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Abstract: This study deals with the problem of disturbance compensation by means of a novel feedforward
control procedure. It is based in the association of a conventional feedback control action with the feedforward
action consisting in the prediction of the steady state control effort necessary to keep the controlled plant
under setpoint requirements. Such steady state control effort 1s achieved by means of a neural network based
mverse model which actuates as a control effort predictor. Predictors are based mn an mverse neural network
steady state plant model. Tmplementation procedure is carried out with the facilities supplied by a
FOUNDATION™ Fieldbus compliant tool which manage databases, neural network structures and baclk-

propagation traning algorithms.
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INTRODUCTION

Most of the controller design methods are based on
the plant models. Model based control systems are
effective for making local process changes within a
specific range of operation (Antsalklis and Passino, 1993).
However, the existence of highly non-linear relationships
between process mput/output variables have bogged
down all efforts to come up with reliable mathematical
models mainly for large scale plants. Tn addition, the old
inferred property predictors are neither sufficiently
accurate nor reliable for utilisation of advanced control
applications (Ray, 1986). On the other hand, mput-output
data-based design methods have been proposed by many
researchers (Bhat et al., 1990). These methods do not
depend on the analytical plant model and utilise /0 data
only. Therefore, they are inherently robust against plant
model uncertainty and sometimes give us systematic
approach to steady state prediction response.
Additionally, the implementation of intelligent control
technology based on soft computing methodologies such
as Neural Networks (NN) and Genetic Algorithms (GA)
(Homik et al., 1989; Funahashi, 1989; Cybenko, 1989,
Hornik et al., 1990; Narendra and Parthasarathy, 1990,
Lewis et al., 1999) can remarkably enhance the regulatory
and advanced control capabilities of many industrial
processes such as o1l refineries or chemical engineering
processes (Bawazeer, 1996, Berkam et al., 1991).

This research deals with disturbance compensation
using a feedforward strategy. Conventional feedforward
compensation compersates disturbances mamly due to
load wvariations (Goodwin et al, 2001; Luyben, 1989;
Smith and Corripio, 1990, Shynsky, 1988). In the case
of distwrbances to manipulated variable, cascade
compensation 18 currently being applied (Luyben, 1989,
Smith and Corripio, 1990; Shynsky, 1988). During last two
decades an alternative method known as model predictive
control has successfully been applied to a wide range of
industrial processes (Cutler and Ramaker, 1979; Ou and
Rhinehart, 2003). Some of the most relevant characteristics
are its ability to compensate disturbances to load and
manipulated variables, large dead times and couplings.

The purpose of this research, 13 to describe the
methodology used in a novel predictive feedforward
control task destined to be applied on multivanable
control loops affected by distuwrbances and internal
couplings. The unplementation of a neural network model
using back propagation algorithm (Rosenblatt, 1961,
Fausett, 1994; Demuth and Beale, 1998) based on
collection of real-time data for a steady state operation
condition 1s presented. The main relevant topic of the
contribution in this research is the utilisation of Artificial
Neural Networks (ANN) technology for the prediction of
control effort in non-linear multivariable, disturbed
and coupled processes, common in a wide scenario of
industrial controlled plants (Weidong et al, 2004;
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Pinsopon et al., 1999; Campos and Lewis, 1999). The
proposed back-propagation neural networks architectures
can accurately predict various properties associated with
steady state plant behaviour. The back-propagation
network is the most popular feedforward predictive
network deployed in process industries. The back-
that all processing
elements and commections are somewhat responsible for
the difference of expected output and the actual output.
The training algorithm is an iterative gradient descent
algorithm designed to mimimise the mean square error
(RMS) between the actual output and the desired output.
It requires a continuous differentiable non-linear search

propagation network assumes

space, which will be achieved by storing proper steady
state input/output plant data nto a database.

Disturbances to process control enter mamly by the
manipulated variable due to some changes in its
characteristics, by the process variable through load
changes
multivariable process control. Disturbances rejection 1s an
objective of all process control algorithms. To eliminate
the effect of distuwrbances on manipulated variable
cascade control strategy 1s being conventionally applied.
To eliminate the effects of disturbances due to load
changes, feedforward compensation strategies are
conventionally applied. To remove the interaction

and by coupled internal variables m a

between loops or in order to compensate the effect of
coupling variables, decoupling networks are typically
applied Actually, a well known alternative to mentioned
strategies is the Model Predictive Control (MPC)
algorithm in any of its multiple versions. In cases where
non linearity associated to parameter variations,
couplings and all types of disturbances are relevant, no
general control algorithm could perform satisfactory and
due to such reason further research looking for new
contributions 1s appreciated and proposed Followimng
sections will concern with neural network based predictor
definitions, proposed control algorithm description,
application examples, results and conclusions.

