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Abstract: Tn state space context, linear systems’ duality is usually expressed in a particular form. Here, we
showed that this concept of duality in a linear system transcends mere representation of the system in its dual
form; rather, it is also manifested in some of the system’s properties. Consequently, we examined 2 salient
system’s properties and established the manifestation of the duality concept between them.

Key words: State space, duality, controllability, observability, transition matrix, range space and null space

INTRODUCTION

Duality 1s concept whereby one true statement can
be obtained from the other, by merely interchanging two
words; though there may sometimes be the need to
modify the language of the dual statement in order to
make it clearer. Examples of some areas of mathematics
where the duality concept has been applied are linear
programming, projective geometry, symbolic logic, set
theory, etc.

For instance, in projective geometry, it 1s an
established fact that the class of all the points of a plane
and the class of all the lines of the same plane are
symmetrically related to each other. Thus, to every
property of lines in the geometry of points, there
corresponds a property of points in the geometry of lines.
As a result, having proved a theorem in the geometry of
points, we can mmmediately write down the corresponding
theorem about lines by simply changing the word
‘points’ to “lines” and vice versa, in the geometry of lines
(Semple and Kneeborne, 1952).

In linear programming, for every linear programming
problem there corresponds another linear programming
problem associated with it which 15 called its dual. The
optimal solutions to the problem and its dual are
equivalent, but they are derived through alternative
procedures. Thus, the relationship between the problems,
once understood, automatically enables us to write down
the solutions to both problems, if we have just solution to
one of the problems (Bunday, 1984).

Generally, the duality concept 1s a mathematical trick
to use a stone to kil two birds. Usually, what the
mathematicians do 1s to solve the simpler of the problem
and 1ts dual while the duality concept 15 used to obtain
the solution to the tougher one.

STATE SPACE SYSTEMS

As we know, state space linear systems are
represented in the form below:
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XD = A+ B(t)u(t)} )

y(t) = C(Ox(1) + D{Dult)

Where matrices A(t), B(t), C(t), D(t) are nxn, n=1, m»mn, mx1
continuous functions of time, respectively. Also, x(t)
denotes the state of the system, u(t) denotes the input
{control) to the system and 1t 13 sectionally continuous in
[t t,] while y(t) denotes the output to the system at any
point in time. It 1s important to note that the dynamics of
the system above changes with tume. Moreover, the first
equation in (1) above is referred to as the state equation
while the second equation in (1) 13 called the output
equation (Rosenbrock, 1970; Rosenbrock and Storey,
1970).

However, duality m linear systems, as presented in
many textbooks and research works, is often expressed as
captured in the following statement:

A linear system represented as
x(t) = Ax(t)+ Cult)
y(t) = Bx{t)+ Du(t)}
1s said to be controllable if and only if its dual system

(2

2(t)= ATx(t) + CTu(t)} 3

y(t)=BTx(t)+ D u(t)

1s  observable and vice versa (Kailath, 1980; Towers,
1998).

As can be seen from above, the system
representation in (1) seems to be more general than that
1n (2), since the former 1s time varying while the latter 1s
time invariant. Obviously, findings from (1) will be more
valuable and pragmatic than those in (2) because most
of the systems in real life are time varying coupled with
the fact that the dynamics of a system 1s a lot dependent
on the relationship between the coefficients of the
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system’s state and its control (ie., x(t) and u(t)).
Moreover, these findings are always valid for systems’
represented n (2).

Nevertheless, there 1s still the need to show that the
duality between system’s controllability and system’s
observability 13 much deeper than this mere
representation in the dual form m (2) and (3). This we shall
establish in the sequel.

RESULTS AND DISCUSSION

The two important system’s properties that will be
considered in this study are system’s controllability and
observability. These properties are important because
they play significant role in the determination of system’s
stability. As a reminder, we will give brief defimtions of
the two properties.

Definition 1: The state x™at t = t, is said to be controllable
at ty if there exists some T>t; and some control u(t) defined
on [t,, T] such that the solution of

(1) = A(Dx(1) + B(Hu(t) 4

which passes through x™ at time t, later passes through
the zero state (x(t)= 0 att = 1 ) for arbitrary x.

