: 43-9%.
Xu, L. and J. Bruck, 1998. Determimstic Voting in
Distributed Systems Using Ermror-correcting

Codes. IEEE. Trans. Parallel Distributed Sys., 9:
823-824.

1564