NEURAL NETWORK BASED PREDICTION

Causal processes can be modelled by means of
universal functional approximation devices. A modelling
property of causality is used in this research to predict
steady state input  output relationships
(Lippmann, 1987; Nekovie and Sun, 1995; Parlos et al.,
1994).

process

Definition 1: A steady state predictor i1s defined as a
causal dynamic process function, modelled from steady
state data.

Proposition 1: A excited predictor defined under
defimition 1, responds in advance, a time equal to the
prediction horizon.

Definition 2: The prediction horizon 1s a time equal to the
transient response of the predicted variable.

Expanding the defimtion to transient states, direct
dynamics determine the end-effector higher derivative
(acceleration in mechanical systems), resulting from the
given joint exciting inputs (torques in mechanical
systems) and the possible end-effector forces outputs,
while inverse dynamics determine the exciting inputs
(joint torques) which are needed to generate the motion
specified by the highest
(acceleration), once the possible end-effector forces
{output and successive derivatives) are known.

In order to reaffirm the concept of Neural Network
Based Modelling (NNBM) prediction, let us consider a
causal process where V| is the output variable and V
Vi, ...,V are input variables and P is a set of process
parameters. Under such structure, the following steady
state inputs/output relationship may be expressed:

end-effector derivative

V, = £(V,, Ve, V,,P) (la)

ERASE]

Given a database contaimng steady state data
supplied from the process defined by expression (1),

following relationships can be stated as output
predictions:

V=V, V- V. P)

vz = f(v\fl:vb'":vN’P)

V, =V, V,,-.V,,P) (1b)

Where, V, = f{V,;, V..., Vi P) 1s a Direct Model Predictor
(DMP), while V, = f(V |, V..., V. P), Vo, = (V,, V... .V, P)
and V. = f(V, V,,,...,V,P) are Inverse Model Predictors
(IMP).

Practical conditions for steady state inverse/direct
models deals with steady state action/reaction balances
such as mass flow rate balance, energy flow rate balance,
force/torque/power balances and in general the
mathematical balance of any steady state cause-effect
equiibrium condition. Consequently, a steady state
predictor may be defined as a umversal functional
approximation device according definition (1b), where, all
variables can act as input or output variables depending
on modelling requirements. This concept means that for
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instance, if a process is described by a function such as
the one defined by expression (la), an IMP not unique,

could be defined as:

V, =LV, V., Vi P) (lc)
Where the process output 1s V| and the predictor output
is V,. Furthermore, in this case, V, is acting as an input
variable to the predictor.

Feedforward control, which in the
computation of the manipulated variable from the
measurement of disturbances (most often corrected by a
PID or a model predictive controller), 1s used in present
work to predict the future control effort that will satisfy
the steady state control demand, which means the control
effort that will be demanded after transient state time
response has expired.

The most obviously approach to implement the
principle of additive feedforward 1s to use a dynamic
feedforward. That is, an inverse model is trained. The
feedforward component of the control input is then
composed by substituting the system output for
corresponding setpoint value (Madsen, 1995). If the
inverse model is stable, the insertion of a feedforward
controller will not change the stability properties of the

consists

closed loop system. However, it might be difficult to
resolve whether or not the inverse model 1s in fact stable.
Nevertheless, every steady state mverse model 1s stable.

The concept of feedforward control by means of an
mverse model has more attractive features of practical
relevance. Since it 1s assumed that a stabilizing controller
iz available in advance, the experiment conducted to
collect a set of traimng data 1s easily performed. In
applications where an inappropriate control input can
cause damages, one can introduce the feedforward signal
gradually or conveniently filtered (Norgaard et al., 2003).