Definition 2: The system

y(t) = C(HOHR) + D(Hu(t) (5)

1s said to be observable on the [t t,], whenever we
can obtain the initial state of the system x™ given that
we already know the u(t) and y(t) ; ¥Vt € [t;, t,] and
arbitrary x®.

Now, we will examine systems’ controllability. To do
this, let us consider a simple dynamical system of the form

z(t) = B(Hu(t) (6)
We can solve Eg. 6 in place of (4) since both has
same solution based on the transformation z(t) = D(t,, t)

%(t) Then, when will the system (6) be controllable at t,?
In answering this questiony, let us integrate (6) to give

2t = 2 4 J't‘ B(ru(tde (7)
ty

Suppose z" is controllable at t, then u(y) must be
such that
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t
0=204 j 'Biou(tyde
tg

for some t,>t;

Due to the difficulty that may be encountered in
solving the integral Eq. 8, we will interpret (8) in the
vector space setting. Suppose the linear map L : u(t)-z is

defined by

7= L(w)= 7-‘-:1 Bioyu(n)d (9)

is a linear mapping of vector spaces. ie., L : Cy [t t,]-R"
1s linear.

In this context, denoting the range space of L. by
R(L), we observe that the statement (8) is equivalent to
the statement that z% € R(1.). Therefore, z¥ is controllable
att, for the system (6) iff 2z € R(L) for some t,>t, Hence,
the set of states that are controllable at t, on the time
interval [t;, t,] 18 exactly R(L). Thus, controllability deals
with studying the range space of a linear map.

Now, we will consider system’s observability mn a
similar way. We know from defimtion of observability that
it has to do with finding the initial state x*. However, the
essential problem to be solved in determining x* from the
given information is illustrated below:

To determine initial state x“, let us adopt the
variation of parameter formula in Eq. 5, we will have

y(1) = C{O)dD{t,t, )X(O) + j: CiHDt DB(tu(tydt + (10)

D(tyu(t)

Obviously, we know u(t) and the last two terms on
the RHS of the above equation;, if we incorporate these
with the known term y(t) on the LHS, without loss of
generality, the problem is reduced to determining x* from
the equation

y(t) = COHD(t, 1 x Y (11)

where y(t), C(t), Dt ty) are known. Therefore, the problem
of determining the system’s observability is reduced to
solving Eq. 11.

Considering Eq. 11, it 18 obvious that it 1s only C(t)
and A(t) (note that A(t) determines the transition matrix
D(t, t;) ) that contribute directly to the equation while the
control terms play no role therem.

Consequently, for system’s observability, we shall
use the system equations of the form
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(1) = A(t)x(t))} (12)
y(t)= C{thx(t)

We will, then, progress the study of observability or
equivalently the study of (11) by mtroducing the linear
transform 1. : R*>C[t,, t,]™ defined by

Lex @ = Hitx® = cidit, tg)x @ (13)

Now, system (1) will be observable iff Eq. 13
determines a unique x” for the given y(t) and this will
only be so if the map (13) is injective (ie., 1-1). The
condition for such map to be iyjective 13 that Kernel of
1. = {0}. Hence, system’s observability leads to the study
of null space of a linear mapping.

As we can see from above, system’s controllability
relates to the range space of a linear map while system’s
observability deals with the null space of a linear map.
Without doubt, 1t 15 an established fact that the null space
is the dual of the range space. Consequently, the above
thus shows the manifestation of the duality concept
between  system’s  controllability and  system’s

observability.

Additional results: We need to characterize the range and
mull space of the respective linear maps. This will be
established i the following lemmas:

Lemma 1:

z € R(L) iff z € R(W(t,, t,)) where W(t,, t,) 1s a linear map
given by

Wity t)) = J':l BB (t)de (14)

Proof : If z € R(W(t;, t,)) then there exists a vector 1 € R*
such that W(t, t)n ==z
Using a particular control u,(t) = -B™n, then

t
L{u;)= —jt Bty (t)dt
= J.tl B(T)BT {tmdr
ty

- {f " BB’ (9dgn
ty

= W(tp.t3n
=z

Thus, z € R(L) as required.

