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Abstract: Kolmogorov forward equation for one-dimensional time-homogeneous diffusion processes X(t) is

considered. This equation 1s solved explicitly for the Wiener and the Omstein-Uhlenbeck processes, in
particular, in the case when there is a (time-dependent) reflecting boundary. Moreover, the initial state X(0) is

a random variable.
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INTRODUCTION

A one-dimensional diffusion process X(t) is charac-
terized by its transition density function

PIX(DE (x,x +dx)| X(t,) = %, ]
dx

POLEX L) =

This function satisfies the Kolmogorov forward
equation (also called Fokleer-Planclk equation)

2
%&{V(X, tp(x.tyx,,t, )} - %{m(x, tpCtix,. t )}

:%p(xat;xﬂatﬂ)

(Cox and Miller™, for instance), where m(x,t) and v(x,t) are
respectively the dnft and the dispersion (or, in finance,
volatility) of the process. The functions m(x,t) and v(x,t)
must be such that, for all s > 0, we have (see Lamberton
and Lapeyre™):

j:| m(x,t)|dt <o and j:v(x,t)dt <oo
Next, the probability density function f(x,t) of X(t) is
defined by

P[X(t) e (x,x +dx)]
dx

f(x,t)=
and can also be expressed as follows:

£t) = [ px, g, ty (X, 1) 5,

for t = t;. Therefore, it satisfies the same partial differential
equation as p(x,t;xg,t):

éaajz{v(x,t)f(x, 1)} - %{m(x,t)f(x, 1l = %f(x,t).

The most important diffusion processes used in
the applications are time-homogeneous, which implies
that m(xt) = m(x) and v(x,;t) = v(x). In particular, the
standard Brownian motion i1s such that m(x) = 0 and
vix) =1, so that

1 9% 9
19” pix ty=Dpex ).
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When the starting value X(t,) (= x,) of the stochastic
process is deterministic, say X(t;) = Xy, 50 that

F(x,, 1,0 =8(x, —x,)

where 8(.) is the Dirac delta function, we find that the
solution of the above partial differential equation (which
1s the heat equation) 1s

flx.t) =plxtx,,.t

= 1 exp{(xxuu)z}
Jamt-t)) 2(t—t,)
for x € f and t = t,. That is, X(t) | {3(t,) = x,,} has a
Gaussian distribution with mean x,; and variance t-t,.
The problem that we consider in this note 1s that of
finding probabilistic solutions to the partial differential
equation

2
%aax—z{v(x)f(x, 1)} - %{m(x)f(x,t)} = %f(x,t) (1)

subject to the appropriate conditions, that can be
obtained by the method of separation of variables.
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The case when X(t} is a standard Brownian motion,
an Ornstein-Uhlenbeck process and a geometric Brownian
motion.

RESULTS AND DISCUSSION
If we assume that
fix,t) =g(x)h(t),

then Eq. (1) becomes

2
77 (ORI —emE0Etolh(D = o o)

Hence, we deduce that
hit) =c.e”,

where ¢, and ¢ are constants. It follows that the function
g(x) must satisfy the ordinary differential equation

1 d? _d _
EE{V(X)‘%(X)} dx {m{x)g(x)} = cg(x).

Standard brownian motion: When m(x) = 0Oand v(x) =1,
we get the simple ordinary differential equation

2
195 gix) = cg(x),
dx

whose general solution 1s
g(x)=c, eXp{JZX} +c, exp{—\/%x}.

Now, the function f(x,t) must be non-negative and

such that

Bit)
j o fDdx =1 Vet

for appropriate functions «(t) and B(t) that must be
determined. Assume that t, = 0 and choose ¢, = ¢ =1 and
¢, = 0, so that

(2

et

f(x,t)= czexp{—ﬁxj

The condition (2) above 1s satisfied if we take, in
particular, the constant ¢, = /2, a(t) = t/4/2 and p(t) =co
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Notice that

f(x.0)= ﬁexp{fﬁx}

forx e [0,20).

That is, X(0) is a random variable having an exponential
distribution with parameter JZ

Thus, X(t) would be a standard Brownian motion
taking its values in the interval [t/ 2 o). This is possible

if there is a reflecting boundary at x =t/4f2. The
condition for (t-dependent) reflecting barriers is that
d B

ol fxtdx =0

But since the functions «(t) and p(t) where chosen so that
the mtegral is equal to 1, thus condition 1s automatically
satisfied.

Ornstein-uhlenbeck process: This mnportant diffusion
process 1s such that its drift is given by m(x) = -¢x and its
dispersion is v(x) = 1, where ¢« > 0. For simplicity, let us
choose ¢ = 1. The ordinary differential equation satisfied
by the function g 1s

28"(X)+xg'(x) + (¢ + Dg(x) =0.
Its general solution can be expressed as follows:

g(x)= %exp{—xz /2} M[CII,L,XZJ

S

Jx

exp{x2/2}W{CT+1,%,XZJ,

where M(.,...) and W(,.,.) are Whittaker functions
{ Abramowitz and Stegun™). In the particular case when
¢ = -1, the solution reduces to

+

g(x)=c¢, +¢,erf(x),

where erf(\) 1s the error function. Choosing (t, = 0 and)
¢, =0, we obtaimn that

fix,t)=ke™

where k 1s a positive constant (with respect to x). This
time, X(0) has a uniform distribution on an interval of
length k, say [0, k].
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The condition (2) is fulfilled if we take c(t) =0 and
B() = k. As in the previous case, we obtain that X(t) has
areflecting barrier at x = 0 and also at x = e/k. Hence, we
can state that the function
fix,t)=ke" forx € [0,e"/k]
1s the density function of an Ornstein-Uhlenbeck process
whose starting value is a random variable uniformly

distributed on the interval [0,k] and evolving between two
reflecting boundaries.

Geometric brownian motion: This diffusion process 1s
widely used in mathematical finance. Because it can be
expressed as the exponential of a Brownian motion, it has
a natural boundary at the origin. We consider the case
when the drift is m(x) = 2x and the dispersion is v(x) = x°.
The function g(x) is then a solution of

2

2 o(x)— (o + Dg(x) = 0.

2
We find that
g(x)=cx" +c,x,
where
1 s 1 Poese
2 2 2

Choosing (t; = 0,) ¢ = -1 and ¢,= 0, we can write that

fix,t) =kxe™.
We must have

Tow 2
B((:kxe’tdx:l = kwe’tzl.
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We can choose k = 2, a(t) = 0 and f(t) = &"”. Then, we can
assert that there is a reflecting boundary at x = e,

Finally, the initial distribution of the process is
given by
f(x,0)=2x forx e [0,1].
CONCLUSION
We have obtained explicit solutions to the

Kolmogorov forward equation for very important
diffusion processes in the case when these processes
evolve in a region bounded by at least one reflecting
barrier and their starting values are random.

There are surely other particular solutions that can be
obtained by making use of the method of separation of
variables for these processes. There are also other
important diffusion processes that could be considered,
in particular the Bessel process.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences
and Engmeering Research Council of Canada.

REFERENCES

1. Cox, DR. and H.D. Miller, 1965. The Theory of
Stochastic Processes (London, Methuen).

2. Lamberton, D. and B. Lapeyre, 1997. Introduction au
Caleul Stochastique Appliqué a la Finance, 2nd Edn.,
(Paris, Ellipses).

3. Abramowitz, M. and L A. Stegun, 1965. Handbook of

Mathematical Functions with Formulas, Graphs and
Mathematical Tables (New York, Dover).