Neural networls will not be an accurate predictor
(Bawazeer and Zilouchian, 1997, 2001 ; Borman, 1989) if
operating mput/output data are outside their traimng data
range. Therefore, the trammg data set should possess
sufficient operational range including the maximum and
mimimum values for both inputs/output variables (Fausett,
1994; Demuth and Beale, 1998; DeltaV™, 1994; DeltaV ™,
2001).

Variables dimensions for Database Size (DBS) are
selected according required precision to the function
implemented on the basis of a NNBM. Usually, database
size could be defined as the product between the Number
of Variables (NV) involved in a function and Number of
Data Sets (NDS) mvolving all function variables.
According this definition, follows that

MY
NDS=]]DP
@)
MV
DBS =NV -] [DP, = NV -NDS

1=1

Where, DP, 1s the number of dataponts for variable (1) and
NV is the mumber of input and output variables including
variable parameters mvolved in a function.

Data to be acquired must satisfy the steady state
dynamic behaviour. In order to ensure such condition a
signal conditioning task by proper filtering is to be
carried out. Such signal conditioming task requires that
a variable 1s enabled to enter the database when all
inputs/output variables satisfy the condition of remaming
at steady state.

Proposition 2: Data will be enable to enter the database if
and only if all measured I/O variables remain at steady
state

Such condition may be analytically expressed as:

IF ﬁ AND % AND % AND:-.- dv, =0
dt dt dt dt
Then the data enable

(3)

Once the database 1s filled with enabled data, a
predictor based NN can be achieved by training the back
propagation NN. Prediction time horizon 1s himited by the
transient state response time.

The admitted data set into the database may be used
to obtain a steady state model (system balance) but also
to train the NN based predictor. Each tramed NN
represents a predictor, which will be called a NNBM
predictor. In order to define a steady state NNBM
predictor, the output and inputs must be defined
according the relationship (Draeger et af., 1995;
Miller et al., 1990) required between variables with
achieved data from the database.

To summarise the proposed method, the following
task will be implemented, which consists in achieving a
database contaimng the steady state process dynamics
[/O data under the scheme shown i Fig. 1. The amount
of achieved data must be representative of correct plant
operation patterns. Process mformation entering database
will flow according flag evaluation (enable or disable).
When database 1s filled with updated data, old data in
database is overwritten by new data. A large number of
valid data sets provide much better accuracy in the
training phase.

According  the predicted,
reorganisation of inputs-output sets of variables from

variable to be
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Tnput variahles: Output varishle
Manipulated (MV) Process ¥ Process Variable (FV)
Load and MV
disturbances,
Couplings
Enabled Input/Output
pracess variables .
Back-propagation o
NN training » NNBM
r v v procedure
Database >

Fig. 1: Single process continuous data acquisition, data storing and NN training phase

data contained into database must be performed in order
to initiate the training phase, where the NN output is the
variable to be predicted and the rest of function variables
are nputs.

PROPOSED FEEDFORWARD CONTROL
STRATEGY

Proposed feedforward strategy computes the
necessary steady state compensation action by means of
an IMP, keeping IMP output within a predicted value as
function of its mputs. Such algorithm compensates the
effect caused by changes in disturbance variables (load
changes, changes in characteristics of manipulated
variable and interaction of coupling variables).

Definition 3: The TMP based compensation, is defined as
the feedforward control action necessary to keep the loop
controlled variable in equilibrium contition (steady state)
under disturbances.

In order to satisfy definition 3, for an TMP to be is
used as a general disturbance compensator, it must
satisfy that its inputs are implemented by:

¢ The desired process future output for type zero
systems.

« Al estimated  disturbances
including mternal couplings.

measured and/or

Problem formulation: Practical conditions for steady
state mverse/direct models deals with steady state
action/reaction balances such as mass flow rate balance,
energy flow rate balance, force/torque/power balances
and in general the mathematical balance of any steady
state cause-effect equilibrium condition. Consequently,
the math-model of any type zero system excited by a
manipilated variable MV subjected to addictive and
multiplicative disturbances, such as load disturbances X,
mtemnal couplings X, disturbances to the mampulated
variable X, and a set of measurable process parameters

P, can be described by means of an action-reaction
balance as:

n n-1
d y+P1Hd 7}17
dt” dt”

MV =P, +---+Pl%+Pny+XN+XC (4a)

The manipulated variable is a function of the control
variable U, a set of disturbances X and a set of
parameters. So that:

MV = f(U, X,y Py ) (4b)
Where Py, are the measurable parameters involved in the

final control element.
The steady state condition requires that:

U, X, B )= (v, X X B (5a)

Consequently, a feedforward control action is then
generated by using the IMP concept:

U =1y, X Koo K B P (5b)

The equilibrium condition at nominal operating point
generated by a feedforward action requires that the
controlled variable be at setpoint values, yielding:

U = (¥ap- X Koo Xy B By (6a)

Where U; is the feedforward control signal and vy, is the
controlled variable setpoint.
If multiplicative disturbances are to be neglected:

Uy = £y e Xy Xeo Xy (6b)

according definition 3, the desired future output is the
control loop setpomt. The sub-algorithm responsible for
generating the compensation action U, which satisfies the
definition 3 and 4 is illustrated by means of Fig. 2.
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Ysr —| Inverse
Xy —»| NNEM

U, Predictedand
X, —| Predictor

—— compensating
variable (L))

Fig. 2: Achieving the compensation action using an IMP

_po_. Process
+
To
.............................. .
Inverse i
NNEM Predicted and |
- compensating 1
Predictor variable (U) !
- i
Fig. 3: The control algorithm: Feedback added to

feedforward compensation implemented by an IMP

To complete the proposed control algorithm,
achieved control action U; generated by the IMP, is added
to the output of a conventional feedback control
algorithm as shown in Fig. 3, satisfying a feedforward
strategy. The scheme depicted in Fig. 3 shows that the
control effort is due to a feedforward action associated to
a feedback control action responsible for responsible for
correcting control error.

Compared with a conventional feedback-feedforward
control philosophy, in this contribution the main control
function 1s exerted in a feedforward mode by an IMP
where the feedback controller is a control error corrector.

Applying such feedforward control action on the
basis of NNBM predictor implemented as an IMP requires
two conditions:

¢ The correct acquisition or estimate of real time data
concerning all process inputs/output variables.

* The best possible approach to the process steady
state model, which demands a training phase carried
out with steady state correct data stored into a
database.

APPLICATION PROCEDURE

Coupledlevel and temperature process control: Proposed
application is based on a Foundation™ Fieldbus based
control system installed on a multivariable pilot plant. At
such pilot plant, exercises on individual level or
temperature control and both coupled loops are possible.

4 —
T, —»| Tank with
a heat

% ——| exchanger

LG—Pp

—»L

Fig. 4. Coupled process based on a heater mserted mto a
variable level CSTR

Production
process

Fig. 5: Pilot plant configured for feeding a fluid line to a
production process

The main objective of this application 1s to compare
two control algorithms: conventional decoupling against
neural network based compensation, which means to
compare an adaptive scheme with a fixed feedforward
decoupling network associated to PID feedback
controllers.

Process description: The process consists in a heat
exchanger nserted mto a closed tank with variable level
and temperature or a Continuous Stirred Tarnk Reactor
(CSTR), where the output temperature T is a function of
several mput varables q, T, q as illustrated by
expression (8) under the structure shown in Fig. 4 and 5.

T:f(qgaT,sqi) (8)
L="1{q,.q)

Where q, 1s the supply energy flow rate or manipulated
variable, g 1s the mput fluud flow rate or process feed
stream flow rate, T; is the input fluid temperature, q, is the
output flow rate and T and L. are the output temperature
and tank level, respectively.

The pilot plant is configured to operate as a heat
exchanger into a variable level tank process control. At
same time, as consequence of actual tank level changes,
mainly due to setpoint changes, pressure into the tanlk is
also a variable. Pressure contributes to the process as a
non-linear characteristic which exerts some influence on
feed stream q,. Let us consider an input fhud line to
a production process. In order to keep some capacity
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Decoupling function:
4T, CelfV;)
4

h
= el ot O[] o

L Qn

1
% || Temp.
ALB sensor
N 8+1
Level and temperature process

Fig. 6: Conventional PID level and temperature control associated to a decoupling network

demand from mentioned production process, a storing
tank filed till certain setpomt level is being mserted n
the feed fluid line. Furthermore, production process
requires that feed fluid enter at a specified setpoint
temperature Ty

According to Fig. 6, U and U; are control variables
to level and temperature process variables, f{V,), f(Vy) and
f(V,) are global valve characteristics for feed stream or
mput flud to process line and heating system,
respectively q, 1s the fluid mass flow rate of the feed
stream with temperature T; and specific heat capacity Ce,
M is the actual stored fluid into the tank and T is the
output temperature, process or controlled variable.