For the converse, suppose that z § R(W(t,, t,)), then
we must show that z ¢ R(L) Obviously, W(t,, t) 1s
symmetric based on its defimtion Then, using the
dimension theorem for the linear mapping, it follows that
every vector z € $* has a unique decomposition of the
form

z=z+z, (15)
with z, € ker(W(t,, t,)) and z, € R(W(t,, t,))

It follows that W(t,, t,) z= 0 and that 3 1 € H" such
that z, = W(t,, t,)1] Hence,

7" 7y =2 Witg, ty (16)
= (Witg,t)z) =0

Now, if z ¢ ROW(t,, t,)) as assumed earlier, then in (15)
we must have z, (#0) eR". Thus, it follows from (16) that

T __T T

Zl Zle Zl+Zl ZZ
_,T 17
2Ty (17

= ||lz|? = 0.

Therefore, ze R(W(t,, t,)) implies that there exists
z, (#0) €R". such that z," z# 0 Consequently, there exists
a control u,(t) defined on the [t,, t,] such that

zZ= 7"-:: Bty (t)dt

and 1t follows from (17) that

- :1 (BT (1)) 0, (t)dr = ,j:‘ 2 TB(Ou (Tdr
o 0
=gT _[:1 B(tju, (1)dt 18)
0
= lez # 0.
However, z, € ker(W(t,, t,)) and so z," W(t,, t,) z, = 0.
= j:l ZITB(‘E)B(T)T zidt=0,
0
jj:' HB(t)TZIHZdt: 0. Ve lty.t] 49
0
B(T)T 7, = 0.

It 1s clear from the above that (19) contradicts (18).
This implies that the assumption that z € R(L) must be
false. Therefore, z ¢ R(L) as required.

946



J. Eng. Applied Sci., 2 (5): 944-947, 2007

Now, having proved a lemma relating to
controllability, it becomes necessary to establish a similar
lemma for observability. Below is the lemma:

Lemma 2: The null space the linear mapping 1. of (13)
coincides with the nxn matrix M(ty, t,) given by

M(tg.t;) = JH(':)T H(t)dt (20)
Proof: If x € ker(M(t,, t,)) then

t
0= XTM(tO,tl)X = J- 1 XTH(T)T H{txdz

ty

) 2
= [ Irce ar
ty

Hence, H(t)x = 0Vt € [t,, t,]
= x € Ker(L).
Conversely, x € Ker(L) | then

H(t)X = Q Yt e [t0>t1]
S HOTH(Dx = 0 Ve [ty. 4]

Thus, it follows that

J'tl 10T Htxdt = “tl (o) H('l:)d‘l:j X = M{tg,t,)x = 0
t

0 to
Therefore, x € ker(M(t,, t,)) as requured.
To further characterise the system’s controllability,

let us consider the below corollary:

Corollary: The system (4) is completely controllable iff,
for some t, > t,, Rank W(t,, t,) = n.

Proof: Complete controllability at t, requires that every
xMefR" lies in ROW (1, ,))

= R" S R(Wty,t,)
However, R(W(t,, t,)) is always a subspace of ;"
= R(W(ty,t N R

Hence, R(W(t,, t,)) = %"
Therefore,

RANK(W(ty,1,)) = dimR(W(ty,t,)) = im®R" = n

Similarly, an analogous corollary exists for system’s
observability.

CONCLUSION

Based on the above established proofs, we have
seen that system’s controllability deal with the study of
range space of a linear map while system’s observability
deals with the study of null space of a linear map which is
a manifestation of duality between these two salient
system’s properties. Moreover, we also saw that for every
statement about system’s controllability there exists a
corresponding statement about the system observability.
Thus, having proved a  statement for system’s
controllability, we can immediately write down the
corresponding statement for system’s observability by
mere replacing the dual-sensitive terms as appropriate in
the former statement.

Physically, when a system 1s controllable, it implies
that a controller can be applied on the system such that it
achieves the desired output almost immediately
wrrespective of the time interval. As for system’s
observability, simce the kemnel shrinks with time, 1t shows
that the uncertainty surrounding the exact prediction of
the initial state of the system reduces as the time interval
of system’s operation increases. Therefore, the larger the
system’s operational time interval, the more likely we will
be able to predict the system initial state accurately.

Finally, duality in linear system is much deeper than
the usual dual representation, rather it is also exhibited in
some of the system’s properties. In particular, we showed
the mamfestation of the duality concept in system’s
controllability and observability.
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