The approximate analytic model of described process
is approached as follows:

Mass balance

dm dL
g = A 9)
q1 qﬂ dt dT

Steady state energy balance

-9, =0

Qirsgy = Uy, TV )as

Qoezey = Uy -V )

Up (Ve = Ug - £V )y

(10)

Enelgy balance
q e T =— (1 1)
& q1C 4 (CBM )+q0.Ce.

or

dT dM
q.+q;-Ce-T=Ce-M-—+Ce-T-—+4q,-Ce-T=
dt dt
dT
:Ce-M-E+Ce-T(ql—qD)+qD -Ce-T=

:Ce-M-d—T+qi-Ce-T
dt

which means that

Up-f(Vp)-+U -F(V)-Ce-

dT (12)
T =Co-M-— -+ U, f(V,)-Ce-T
Where
q; :UL'f(VL) (13)
and
f(V)=1,(L) (14)
with

fIL(t)) =

- ; 5.0, B2 as)
S+ 1 o

Where T, is the valve time constant, Cy; 1s the valve flow
coefficient, P; 1s the pressure before the feed valve, P 1s
the actual approximated pressure into the tank, L. is the
total height of the tank and & is the feed stream fluid
density. Approaching the value of P requires the
consideration of its dependence from variable T.
Nevertheless, considering that T varies slowly and that
deviation of its nominal point will rarely occur, then could
be assumed as:
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| A (16)

Such assumption which contributes with some
modelling error don’t affect the control problem because
such math models will not be applied. Instead, the
proposed NNBM predictors are to be used.

Furthermore, the output valve model is such that

q, =U,-f(V,)) (17
Where
fv,)=1£,(L) (18)
with
f2<L<t)>—Twéﬂa-cm'/@ug]d (19)
so that

1 ’2(P—P)
=U §.C 22 20T, (20)
q, DTVDS+1 Vo 5 84

which means that any command value of signal U, on the
output valve as result of a change in fluid demand, 15 a
non-linear disturbance to the level control loop and
consequently, to the temperature loop due to coupling
effect of level loop on temperature loop. Consequently the
system is highly non-linear. In the above expressions Ty,
15 the output valve time constant, Cyp 18 the valve flow
coefficient and P, is the downstream pressure after the
output valve.

The dynamics of the manipulated variable to
temperature control loop is affected by the control valve
dynamics as

q,=U,-C, -AT-f(V,) 2D

Where the mass flow rate 1s approached as

1 [2aP
f(V)=——C,.J—
(V) TerS+1 7Y 3

Where C, 18 the specific heat of a heating fluid (water),
T.7 18 the valve time constant, C 15 the valve flow
coefficient, AP is the pressure gradient of the heating
valve, AT is the temperature gradient of the heater tube
bundle.

Steady state energy balance
U, -F(V, ) + Uy -F(V, )y -Ce-T —q, -Ce-T=0 (22)
U, =(q,-Ce-T—U_-f(V,),-Ce - TYF(V,), (23)
or
q.+q,-Ce-(T-T)=q,+q,-Ce-(T-T)=0 (24)
and consequently,
U, =q;-Ce-(T—T )/ F(V, )y (25)

Conventional decoupling control: Tn this research, it will
be compared a conventional control scheme with
proposed control strategy, via an application. According
described model, conventional control scheme i1s shown
inFig. 6 where a decoupling network is being implemented
to cancel the effects of interactions between level control
loop with temperature control loop. Under such scheme,
if fluid flow rate ¢ or its temperature T, changes, it does
not affect the temperature control loop due to the
compensation action of a model based decoupling
function. So that, PID control actions will reacts only
against changes in temperature setpoint or changes in
output temperature. If non-linearity or modelling error of
coupled process 1s negligible, then, compensation by
means of a decoupling network 1s expected to be effective
and perhaps the best method due to its simplicity. This
case 18 a god paradigm if process variables remain at its
nominal operating points.

In order to show how the proposed adaptive scheme
improves against a fixed feedforward decoupling, a
comparative analysis on the controlled pilot plant is to be
Thus, for decoupling purposes, the
conventional scheme 1s achieved from (12) by assuming
amodel with M = A- T, - § where A is the constant cross-
sectional area of the tank, L is the actual level and d is the
fluid density.

Level loop 18

carried out.

mherently decoupled from
temperature loop as shown in Fig. & because temperature
does not influence the level control loop. So that,
decoupling level control loop from temperature loop has
no sense. Decoupling  function D; on temperature
loop is applied under  the scheme accordingto the
balance

D.-f(V,)+Ce-q -T =0 (26)

1
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which vields

p --Lea T 27)
f(Ve)

Decoupling by means of function (26) 1s effective for
temperature variations T, but is not for fluid flow rate
variation ¢; because variations of ¢; are influencing the
temperature loop gam by 1/( g.Ce) and the pole place n
the rate M/q, This means that disturbances to input stream
fluid g, can not be physically decoupled.

Tt must be taken into account that complete dynamic
decoupling is not possible due to the properties of
causality and physical realisability on servo-valves and
sensors. In other words, ¢ and T; must be measured and
updated every sample cycle. Such measuring task is
filtered by the mherent time constant of sensors which
contributes to the dynamics with some delay.
Furthermore, the actuator servo-valve operates with
certain inherent delay. Both delays due to sensors and
actuator are responsible for a total delay on the
decoupling variable. Consequently, dynamic decoupling
is sometimes efficient and static decoupling is only
efficient at steady state. Figure 7 shows the response
under disturbences compensated by means of
conventional methods.

For experimentation purposes, process is started
under the scheme depicted in Fig. 6 where level
setpomnt 18 fixed at 05 m and temperature.
setpoint 18 fixed at 42°C, with water as feed
stream and a constant flow rate demand of 0.4
kg s~ After 600 sec, flow rate demand is increased till 1
kg s™'. After 1000 sec a step input to the level setpoint is
applied and its response recorded. Under visual
inspection, such disturbances (flow rate demand and level
setpoint) affect scarcely to the loop temperature. By
running the conventional control scheme under a fixed
feedforward decoupling network, the results shown in
this study.

il
|
|
|

/

Time (s) 20

Level (m/10), Temperature (°C)

o
OR—'——'—
=1 'l P P I Y L I L e

Fig. 7. The temperature and level output responses under
disturbances in level control loop

Proposed adaptive algorithm: Tn order to implement
proposed control strategy, steady state data has been

stored into a database under some nominal operating
conditions, which was used in training the compensator
(IMP) and the process model (NNBM). Selected inputs to
database are those inputs identified as potentially
influencing the process dynamics. Trammg algorithm
(DeltaV) identify the mputs that are influencing the
process dynamics and consequently are most significant
to be used in traming the neural networks.

If disturbances to mamipulated variable g, exists, or
are to be taken into account, then, the corresponding
NNBM predictor has the structure shown in ig.8a and
b. On the other hand, if no disturbances assists, or are not
considered then the NNBM predictor results very much
simple as shown in Fig. 8¢ and d. The structure adopted
in Fig. 8 and d is implemented as the feedforward
controller applied for experimentation purposes in this
research.

Data into database must contain the possible range
of vanation for T, Ti, q, and g, . Furthermore, acquiring
proper data requires going outside from the current
operating pouts. According mentioned constraints, pilot
plant data acquisition limits are shown in Table 1. Such
limits are the maximum and minimum values between them,
variables must be changed to create a consistent data set
into the database.

Figure 9 shows the proposed alternative scheme to
be compared against a fixed feedforward decoupling
shown in Fig. 6 Coupling variables ¢ and external
disturbances T, are included into IMP feedforward
compensator. At IMP feedforward compensation for
level control loop level setpoint is not a relevant
input. So that, such TMP uses only the flow sensor as
operating mput. Decoupling action is inherent to IMP
compensation.

For experimental purposes, the pilot plant is started
by running the proposed control scheme depicted
with Fig. 9 with water as process feed stream. After
800 sec (steady state) demanded flow rate is changed from
0.4-1.0kg s As in the case of fixed decoupling example,
such disturbance affects scarcely to the controlled
variable (temperature). After 1000 sec level setpoint 1s
changed from 0.5-1 m. Results are shown in Fig. 10.
Reaction of this strategy to a change in flow demand at

Table 1: Pilat plant operating data lirnits

Variables Limits Units
T 20-150 C
Ti 20-40 C
q 0.25-1.0 kgs!
Qo 0.25-1.0 kgs!
Uc 0-100 %
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U: —» [NNBM Tw —»[NNBM
AP —» AP — u, Ur—>[NNBM |1 Te —NRBM | U,
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Fig. 8: The structure of plant model and compensator model

Level
gensor|

Fig. 9: Adaptive level and temperature control using IMP compensation and model error detection with NNBM

e T Ve
g
3
3 4
§of
0 Time (s) 2000

Fig. 10: The time response of temperature and level
control loops under disturbances in level control
for the proposed adaptive feedforward control
scheme

time equal to 800 sec 1s correct and the response to
setpoint changes is better than the conventional case.

Characteristics of database: Table 2 shows the database
structure where data has been stored from plant operating
conditions. The database must contain all data related to
the steady state input output variables, which are loop
represented in Table 2. Database data represents the
function T = f(qy, T1, qe).

Because backpropagation based neural networks
are good interpolators, database for NNBM2 is structured
such that for every 1/O variable only four representative
datapoints (every 33.3% of variable range) are acquired.

Table 2: Database for heat exchanger steady state dynamics

Ti ge 20 30 40 50

qi = 0.25kgs™!

10 29.60 39.60 49.60 59.60
20 39.00 49.00 59.00 69.00
30 48.70 58.70 68.70 88.70
40 58.30 68.30 78.30 88.30
qi = 0.50kgs™!

10 24.80 34.80 44.80 54.80
20 29.60 39.60 49.60 59.60
30 34.35 44.35 54.35 64.35
40 39.00 49.00 59.00 69.00
qi = 0.75kgs™!

10 23.20 3320 43.20 53.20
20 26.40 36.40 46.40 56.40
30 29.60 39.60 49.50 59.60
40 32.80 42.80 52.80 62.80
qi = 1kgs™!

10 23.40 33.40 43.40 53.40
20 24.80 34.80 44.80 54.80
30 27.20 37.20 47.20 57.20
40 29.60 39.60 49.60 59.60

Discussion of results: In order to show the influence
of coupling based disturbances on temperature control,
changes i process feed stream flow demand were
applied. As a logic consequence of those changes, input
fluid g, will change commanded by level controller. Such
mamipulated variable g, 1s coupled to the temperature
control loop by means of the mput fluid temperature T1
and it will be expected to cause disturbances to the
temperature loop and the consequent deviation of
temperature from operating setpoint.
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Typically the reaction of a conventional PID
controller to any kand of disturbance, by itself 1s not able
to compensate such effects in a satisfactory way. Results
shown in Fig. 7 and 9 indicates that in both control
algorithms (fixed feedforward decoupling agamst IMP
compensation) are tolerable but not so efficient as TMP
compensator. In practice it can not be assumed that

adaptive IMP compensation 1is

better than fixed

feedforward for the case studded except when handling

load disturbances and level

setpoint

changes.

Nevertheless, fixed feedforward control showed lower
control effort against distwrbances but this topic is
prejudicial to compensate abrupt load disturbances or
setpoint changes. The most important drawback of the
adaptive IMP is the impossibility to update a database
after modelling errors were detected without going

outside from nommal plant operation pomts unless a
priori knowledge regarding plant model exists.

On  the

reacts against such disturbances

other hand, proposed control algorithm
successfully. The

compensating variables added to the outputs of feedback
control algorithms (in this case are PID’s but not
necessarily must be PID’s) are shown in Fig. 9, where after
a disturbance applied by modifying the feed stream flow
rate substantially, no abnormal response 1s noted in any
of the control loops. Furthermore, no limit cycles appear
which means a robust response.implemented by means of
a CALCI function block. For the altemative case of IMP
feedforward compensation the control sub-module is
depicted by Fig. 12.

Implementation features: Tmplementation of proposed
methodology has been carried out with the facilities
provided by a FOUNDATION™ Fieldbus compliant tool
DeltaV™ (2001). For the case of fixed feedforward
decoupling the control sub-module is depicted by Fig. 11.
Four extemal analog inputs are needed. Decoupling
network is

Proposed control algorithm (IMP compensator plus
NNBM supervisor) 1s immplemented as an alternative to

T% PID1-Level N A(i]-Supply value
T —»{BRCAL IN Outf>[JCAS E,T guuttE
Alqi @ 10) E—VAL Skl
[ ISimulsis In 0m|:—|_ CALCI #
#3 []IN1  Outl ] AO2-Heating
CIIN2  Out2 [ PID2-Level
AT (C) J_:|IN3 | L |BECAL IN Out[> :IC;IEET OMEJ
Simulate In Ot CNis FF_VAL Sl W
- — IN )
A1Z-Temp. T(C)
Shnulate_In Ou
)

Fig. 11: Layout of the sub-module of control strategy for fixed decoupling algorithm implemented with DeltaV facilities

i[Al3go] [aram | [0 J[E !
iL_Out Cut Out Out]|
e _— Y e H
"‘:I - NNILMIW = PO Temp. | | A02-Heating
amp. —p | BKCAL IN Out [»JCAS_IN Out[]
[Delay Furture ] Al-Level (m) | » |FF VAL BKCA Out [
[ Follow ] Simulate_IN Out — |y~ ,ﬁ
—r——— A02-Heating
R L] e |
[1Sample Out ] A12-Temp-T (C) FE_VAL BKCA Out
[1Delay  Furture O FqimiTate in Oul N_ £
[ Follow 0
#2
CALC1
= NN:IMP2 IN1 Outl
[1Sample Out > 1 IN2 Out2 ]
Delay  Furture ] ] N3
Follow 1 1N16
#3 #1

Fig. 12: Layout of the sub-module of proposed control strategy implemented with DeltaV facilities
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conventional control, being shown in Fig. 12. Only 4
external analog inputs are necessary to operate with this
control algorithm. Setpoint Ty, and input flow rate ¢, are
estimated from internal control module values. IMP
compensators implemented by means of neural network
function blocks for both control loops are connected to
the feedforward pins of every PID function block.

To mmplement neural networks architectures including
training phases, an object oriented tool is used: DeltaV
Neural. The DeltaV Neural application 1s part of DeltaV
and has its roots in multi-layered feed forward neural
network algorithm which 1s trammed using backward
propagation using an conjugate gradient algorithm. Such
training algorithm is integrated into the DeltaV Neural tool
and determines automatically the number of epochs as
well as the number of hidden neurons, which means a
complete autonomous training phase ones specified the
required precision of the NNBM. Compared to traditional
neural network products, such tool permits advanced
features, such as automatic network update based
onanalyser or lab entry of new sample values and
estimation of future value of the measurement based on
current upstream conditions. The accuracy of the
measurement estimate 1s substantially improved as a
result of these enhancements.

CONCLUSION

Previously to described application on the pilot plant,
a variety of examples based on type zero systems had
been successful carried out by simulation, which
demonstrates that if measurable parameters were mecluded
in the NNBM, multiplicative disturbances could also be
compensated Furthermore, accessible or measurable
couplings, load disturbances and disturbances to the
mampulated variable, were compensated, including
parameter variations.

With the experimental results o a pilot plant described
in this research, a coherent methodology to implement a
feedforward control strategy on the basis of a NNBM
prediction is presented. The ability of this algorithm to
handle and compensate disturbances to process mcluding
measurable couplings between loops and load
disturbances 13 a relevant characteristic.  Such
characteristics makes this strategy an alternative to
conventional control based in a combination of feedback,
feedforward, cascade and decoupling control algorithms
and consequently to model predictive control.

The same and uniform principle and methodology is
useful to compensate all types of accessible disturbances,
which include multiplicative and additive, (changes in
parameters, mampulated variable, load changes,
couplings).

The fact by which no parameter tunings (except PID)
are necessary, suppose also an important advantage, if it
is compared with conventional feedforward or model
predictive  control. For  that proposed
compensation strategy supposes a serious alternative.
The unique drawback of the method is the impossibility to
handle transportation lags on the manipulated variable.

Due to the use of Foundation™ Fieldbus based tools,
understanding the details of the neural network algorithm
15 not necessary to successfully use the DeltaV Neural
product. The availability of advanced Foundation™
Fieldbus based tools brings an appropriate gap between
the proposed control algorithm and its implementation
requirements.
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